Ultrabasic eruptives with alnöitic-kimberlitic affinities from Malaita, Solomon Islands

Author(s):  
J. B. Allen ◽  
T. Deans

SummaryA detrital assemblage of magnesian ilmenite, pyrope, chrome-diopside, rutile, and zircon has been traced to outcropping ultrabasic alkaline rocks, hitherto unknown in the Melanesian region. Analyses and descriptions of these ‘kimberlite indicator minerals’ are given. The host rocks comprise alnöite, an alnöite breccia with calcite matrix, and a magnesian ankaratrite, which are described, with chemical analyses. Emphasis is laid on the abundance of ultrabasic inclusions and xenocrysts and the replacements and transformations they have undergone. Malaita Island promises to contribute significantly to the understanding of the relations between alnöite, melilite basalts, and kimberlites.

2006 ◽  
Vol 10 ◽  
pp. 41-44 ◽  
Author(s):  
Agnete Steenfelt ◽  
Julie A. Hollis ◽  
Karsten Secher

Ultrabasic alkaline magmatic rocks are products of melts generated deep within or at the base of the lithospheric mantle. The magmas may reach the surface to form lavas and pyroclastic deposits; alternatively they crystallise at depth to form dykes or central complexes. The rocks are chemically distinct and may contain high concentrations of economically interesting minerals and chemical elements, such as diamonds, niobium, tantalum, rare earth elements, phosphorus, iron, uranium, thorium, and zirconium. Ultrabasic alkaline rocks are known from several provinces in Greenland, but extrusive facies have only been preserved at a few places; e.g. at Qassiarsuk in South Greenland where pyroclastic rocks occur, and in the Maniitsoq region, where a small volcanic breccia (‘Fossilik’) contains fragments of Palaeozoic limestone. Ultramafic lamprophyre and kimberlite are mainly emplaced as dykes, whereas carbonatite forms large intrusive bodies as well as dykes. The ultrabasic alkaline magmas that have been emplaced at certain times during the geological evolution of Greenland can be related to major episodes of continental break-up (Larsen & Rex 1992). The oldest are Archaean and the youngest dated so far are Palaeogene. Figure 1 shows the distribution of known ultrabasic alkaline rocks in West Greenland. The large and well-exposed bodies of alkaline rocks and carbonatites in the Gardar Province were discovered already in the early 1800s (Ussing 1912), while less conspicuous bodies were discovered much later during geological mapping and mineral exploration. Many alkaline rock bodies, particularly dykes, are difficult to identify in the field because they weather more extensively than the country rock gneisses and form vegetated depressions in the landscape. However, their distinct chemistry and mineralogy render alkaline rocks identifiable in geochemical and geophysical survey data. Thus, the Sarfartôq carbonatite complex was discovered during regional airborne gamma-spectrometric surveying owing to its elevated uranium and thorium contents (Secher 1986). The use of kimberlite indicator minerals has led to the discovery of alkaline rocks such as kimberlites and ultramafic lamprophyres that carry fragments of deep lithospheric mantle. Such rocks may also contain diamonds. Kimberlite indicator minerals are high-pressure varieties of minerals, such as garnet, clinopyroxene, chromite and ilmenite that were formed in the lithospheric mantle. Exploration companies have processed thousands of till samples from southern West Greenland for kimberlite indicator minerals and found many new dykes.


2021 ◽  
Author(s):  
I R Smith ◽  
S J A Day ◽  
R C Paulen ◽  
D G Pearson

Till (n=196) and stream sediment (n=60) samples were collected in the area south and west of Great Slave Lake, Northwest Territories (NTS 85B, C, F, and G), over the course of 3 summer field seasons. Samples were processed to recover kimberlite and other indicator minerals. This report summarizes results of the kimberlite indicator mineral (KIM) studies, including measures of KIM mineral types, abundances, and chemistry (major, trace, and rare earth elements). KIMs were present in 24% of the samples collected, and only 183 KIM grains in total were recovered, of which Cr-pyrope garnets were the most abundant (65.6%). Chemical analyses revealed strong similarities to the Drybones Bay and Mud Lake kimberlites which are situated 50 to >100 km to the northeast, roughly aligned with prominent glacially streamlined landform flowsets in this field area. Results suggest there is little evidence for undetected kimberlite outcrop or sub-crop in the study area.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 195 ◽  
Author(s):  
Wenheng Liu ◽  
Xiaodong Liu ◽  
Jiayong Pan ◽  
Kaixing Wang ◽  
Gang Wang ◽  
...  

