First accurate location of two proton sites in tourmaline: A single-crystal neutron diffraction study of oxy-dravite

2014 ◽  
Vol 78 (3) ◽  
pp. 681-692 ◽  
Author(s):  
G. D. Gatta ◽  
F. Bosi ◽  
G. J. McIntyre ◽  
H. Skogby

AbstractA single-crystal neutron diffraction study of oxy-dravite from Osarara (Narok district, Kenya) was performed. Intensity data were collected in Laue geometry at 10 K and anisotropic-structure refinement was undertaken. For the first time, two independent H sites were refined unambiguously for a mineral belonging to the tourmaline supergroup and located at 0.26, 0.13, 0.38 (labelled as H3, site occupancy ∼98%) and at 0, 0, 0.9 (labelled as H1, site occupancy ∼25%). The H-bonding scheme can thus be defined as follows: (1) the O at the O3 site acts as a ‘donor’ and the O at the O5 site as ‘acceptor’, the refined O3–H3 bond distance is 0.972(2) Å (and 0.9946 Å corrected for “riding motion”), H3⋯O5 = 2.263(2) Å, O3⋯O5 = 3.179(1) Å and O3–H3⋯O5 = 156.6(1)°; (2) the oxygen at the O1 site acts as a ‘donor’ and the O atoms at O4 and O5 as ‘acceptors’, the refined O1–H1 bond distance is 0.958(8) Å (and 0.9833 Å corrected for “riding motion”), H1⋯O4 = 2.858(6) Å, O1⋯O4 = 3.378(1) Å and O1–H1⋯O4 = 115.12(1)°, whereas H1⋯O5 = 2.886(6) Å, O1⋯O5 = 3.444(1) Å and O1–H1⋯O5 = 118.23(1)°. A further test refinement was performed with the H1 site out of the three-fold axis (at 0.02, 0.01, 0.90); this leads to O1–H1 = 0.995(8) Å (and 1.0112 Å corrected for “riding motion”), H1⋯O4 = 2.747(6) Å and O1–H1⋯O4 = 121.7(4)°, whereas H1⋯O5 = 2.654(9) Å and O1–H1⋯O5 = 136.5(6)°. Bond-valence analysis shows that the H-bonding strength involving O3 is stronger than that involving O1: ∼0.11 and <0.05 valence units, respectively.The refined angle between the O3–H3 vector and [0001] is 3.40(9)°. Such a small angle is in line with a pleochroic scheme for the OH-stretching absorption bands measured by infrared spectroscopy.

1974 ◽  
Vol 39 (308) ◽  
pp. 850-856 ◽  
Author(s):  
J. H. Rayner

SummaryThe positions of all the atoms including hydrogen have been found by a partial three-dimensional single-crystal neutron-diffraction study in which about one-third of the reflections in the reciprocal sphere to 1·5 Å were measured. The hydroxyl group is perpendicular to the plane of the silicate sheets. The fluorine content of this phlogopite is enough to occupy 25 % of the (OH, F) sites. Site occupancy refinement suggests that there is a small deficiency of hydrogen at the remaining sites and that the two crystallographically different octahedral sites are fully occupied by the same proportions of Mg, Ti, Fe, and Ca.


2018 ◽  
Vol 46 (5) ◽  
pp. 449-458
Author(s):  
G. Diego Gatta ◽  
Pietro Vignola ◽  
Nicola Rotiroti ◽  
Martin Meven

2019 ◽  
Vol 104 (1) ◽  
pp. 73-78 ◽  
Author(s):  
G. Diego Gatta ◽  
Ulf Hålenius ◽  
Ferdinando Bosi ◽  
Laura Cañadillas-Delgado ◽  
Maria Teresa Fernandez-Diaz

2016 ◽  
Vol 80 (5) ◽  
pp. 719-732 ◽  
Author(s):  
G. Diego Gatta ◽  
Ferdinando Bosi ◽  
Maria Teresa Fernandez Diaz ◽  
Ulf Hålenius

AbsatractThe crystal chemistry of allactite from Långban, Värmland (Sweden) was investigated by single-crystal X-ray and neutron diffraction, optical absorption spectroscopy, Fourier-transform infra-red spectroscopy (FTIR) and electron microprobe analysis by wavelength-dispersive spectroscopy (EPMA-WDS). The optical spectra indicate the presence of Mn in valence state 2+ only. Assuming 16 O atoms per formula unit, arsenic as As5+and the (OH) content calculated by charge balance, the resulting formula based on the EPMA-WDS data is (Mn2+6.73Ca0.13Mg0.12Zn0.02)∑7.00(As5+)2.00O16H8, very close to the ideal composition Mn7(AsO4)2(OH)8. In the unpolarized FTIR spectrum of allactite, fundamental (OH)-stretching bands are observed at 3236, 3288, 3387, 3446, 3484, 3562 and 3570 cm–1, suggesting that a number of OH environments, with different hydrogen bond strengths, occur in the structure. The neutron structure refinement shows that four independent H sites occur in allactite with full site occupancy, all as members of hydroxyl groups. The complex hydrogen-bonding scheme in the allactite structure is now well defined, with at least nine hydrogen bonds energetically favourable with mono-, bi- and trifurcated configurations.


2015 ◽  
Vol 632 ◽  
pp. 563-567 ◽  
Author(s):  
Galina Abramova ◽  
Juerg Schefer ◽  
Nadir Aliouane ◽  
Martin Boehm ◽  
German Petrakovskiy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document