The crystal structure of Pb5(As3+O3)Cl7 from the historic slags of Lavrion, Greece – a novel Pb(II) chloride arsenite

2011 ◽  
Vol 75 (2) ◽  
pp. 337-345 ◽  
Author(s):  
O. I. Siidra ◽  
S. V. Krivovichev ◽  
N. V. Chukanov ◽  
I. V. Pekov ◽  
A. Magganas ◽  
...  

AbstractThe crystal structure of new lead chloride arsenite, Pb5(As3+O3)Cl7 [orthorhombic, Pbcn, a = 16.894(2), b = 10.913 (1), c = 16.760(2) Å, V = 3090.1(7) Å3], from the historic slags of Lavrion, Greece, has been solved by direct methods and refined to R1 = 0.069. The structure contains five symmetrically unique Pb, one As, eight Cl and three O sites. The As atom forms three nearly equal As—O bonds which result in the formation of an AsO3 trigonal pyramid with As at the apex. The Pbl. Pb2, Pb3 and Pb4 atoms are bonded to the AsO3 groups via Pb2+—O bonds to form complex [Pb4(AsO3)] chains parallel to the b axis. The Pb(5) atom is coordinated solely by Cl– anions. The resulting Pb(5)Cl7 polyhedra share common edges and corners to produce bent chains parallel to the c axis. A short compilation of structural features of known lead chloride arsenites is given.

1987 ◽  
Vol 52 (3) ◽  
pp. 696-706 ◽  
Author(s):  
Viktor Vrábel ◽  
František Pavelčík ◽  
Eleonóra Kellö ◽  
Stanislav Miertuš ◽  
Václav Konečný ◽  
...  

The crystal structure of the title fungicide was solved by direct methods, using Σ2 relationship and tangent formula. The structure refinement was made by full-matrix least-squares with anisotropic temperature factors to the final R = 0.096 for 1 486 significant reflexions. The compound crystallizes in the orthorhombic system, the space group Pccn. The lattice parameters are a = 1.8719(9), b = 3.0426(33), c = 0.7616(2) nm and Z = 8. The intermolecular interactions of types C-H···Cl and C-H···O are observed between the centrosymmetrically related molecules in the crystal structure. The coordination polyhedron around phosphorus is between trigonal pyramid and tetrahedron. The planes of the phenyl and pyridazine rings are rotated through 70° each other. The electron structure was calculated by semiempirical CNDO/2 method. The calculations revealed the most negative net charges on S(2) and O(1). The value of Wiberg index Iw = 1.08 and the bond distance 0.149 nm show that the bond N(1)-C(5) is simple and is not involved in the conjugation.


2000 ◽  
Vol 64 (6) ◽  
pp. 1063-1068 ◽  
Author(s):  
S. V. Krivovichev ◽  
P. C. Burns

AbstractThe crystal structure of synthetic shannonite, Pb2O(CO3), orthorhombic, P212121, a = 5.1465(7), b = 9.014(1), c = 9.315(1)Å, V = 432.12(10)Å3, Z = 4, has been solved by direct methods and refined to R = 0.054. There are two symmetrically distinct Pb2+ cations in irregular coordination polyhedra due to the effect of stereoactive s2 lone-electron pairs. The structure can be described as composed of chains of [OPb2] composition running parallel to [100] that are built by corner-sharing of OPb3 oxocentred triangles. The [OPb2] chains are surrounded by CO3 groups to form complex [OPb2](CO3) chains that are linked into a 3-dimensional framework by additional Pb–O bonds. The structure has channels that are parallel to [100] in which the lone-electron pairs of the Pb2+ cations are probably located.


1985 ◽  
Vol 63 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
John F. Richardson ◽  
Ted S. Sorensen

The molecular structures of exo-7-methylbicyclo[3.3.1]nonan-3-one, 3, and the endo-7-methyl isomer, 4, have been determined using X-ray-diffraction techniques. Compound 3 crystallizes in the space group [Formula: see text] with a = 15.115(1), c = 7.677(2) Å, and Z = 8 while 4 crystallizes in the space group P21 with a = 6.446(1), b = 7.831(1), c = 8.414(2) Å, β = 94.42(2)°, and Z = 2. The structures were solved by direct methods and refined to final agreement factors of R = 0.041 and R = 0.034 for 3 and 4 respectively. Compound 3 exists in a chair–chair conformation and there is no significant flattening of the chair rings. However, in 4, the non-ketone ring is forced into a boat conformation. These results are significant in interpreting what conformations may be present in the related sp2-hybridized carbocations.


2020 ◽  
Vol 43 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Jonathan O. Bauer

AbstractStructural investigations of molecular crystal solvates can provide important information for the targeted crystallization of particular inclusion compounds. Here, the crystal structure of the first ether solvate of hexaphenyldistannane [(Ph3Sn)2 • 2 THF] is reported. Structural features in terms of host-guest interactions and in the context of the previously reported polymorphs and solvates of (Ph3Sn)2 are discussed.


