Mineralogical and hydraulic characteristics of mudstone in the Tamusu candidate area in northwest China for high-level radioactive waste geological disposal

Clay Minerals ◽  
2020 ◽  
Vol 55 (1) ◽  
pp. 71-82
Author(s):  
Long Xiang ◽  
Xiaodong Liu ◽  
Pinghui Liu ◽  
Xingfu Jiang ◽  
Chaocheng Dai

AbstractThe Tamusu region in northwest China is a key candidate area for China's clay rock deep geological repositories (DGRs) for high-level radioactive waste (HLRW) as it is composed of a continuous layer of thick lacustrine mudstone. To evaluate this mudstone as a host rock, two special test boreholes were drilled to investigate its spatial distribution and mineralogical and hydraulic characteristics. The southwest boundary and depositional centre of the lake basin were well delineated by boreholes TZK-1 and TZK-2. The continuous single-layer thickness of the target mudstone formation was up to 300 m at a depth of 500–800 m. Three main mineral types were determined, namely carbonates (mainly dolomite and ankerite), analcime and albite, and their abundance was used to distinguish three different facies. Other mineral phases, such as clay minerals (mainly illite and kaolinite), pyrite, hematite, quartz and calcite, were present as admixtures. The presence of carbonates may increase the mechanical strength and analcime may enhance the radionuclide adsorption properties of the mudstone. The self-sealing properties, which may be affected by the small amount of clay minerals, remain to be investigated. The hydraulic conductivity of the mudstone determined via in situ pulse tests ranged from 10–13 to 10–10 m s–1, suggesting that the Tamusu mudstone has ultra-low permeability. The transmissivity of the Tamusu mudstone fluctuated in regions with varying lithologies, but remained relatively constant for consistent lithologies. In summary, these preliminarily results confirm the possible suitability of the target formation as a host rock for DGRs of China's HLRW.

1983 ◽  
Vol 26 ◽  
Author(s):  
Norbert Jockwer

ABSTRACTAs a result of the heat producing high-level radioactive waste, volatile components which are in the host rock will be liberated and further gases will be generated by thermal cracking and radiolysis.


2020 ◽  
Author(s):  
Volker Mintzlaff ◽  
Joachim Stahlmann

<p><strong>Monitoring and Retrieval of High-Level Radioactive Waste</strong></p><p>The retrievability of high-level radioactive waste (HAW) is defined as the option to retrieve previously emplaced waste from a respository. This is a design requirement in many countries, as for example in Germany, justified by the need to react on possible failures in the repository system.</p><p>Retrievability affects the footprint of the repository (Léon-Vargas et al., 2017) and requires a monitoring program (Stahlmann et al., 2018), as the decision on retrieval should be justified on sound basis. For a holistic analysis of the design consequences of retrievability of high-level radioactive waste it is necessary to get information about the retrieval process itself. In TRANSENS, a transdisciplinary research platform for HAW disposal research, the retrieval process will be analyzed in general.</p><p>The presentation will focus on a generic repository approach based upon Stahlmann et al. (2018) modified for the analysis of the retrieval process. Main impacts of the retrieval works on the host rock were identified, as the effects of the redriven emplacement drifts on the repository system. The presentation will focus on these processes and give a short outlook on their consequences for a monitoring program.</p><p> </p><p>Leon Vargas, R.; Stahlmann, J.; Mintzlaff, V. (2017): Thermal impact in the geometrical settings in deep geological repositories for HLW with retrievability and monitoring. 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017), Charlotte, NC, April 9-13, 2017.</p><p>Stahlmann, J.; Mintzlaff, V.; León Vargas, R.P.; Epkenhans, I. (2018): Normalszenarien und Monitoringkonzepte für Tiefenlager mit der Option Rückholung. Generische Tiefenlagermodelle mit Option zur Rückholung der radioaktiven Reststoffe. ENTRIA-Arbeitsbericht-15. Braunschweig.</p>


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4237
Author(s):  
Cheng ◽  
Xu ◽  
Zheng

Strength parameters of the host rock is of paramount importance for modelling the behaviors of underground disposal repository of high-level radioactive waste (HLW). Mobilization of strength parameters should be studied for a better understanding and modelling on the mechanical behaviors of the surrounding rock, considering the effect of temperature induced by the nuclear waste. The granite samples cored from NRG01 borehole in Alxa candidate area in China for HLW disposal are treated by different temperatures (T = 20 °C, 100 °C and 200 °C), and then are used to carry out a series of uniaxial and tri-axial compression experiments under various confining pressures (σ3 = 0, 5, 10, 20, and 30 MPa) in this study. With the recorded axial stress—axial strain and axial stress—lateral strain curves, mobilization of both Mohr-Coulomb and Hoek-Brown strength parameters are analyzed with the increasing plastic shear strain. It has been found that NRG01 granite samples show generally similar cohesion weakening and friction strengthening behaviors, as well as the non-simultaneous mobilization of Hoek-Brown strength parameters (mb and s), under the effect of various treatment temperatures. Furthermore, the samples treated by higher temperatures show lower initial values of cohesion, but their initial friction angle and mb values are relatively higher. This should be mainly owing to the thermally induced cracks in the samples. This study should be helpful for a better modelling on the mechanical behaviors of NRG01 granite samples as the host rock of a possible HLW disposal repository.


Sign in / Sign up

Export Citation Format

Share Document