The Qingshanbao complex, part of the uranium metallogenic belt of the Longshou-Qilian mountains, is located in the center of the Longshou Mountain next to the Jiling complex that hosts a number of U deposits. However, little research has been conducted in this area. In order to investigate the origin and formation of mafic enclaves observed in the Qingshanbao body and the implications for magmatic-tectonic dynamics, we systematically studied the mineralogy, petrography, and geochemistry of these enclaves. Our results showed that the enclaves contain plagioclase enwrapped by early dark minerals. These enclaves also showed round quartz crystals and acicular apatite in association with the plagioclase. Electron probe analyses showed that the plagioclase in the host rocks (such as K-feldspar granite, adamellite, granodiorite, etc.) show normal zoning, while the plagioclase in the mafic enclaves has a discontinuous rim composition and shows instances of reverse zoning. Major elemental geochemistry revealed that the mafic enclaves belong to the calc-alkaline rocks that are rich in titanium, iron, aluminum, and depleted in silica, while the host rocks are calc-alkaline to alkaline rocks with enrichment in silica. On Harker diagrams, SiO2 contents are negatively correlated with all major oxides but K2O. Both the mafic enclaves and host rock are rich in large ion lithophile elements such as Rb and K, as well as elements such as La, Nd, and Sm, and relatively poor in high field strength elements such as Nb, Ta, P, Ti, and U. Element ratios of Nb/La, Rb/Sr, and Nb/Ta indicate that the mafic enclaves were formed by the mixing of mafic and felsic magma. In terms of rare earth elements, both the mafic enclaves and the host rock show right-inclined trends with similar weak to medium degrees of negative Eu anomaly and with no obvious Ce anomaly. Zircon LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry) U-Pb concordant ages of the mafic enclaves and host rock were determined to be 431.8 5.2 Ma (MSWD (mean standard weighted deviation)= 1.5, n = 14) and 432.8 4.2 Ma (MSWD = 1.7, n = 16), respectively, consistent with that for the zircon U-Pb ages of the granite and medium-coarse grained K-feldspar granites of the Qingshanbao complex. The estimated ages coincide with the timing of the late Caledonian collision of the Alashan Block. This comprehensive analysis allowed us to conclude that the mafic enclaves in the Qingshanbao complex were formed by the mixing of crust-mantle magma with mantle-derived magma due to underplating, which caused partial melting of the ancient basement crust during the collisional orogenesis between the Alashan Block and Qilian rock mass in the early Silurian Period.


1983 ◽  
Vol 47 (344) ◽  
pp. 365-369 ◽  
Author(s):  
A. Mahmood

AbstractChemical analyses and structural formulae of biotites from the Zaër pluton, a zoned granitic body in the Central Hercynian Massif of Morocco, are presented. The pluton grades from more mafic single-mica granodioritic facies near the margin to more felsic two-mica granitic facies in the central part. There is a relationship between the composition of the biotites and that of the host rocks. Biotite composition in the internal two-mica facies was influenced by a hydrothermal phase.


2010 ◽  
Vol 435 (2) ◽  
pp. 1555-1559
Author(s):  
V. P. Afanasiev ◽  
N. S. Tychkov ◽  
N. P. Pokhilenko ◽  
Yu. I. Ovchinnikov

1996 ◽  
Author(s):  
B C Ward ◽  
L A Dredge ◽  
D E Kerr ◽  
I M Kjarsgaard

Sign in / Sign up

Export Citation Format

Share Document