Ferri-fluoro-leakeite: a second occurrence at Bratthagen (Norway), with new data on Zn partitioning and the oxo component in Na amphiboles

2014 ◽  
Vol 78 (4) ◽  
pp. 861-869 ◽  
Author(s):  
R. Oberti ◽  
M. Boiocchi ◽  
F. C. Hawthorne ◽  
R. Kristiansen

AbstractA second occurrence of ferri-fluoro-leakeite has been identified in the Bratthagen nepheline syenite pegmatite (Vestfold County, Norway). With respect to the holotype found at the Verkhnee Espe deposit (Akjailyautas Mountains, Kazakhstan; Cámaraet al., 2010), it is closer to the ideal composition because of its larger Li and Mg contents and the absence of an oxo-component; however, it has a significant Zn content (0.29 a.p.f.u.). The ideal formula of ferri-fluoro-leakeite isANaBNa2C(Mg2Fe23+Li)TSi8O22WF2and the empirical formula derived from electron-microprobe analysis and single-crystal structure refinement for the sample used here isA(Na0.68K0.32)S=1.00BNa2.00C(Mg1.69Mn0.252+Fe0.242+Zn0.29Al0.23Fe1.503+Ti0.02Li0.78)S=5.00TSi8O22W(F1.59(OH)0.41)S=2.00. Unitcell data area= 9.788(2),b= 17.826(3),c= 5.282(1) Å, β = 104.195(5)°,V= 893.5 (3) Å3,Z= 2. Crystal-chemical analysis shows that Li is ordered at theM(3) site and Zn is ordered mainly at theM(2) site, confirming previous findings for Li-bearing amphiboles. The new data also make quantification of the oxo component in Na amphiboles possible.

2015 ◽  
Vol 79 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
George E. Harlow

AbstractMagnesio-arfvedsonite, theCFe3+-dominant analogue of eckermannite, has been found in a sample of “szechenyite” in the mineral collection of the American Museum of Natural History (AMNH H35024). It comes from the northern part of the Jade Mine Tract near Hpakan, Kachin State, Myanmar. Associated minerals are kosmochlor–jadeite solid-solution pyroxene and clinochlore. The ideal formula of magnesio-arfvedsonite isANaBNa2C(Mg4Fe3+)TSi8O22W(OH)2, and the empirical formula derived from electron microprobe analysis and single-crystal structure refinement for the sample of this work isA(Na0.96K0.04)Σ=1.00B(Na1.57Ca0.40Fe0.022+Mn0.01)Σ=2.00C(Mg4.26Fe0.192+Fe0.413+Al0.11Ti0.034+)Σ=5.00T(Si7.99Al0.01)Σ=8.00O22W[F0.02(OH)1.98]Σ=2.00. The unit-cell dimensions area= 9.867(1),b= 17.928(2),c= 5.284(1) Å, β = 103.80(2)°,V= 907.7 (2) Å3,Z= 2. Magnesio-arfvedsonite is biaxial (–), with α = 1.624, β = 1.636, γ = 1.637, all ± 0.002 and 2Vobs= 36(1)°, 2Vcalc= 32°. The ten strongest reflections in the X-ray powder pattern [dvalues (in Å),I, (hkl)] are: 2.708, 100, (151); 3.399, 68, (131); 3.144, 63, (310); 2.526, 60, (202); 8.451, 46, (110); 3.273, 39, (240); 2.167, 37, (261); 2.582, 34, (061); 2.970, 34, (221); 2.326, 33, [(251) (421)].


2003 ◽  
Vol 67 (4) ◽  
pp. 769-782 ◽  
Author(s):  
R. Oberti ◽  
M. Boiocchi ◽  
D. C. Smith

AbstractFluoronyböite, ideally NaNa2(Al2Mg3)(Si7Al)O22F2, has been found in the Jianchang eclogite pod, Su-Lu coesite-eclogite province, China. It has been approved as a new mineral by the IMA. Single-crystal structure refinement and electron microprobe analysis were used for characterization: C2/m, with a = 9.666(4), b = 17.799(6), c = 5.311(2) Å, β = 104.10(3)º, V = 886.2(8) Å3, Z = 2, formula: A(Na0.78K0.06)Σ0.84B(Na1.53Ca0.47)Σ2.00C(Fe2+0.89Mg2.55Mn0.01Zn0.01Fe3+0.32Al1.21Ti0.01)Σ5.00T(Si7.14Al0.86)Σ8.00O22X(OH0.84F1.16)Σ2.00.Fluoronyböite formed during UHPM conditions, and is preserved in the retrograded kyanite-bearing eclogite sample DJ102 together with clinopyroxene (Jd70Ae20Di10), garnet (Alm60Prp21Grs17Sps02), and rutile. Lower-pressure minerals are also present (fluoro-alumino-magnesiotaramite, apatite, paragonite), and symplectitic rims were also developed around clinopyroxene crystals. Cation ordering and the structural and physical properties of fluoronyböite are reported and discussed with reference to those of F-free nyböite from the type locality at Nyböin Norway, for which some as yet unpublished mineral data are also reported. Relations between composition and petrogenetic conditions of these rare high-pressure amphiboles are discussed.


