normal zoning
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Rosalind Tuthill Helz

Abstract Petrographic and chemical analysis of scoria samples collected during the 1959 Kīlauea summit eruption illustrate the progress of thermal and chemical homogenization of the melts, and the gradual growth and/or re-equilibration of olivine phenocrysts, over the course of the eruption. Glass compositions show that thermal equilibration was largely complete within the span of the eruption, while chemical homogenization was a work in progress. The olivine phenocryst population, known to contain conspicuous antecrystic components, is also hybrid within the euhedral population. The bulk of the olivine reached the level of the erupting magma on November 18-19, 1959. Zoning patterns in olivine phenocrysts show that initially unzoned grains developed normal zoning by the end of the eruption. Reverse zoning in relatively Fe-rich olivine phenocrysts (interpreted as cognate to the stored magma) was progressively eliminated from November 21 to December 19, 1959, by diffusive re-equilibration between crystals and melt. Toward the end of the eruption, the only olivine composition in direct contact with the melt was Fo84-86, with the original rim compositional heterogeneity gone in 4-5 weeks’ time. Activity in December 1959 differed from that in November, as high fountaining events were more closely spaced and almost all samples were picritic, with bulk MgO ≥16.5 wt %. Three different levels were in play during the 1959 eruption: a deep source for high-MgO melts and forsteritic (Fo87-89) olivines, an intermediate source for the bulk of the stored magma, and a shallower source for the most differentiated magma. This model is consistent with geophysical, petrologic and chemical observations. Comparison of the 1959 eruption with results from older explosive deposits suggest that stored and recharge melts and olivine from the deeper parts of Kīlauea’s plumbing are similar in composition to those observed or inferred in the 1959 eruption, so they behave similarly during extrusive and explosive periods alike.


2021 ◽  
Vol 176 (11) ◽  
Author(s):  
Charline Lormand ◽  
Georg Florian Zellmer ◽  
Naoya Sakamoto ◽  
Teresa Ubide ◽  
Geoff Kilgour ◽  
...  

AbstractArc magmas typically contain phenocrysts with complex zoning and diverse growth histories. Microlites highlight the same level of intracrystalline variations but require nanoscale resolution which is globally less available. The southern Taupo Volcanic Zone (TVZ), New Zealand, has produced a wide range of explosive eruptions yielding glassy microlite-bearing tephras. Major oxide analyses and textural information reveal that microlite rims are commonly out of equilibrium with the surrounding glass. We mapped microlites and microcrysts at submicron resolution for major and trace element distributions and observed three plagioclase textural patterns: (1) resorption and overgrowth, (2) oscillatory zoning, and (3) normal (sharp) zoning. Pyroxene textures are diverse: (1) resorption and overgrowth, (2) calcium-rich bands, (3) hollow textures, (4) oscillatory zoning, (5) sector zoning, (6) normal zoning and (7) reverse zoning. Microlite chemistry and textures inform processes operating during pre-eruptive magma ascent. They indicate a plumbing system periodically intruded by short-lived sub-aphyric dykes that entrain microantecrysts grown under diverse physico-chemical conditions and stored in rapidly cooled, previously intruded dykes. Changes in temperature gradients between the intrusion and the host rock throughout ascent and repeated magma injections lead to fluctuations in cooling rates and generate local heterogeneities illustrated by the microlite textures and rim compositions. Late-stage degassing occurs at water saturation, forming thin calcic microcryst rims through local partitioning effects. This detailed investigation of textures cryptic to conventional imaging shows that a significant proportion of the micrometre-sized crystal cargo of the TVZ is of antecrystic origin and may not be attributed to late-stage nucleation and growth at the onset of volcanic eruptions, as typically presumed.


Author(s):  
May Sas ◽  
Phil Shane ◽  
Takeshi Kuritani ◽  
Georg F Zellmer ◽  
Adam J R Kent ◽  
...  