1998 ◽  
Vol 62 (04) ◽  
pp. 461-469 ◽  
Author(s):  
Peter C. Burns

Abstract The crystal structure of szenicsite, Cu3MoO4(OH)4, orthorhombic, a = 8.5201(8), b = 12.545(1), c = 6.0794(6) Å, V = 649.8(2) Å3, space group Pnnm, Z = 4, has been solved by direct methods and refined by least-squares techniques to an agreement index (R) of 3.34% and a goodness-of-fit (S) of 1.11 for 686 unique observed [|F| ⩾ 4σF] reflections collected using graphite-monochromated Mo-Kα X-radiation and a CCD area detector. The structure contains three unique Cu2+ positions that are each coordinated by six anions in distorted octahedral arrangements; the distortions of the octahedra are due to the Jahn-Teller effect associated with a d 9 metal in an octahedral ligand-field. The single unique Mo6+ position is tetrahedrally coordinated by four O2− anions. The Cu2+ϕ6 (ϕ: unspecified ligand) octahedra share trans edges to form rutile-like chains, three of which join by the sharing of octahedral edges to form triple chains that are parallel to [001]. The MoO4 tetrahedra are linked to either side of the triple chain of Cu2+ϕ6 octahedra by the sharing of two vertices per tetrahedron, and the resulting chains are cross-linked through tetrahedral-octahedral vertex sharing to form a framework structure. The structure of szenicsite is closely related to that of antlerite, Cu3SO4(OH)4, which contains similar triple chains of edge-sharing Cu2+ϕ6 octahedra.


Author(s):  
A. C. Stergiou

AbstractSingle crystals of AsTeSolution of the structure was essentialy effected by direct methods combined with successive Fourier syntheses. The positional and anisotropic thermal parameters were refined by full-matrix least-squares calculations. Absorption and anomalous dispersion corrections were applied to all atoms. The finalThe As atom is coordinated by six O atoms forming a right trigonal prism. The Te atom site is partially occupied by Te atoms with a population parameter 0.5 and surrounded by six O atoms also forming a right trigonal prism. The structure looks like that of NiAs. Each of the AsO


1983 ◽  
Vol 36 (11) ◽  
pp. 2333 ◽  
Author(s):  
B Kamenar ◽  
RA Pauptit ◽  
JM Waters

The X-ray crystal structure of 3α,4α:5β,6β-diepoxyandrostan-17-one has been determined. Crystals of the title compound (C19H26O3)are monoclinic, space group P21, with a 9.208(2), b 9.620(4), c 9.312(3) �, β 99.14(2)�, V 814.5 Ǻ3 and Z 2. The structure was solved by direct methods and refined to R 0.039 for 887 observed reflexions. The 3α,4α:5β,6β configuration of the epoxide rings confirms the assignment based on proton n.m.r. studies.


2022 ◽  
Author(s):  
Jai Krishna Mahto ◽  
Neetu Neetu ◽  
Monica Sharma ◽  
Monika Dubey ◽  
Bhanu Prakash Vellanki ◽  
...  

Biodegradation of terephthalate (TPA) is a highly desired catabolic process for the bacterial utilization of this Polyethylene terephthalate (PET) depolymerization product, but to date, the structure of terephthalate dioxygenase (TPDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of TPA to a cis -diol is unavailable. In this study, we characterized the steady-state kinetics and first crystal structure of TPDO from Comamonas testosteroni KF1 (TPDO KF1 ). The TPDO KF1 exhibited the substrate specificity for TPA ( k cat / K m = 57 ± 9 mM −1 s −1 ). The TPDO KF1 structure harbors characteristics RO features as well as a unique catalytic domain that rationalizes the enzyme’s function. The docking and mutagenesis studies reveal that its substrate specificity to TPA is mediated by Arg309 and Arg390 residues, two residues positioned on opposite faces of the active site. Additionally, residue Gln300 is also proven to be crucial for the activity, its substitution to alanine decreases the activity ( k cat ) by 80%. Together, this study delineates the structural features that dictate the substrate recognition and specificity of TPDO. Importance The global plastic pollution has become the most pressing environmental issue. Recent studies on enzymes depolymerizing polyethylene terephthalate plastic into terephthalate (TPA) show some potential in tackling this. Microbial utilization of this released product, TPA is an emerging and promising strategy for waste-to-value creation. Research from the last decade has discovered terephthalate dioxygenase (TPDO), as being responsible for initiating the enzymatic degradation of TPA in a few Gram-negative and Gram-positive bacteria. Here, we have determined the crystal structure of TPDO from Comamonas testosteroni KF1 and revealed that it possesses a unique catalytic domain featuring two basic residues in the active site to recognize TPA. Biochemical and mutagenesis studies demonstrated the crucial residues responsible for the substrate specificity of this enzyme.


2011 ◽  
Vol 435 (3) ◽  
pp. 771-781 ◽  
Author(s):  
Tatu J. K. Haataja ◽  
M. Kristian Koski ◽  
J. Kalervo Hiltunen ◽  
Tuomo Glumoff

All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure–function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.


Sign in / Sign up

Export Citation Format

Share Document