Abstract The Okataina Volcanic Centre (OVC), located in the Taupo Volcanic Zone, New Zealand, is a dominantly rhyolitic magmatic system in an arc setting, where eruptions are thought to be driven by mafic recharge. Here, Sr-Pb isotopes, and compositional and textural variations in plagioclase phenocrysts from ten rhyolitic deposits (two caldera, one immediately post-caldera, four intra-caldera, and three extra-caldera) are used to investigate the OVC magmatic system and identify the sources and assimilants within this diverse mush zone. Plagioclase interiors exhibit normal and reverse zoning, and are commonly in disequilibrium with their accompanying glass, melt inclusions, and whole rock compositions. This indicates that the crystals nucleated in melts that differed from their carrier magma. In contrast, the outermost rims of crystals exhibit normal zoning that is compositionally consistent with growth in cooling and fractionating melts just prior to eruption. At the intra-crystal-scale, the total suite of 87Sr/86Sr ratios are highly variable (0.7042–0.7065 ± 0.0004 average 2se), however, the majority (95%) of the crystals are internally homogeneous within error. At whole-crystal-scale (where better precision is obtained) 87Sr/86Sr ratios are much more homogeneous (0.70512–0.70543 ± 0.00001 average 2se) and overlap with their host whole rock Sr isotopic ratios. Whole-crystal Pb isotopic ratios also largely overlap with whole rock Pb ratios. The plagioclase and whole rock isotopic compositions indicate significant crustal assimilation (≥20%) of Torlesse-like metasediments (local basement rock) by a depleted mid-ocean ridge mantle magma source, and Pb isotopes require variable fluid-dominant subduction flux. The new data support previous petrogenetic models for OVC magmas that require crystal growth in compositionally and thermally distinct magmas within a complex of disconnected melt-and-mush reservoirs. These reservoirs were rejuvenated by underplating basaltic magmas that serve as an eruption trigger. However, the outermost rims of the plagioclase imply interaction between silicic melts and eruption-triggering mafic influx is largely limited to heat and volatile transfer, and results in rapid mobilization and syn-eruption mixing of rhyolitic melts. Finally, relatively uniform isotopic compositions of plagioclase indicate balanced contributions from the crust and mantle over the lifespan of the OVC magmatic system.


2020 ◽  
Vol 8 ◽  
Author(s):  
Clara Solaro ◽  
Hélène Balcone-Boissard ◽  
Daniel Joseph Morgan ◽  
Georges Boudon ◽  
Caroline Martel ◽  
...  

To understand the dynamics of magmatic systems, one must first seek to characterize the time-dependent behavior of magma storage and ascent. Herein, we do this through a combination of the Crystal System Approach and careful study of Fe-Mg interdiffusion in orthopyroxene. This allows us to trace the pre-eruptive dynamics of magma plumbing systems, both in space and time. We apply this novel approach on two large silicic eruptions (about 3–5 km3 DRE/eruption) that occurred in the central part of Dominica Island (Lesser Antilles Arc): the eruptions of Layou (∼51 ka) from Morne Diablotins, and Roseau (∼33 ka) from Morne Trois Pitons-Micotrin. For the Roseau eruption, two magmatic environments (MEs) are identified on the basis of orthopyroxene composition, with a dominant reverse-zoning pattern from 50 to 54 to 54–59 mol% enstatite (En), indicating interaction with hotter magma. For the Layou eruption, three MEs are observed as represented by three populations of pyroxenes: En47-51, En51-53 and En53-58. The normal-zoning pathway from En51-53 to En47-51 is significantly registered by crystals, interpreted as convective mixing in a zoned reservoir. The reverse-zoning pathway from En47-51 to En51-53 and also En53-58 is also significantly present, supporting the mixing within the zoned reservoir but also suggesting mixing with a hotter magma, possibly stored in another part of a sub-volcanic mush. The crystal and glass compositions (melt inclusion and matrix glass) from both studied eruptions suggest heating and mixing between different magma pockets located within the mush that were the dominant process for mobilizing eruptible magma. In parallel, we constrain the associated pre-eruptive timescales by modeling the diffusive relaxation of Fe-Mg chemical gradients that originated within the zonation of the same orthopyroxene crystals. Diffusion modeling was considered along the b-axis of 66 zoned orthopyroxene crystals for these two eruptions, at a magmatic temperature of 850 ± 25°C. In light of these results, we propose that the Layou and the Roseau magma reservoirs were rejuvenated and heated by ∼25–50°C about 10 years prior to eruption by the injection of an underplating, hotter magma, creating the observed dominant reverse-zoning patterns of the erupted orthopyroxenes. We thus have evidence that silicic mush can be re-mobilized over timescales of decades prior to eruption, as previously suggested for Santorini and Taupo volcanoes.


2020 ◽  
Author(s):  
Moritz Bauer ◽  
Theodoros Ntaflos ◽  
Rainer Abart ◽  
Pier-Paolo Giacomoni ◽  
Carmelo Ferlito ◽  
...  

<p>Mt. Etna is one of the most protrusive features of the eastern coastline of Sicily, Italy. As Europe’s most active volcano it has been studied extensively to reveal its geodynamic setting, plumbing system and due to the constant monitoring of the volcano edifice the prediction of the risk future events is sophisticated at Mt. Etna.</p><p>The eruptive activity has been divided according to the age into 6 stages: (1) “Tholeiitic Stage”, was active between 600-320 ka ago, (2) the “Timpe Stage” between 220 and 110 ka ago, (3) the “Ancient Alcaline Volcanism”  between 110 and 65 ka ago and (4) the “Ellittico Stage” between 57 and 15 ka ago (5) the “Mongibello Stage” from 15 ka ago until 1971 and (6) the “post -1971 Stage” active since 1971 (Casetta et al., 2019).</p><p>The lava propagating through the Etnean plumbing system generated a complex network consisting of sills and dykes responsible for the formation of the summit craters and a plethora of eccentric cones that cover the flanks of the volcano.</p><p>We studied whole rock and mineral chemistry of the lavas from three eccentric cones (Monte Spagnolo, Monte Fiori and Monte Rossi) and the 2002/2003 southern flank lava flow. All lavas are characterized by trachytic texture with variable modal composition of olivine, clinopyroxene and plagioclase phenocrysts. Euhedral and skeletal olivine phenocrysts can be distinguished into three main groups; a) normal zoning, b) inverse zoning, and c) patchy appearance with melt inclusions of andesitic and trachytic composition. The Monte Spagnolo whole rock composition has an Mg# ranging between 52-54 and 10.7 wt% CaO , being are the most primitive lavas among the sampled outcrops whereas the Monte De Fiore lavas are the most evolved since the Mg# ranges from 48.6 to 49.2 and the CaO content from 11 to 11.2 wt%. Both, Monti Rossi and the  2002/2003 lava flow are more evolved than the Monte Spagnolo since they have Mg# ~ 50 and 49-49.3 respectively. The CaO concentration in both outcrops is relatively constant ranging around 10.5 wt%.</p><p>The olivine compositions follow the same trend as their whole rocks. The most MgO-rich olivine (Fo=88.9 %) was found in the Monte Spagnolo lavas. This olivine is of magmatic origin and cannot be considered as mantle derived xenocryst since the NiO content is low (NiO=0.17 – 0.2 wt%) and the CaO-content high (CaO=0.24 – 0.26 wt%). The most evolved lavas from Monte De Fiore have the lowest Fo-content (Fo=75 - 78 %). Olivine from all samples has a characteristic inverse zonation with, at Monti Rossi and 2002/2003 lava flow, Fo-content in the core ranging from 69% to 75% and in the rim from 77% to 80% respectively.</p><p>In conclusion, the studied eccentric cones show extensive magma mixing as can be inferred from the olivine inverse zoning. Monte Spagnolo lavas represent the most primitive magma formed at high temperatures (olivine skeletal growing) and the Monte De Fiore lavas the most evolved magma.</p><p> </p><p>Casetta et al., 2019. International Geology Review, DOI: 10.1080/00206814.2019.1610979</p>


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 288 ◽  
Author(s):  
Sandra Baurier-Aymat ◽  
Abigail Jiménez-Franco ◽  
Josep Roqué-Rosell ◽  
José María González-Jiménez ◽  
Fernando Gervilla ◽  
...  

We report the first results of a combined focused ion beam and high-resolution transmission electron microscopy (FIB/HRTEM) investigation of zoned laurite (RuS2)-erlichmanite (OS2) in mantle-hosted chromitites. These platinum-group minerals form isolated inclusions (<50 µm across) within larger crystals of unaltered chromite form the Ojén ultramafic massif (southern Spain). High-magnification electron microscopy (HMEM), high angle-annular dark field (HAADF) and precession electron diffraction (PED) data revealed that microscale normal zoning in laurite consisting of Os-poor core and Os-rich rims observed by conventional micro-analytical techniques like field emission scanning electron microscope and electron microprobe analysis (FE-SEM and EPMA) exist at the nanoscale approach in single laurite crystals. At the nanoscale, Os poor cores consist of relatively homogenous pure laurite (RuS2) lacking defects in the crystal lattice, whereas the Os-richer rim consists of homogenous laurite matrix hosting fringes (10–20 nm thickness) of almost pure erlichmanite (OsS2). Core-to-rim microscale zoning in laurite reflects a nonequilibrium during laurite crystal growth, which hampered the intra-crystalline diffusion of Os. The origin of zoning in laurite is related to the formation of the chromitites in the Earth’s upper mantle but fast cooling of the chromite-laurite magmatic system associated to fast exhumation of the rocks would prevent the effective dissolution of Os in the laurite even at high temperatures (~1200 °C), allowing the formation/preservation of nanoscale domains of erlichmanite in laurite. Our observation highlights for the first time the importance of nanoscale studies for a better understanding of the genesis of platinum-group minerals in magmatic ore-forming systems.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 195 ◽  
Author(s):  
Wenheng Liu ◽  
Xiaodong Liu ◽  
Jiayong Pan ◽  
Kaixing Wang ◽  
Gang Wang ◽  
...  

The Qingshanbao complex, part of the uranium metallogenic belt of the Longshou-Qilian mountains, is located in the center of the Longshou Mountain next to the Jiling complex that hosts a number of U deposits. However, little research has been conducted in this area. In order to investigate the origin and formation of mafic enclaves observed in the Qingshanbao body and the implications for magmatic-tectonic dynamics, we systematically studied the mineralogy, petrography, and geochemistry of these enclaves. Our results showed that the enclaves contain plagioclase enwrapped by early dark minerals. These enclaves also showed round quartz crystals and acicular apatite in association with the plagioclase. Electron probe analyses showed that the plagioclase in the host rocks (such as K-feldspar granite, adamellite, granodiorite, etc.) show normal zoning, while the plagioclase in the mafic enclaves has a discontinuous rim composition and shows instances of reverse zoning. Major elemental geochemistry revealed that the mafic enclaves belong to the calc-alkaline rocks that are rich in titanium, iron, aluminum, and depleted in silica, while the host rocks are calc-alkaline to alkaline rocks with enrichment in silica. On Harker diagrams, SiO2 contents are negatively correlated with all major oxides but K2O. Both the mafic enclaves and host rock are rich in large ion lithophile elements such as Rb and K, as well as elements such as La, Nd, and Sm, and relatively poor in high field strength elements such as Nb, Ta, P, Ti, and U. Element ratios of Nb/La, Rb/Sr, and Nb/Ta indicate that the mafic enclaves were formed by the mixing of mafic and felsic magma. In terms of rare earth elements, both the mafic enclaves and the host rock show right-inclined trends with similar weak to medium degrees of negative Eu anomaly and with no obvious Ce anomaly. Zircon LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry) U-Pb concordant ages of the mafic enclaves and host rock were determined to be 431.8 5.2 Ma (MSWD (mean standard weighted deviation)= 1.5, n = 14) and 432.8 4.2 Ma (MSWD = 1.7, n = 16), respectively, consistent with that for the zircon U-Pb ages of the granite and medium-coarse grained K-feldspar granites of the Qingshanbao complex. The estimated ages coincide with the timing of the late Caledonian collision of the Alashan Block. This comprehensive analysis allowed us to conclude that the mafic enclaves in the Qingshanbao complex were formed by the mixing of crust-mantle magma with mantle-derived magma due to underplating, which caused partial melting of the ancient basement crust during the collisional orogenesis between the Alashan Block and Qilian rock mass in the early Silurian Period.


2018 ◽  
Vol 82 (3) ◽  
pp. 675-696 ◽  
Author(s):  
David M. Evans

ABSTRACTCompositional zoning is observed rarely in chrome-spinel grains from slowly-cooled layered intrusions because diffusion of cations continues within the spinel to low temperatures. However, in certain circumstances, such gradational zoning of both divalent and trivalent cations is observed and may be useful in deciphering the thermal history of the host intrusions. The accessory chrome-spinels of the Kabanga mafic-ultramafic chonolith intrusions of the Kibaran igneous event in north western Tanzania are notable because they have preserved gradational compositional zoning. This zoning is demonstrated to predate and be independent of later hydrous alteration of the silicate assemblage. At Kabanga, most chrome-spinel grains within olivine-rich cumulate rocks are gradationally and cryptically zoned from Fe2+-Cr3+ rich cores to more Mg2+-Al3+ rich rims (normal zoning). A few grains are zoned from Mg2+-Al3+ rich cores to more Fe2+-Cr3+ rich rims (reverse zoned). The zoning of divalent cations is proportional to that of trivalent cations with Mg2+ following Al3+ and Fe2+ following Cr3+ from core to rim. The zoning of trivalent and tetravalent cations is interpreted to be caused by either new growth from an evolving melt or peritectic reactions between evolved or contaminated melt and adjacent Al-Cr-bearing ferromagnesian minerals, which is preserved by relatively rapid initial cooling in the small chonolith intrusions. Divalent cation zoning is controlled by sub-solidus exchange of Fe2+ and Mg with adjacent ferromagnesian minerals and continues to lower temperatures, indicated to be 580 to 630°C by the spinel-olivine geothermometer. Preservation of such zoning is more likely in the smaller chonolith intrusions that typically host magmatic nickel-copper sulfide deposits and can be used as an exploration indicator when interpreting chromite compositions in regional heavy indicator mineral surveys.


Author(s):  
M. O. M. Razanatseheno ◽  
A. Nédélec ◽  
M. Rakotondrazafy ◽  
J. G. Meert ◽  
B. Ralison

ABSTRACTThe 532±5 Ma old Carion pluton is a dark, porphyritic ferro-potassic granitoid emplaced near the late Pan-African Angavo mega-shear zone. A rough normal zoning from tonalitic to granitic compositions can be recognised in the field. Steep magmatic foliations are evidenced by K-feldspar megacryst preferred orientations. Microstructures are either magmatic or typical of incipient solid-state deformation in near solidus conditions. Magnetic susceptibility magnitudes (K) range from 11 to 111×10−3 SI in the pluton and can be correlated to the petrography (highest K values in the tonalites; lowest K in the granites; granodiorites in between). The susceptibility magnitudes display a complex zoning pattern. Combined with the arrangement of magnetic foliation trajectories, it is possible to delineate four nested sub-units, regarded as four magmatic pulses successively emplaced from the west to the east of the pluton. The four pulses are characterised by very similar magma geochemistry, but variable magmatic differentiation. The highest degrees of magnetic susceptibility anisotropies (up to 1·6) are observed along internal contacts between sub-units and along the borders of the pluton. The magnetic lineations are also steeply plunging in some places in each sub-unit, possibly imaging the different feeder zones. Magma emplacement occurred at the end of the activity of the Angavo shear zone, hence avoiding re-orientation of the magmatic structures by the late Pan-African transcurrent tectonics. The diachronicity of the four magmatic pulses is consistent with previously determined palaeomagnetic data, because only the two older sub-units display a magnetic reversal sequence, whereas the two youngest sub-units lack any reversion. Emplacement of these four magmatic batches was responsible for a strain aureole and suggests a diapiric mode of ascent.


Author(s):  
Saskia Erdmann ◽  
D. Barrie Clarke ◽  
Michael A. MacDonald

ABSTRACTTextural relations and chemical zoning of cordierites in granites act as sensitive recorders of the conditions of their crystallisation history and underlying magma chamber processes. In this contribution, we present new data on texturally distinct and variably zoned cordierites from the late-Devonian, granitic South Mountain and Musquodoboit Batholiths, and infer the conditions of their formation. Using a combined textural (grain size, grain shape and inclusion relationships) and chemical (major element composition and compositional zoning) classification, we recognise the following six cordierite types: CG1/TT1, anhedral to subhedral macrocrysts with random inclusions and patchy normal zoning; CG2a/TT2, euhedral to subhedral macrocrysts with random inclusions and normal zoning; CG2b/TT2, euhedral to subhedral macrocrysts with random or oriented inclusions, and oscillatory zoning; CG3a/TT3, subhedral to euhedral microcrysts with no inclusions and reverse zoning; CG3b/TT4, euhedral macrocrysts with no inclusions and no zoning; and CG4/TT5, anhedral macrocrysts with random inclusions and normal zoning. The textural criteria suggest that these cordierites formed as a product of cotectic crystallisation from a melt, or as the result of a peritectic reaction involving country-rock material. The combined chemical and textural criteria suggest that: (1) normal zoning results from cotectic crystallisation during cooling, cotectic overgrowths on grains formed in a peritectic reaction with country-rock material, or cation exchange with a fluid; (2) oscillatory zoning results from cotectic crystallisation during variations in XMg of the silicate melt following magma replenishment; (3) reverse zoning results from crystallisation during pressure quenching; and (4) the unzoned cordierite results from cotectic crystallisation under fluid-rich conditions.


Sign in / Sign up

Export Citation Format

Share Document