2019 ◽  
Vol 83 (4) ◽  
pp. 587-593
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Giancarlo Della Ventura ◽  
Gunnar Färber

AbstractPotassic-jeanlouisite, ideally K(NaCa)(Mg4Ti)Si8O22O2, is the first characterised species of oxo amphibole related to the sodium–calcium group, and derives from potassic richterite via the coupled exchange CMg–1W${\rm OH}_{{\rm \ndash 2}}^{\ndash}{} ^{\rm C}{\rm Ti}_1^{{\rm 4 +}} {} ^{\rm W}\!{\rm O}_2^{2\ndash} $. The mineral and the mineral name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, IMA2018-050. Potassic-jeanlouisite was found in a specimen of leucite which is found in the lava layers, collected in the active gravel quarry on Zirkle Mesa, Leucite Hills, Wyoming, USA. It occurs as pale yellow to colourless acicular crystals in small vugs. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: A(K0.84Na0.16)Σ1.00B(Ca0.93Na1.02Mg0.04${\rm Mn}_{{\rm 0}{\rm. 01}}^{2 +} $)Σ2.00C(Mg3.85${\rm Fe}_{{\rm 0}{\rm. 16}}^{2 +} $Ni0.01${\rm Fe}_{{\rm 0}{\rm. 33}}^{3 +} {\rm V}_{{\rm 0}{\rm. 01}}^{3 +} $Ti0.65)Σ5.01T(Si7.76Al0.09Ti0.15)Σ8.00O22W[O1.53F0.47]Σ2.00. The holotype crystal is biaxial (–), with α = 1.674(2), β = 1.688(2), γ = 1.698(2), 2Vmeas. = 79(1)° and 2Vcalc. = 79.8°. The unit-cell parameters are a = 9.9372(10), b = 18.010(2), c = 5.2808(5) Å, β = 104.955(2)°, V = 913.1(2) Å3, Z = 2 and space group C2/m. The strongest eight reflections in the powder X-ray pattern [d values (in Å) (I) (hkl)] are: 2.703 (100) (151); 3.380 (87) (131); 2.541 (80) ($\bar 2$02); 3.151 (70) (310); 3.284 (68) (240); 8.472 (59) (110); 2.587 (52) (061); 2.945 (50) (221,$\bar 1$51).


2018 ◽  
Vol 82 (1) ◽  
pp. 189-198
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti ◽  
Olav Revheim ◽  
...  

ABSTRACTClino-suenoite, ideally □${\rm Mn}_{2}^{2 +} $Mg5Si8O22(OH)2 is a new amphibole of the magnesium-iron-manganese subgroup of the amphibole supergroup. The type specimen was found at the Lower Scerscen Glacier, Valmalenco, Sondrio, Italy, where it occurs in Mn-rich quartzite erratics containing braunite, rhodonite, spessartine, carbonates and various accessory minerals. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: ANa0.04B(${\rm Mn}_{1.58}^{2 +} $Ca0.26Na0.16)Σ2.00C(Mg4.21${\rm Mn}_{0. 61}^{2 +} {\rm Fe}_{0.04}^{2 +} $Zn0.01Ni0.01${\rm Fe}_{0.08}^{3 +} $Al0.04)Σ5.00TSi8.00O22W[(OH1.94F0.06)]Σ=2.00. Clino-suenoite is biaxial (+), with α = 1.632(2), β = 1.644(2), γ = 1.664(2) and 2Vmeas. = 78(2)° and 2Vcalc. = 76.3°. The unit-cell parameters in the C2/m space group are a = 9.6128(11), b = 18.073(2), c = 5.3073(6) Å, β = 102.825(2)° and V = 899.1(2) Å3 with Z = 2. The strongest ten reflections in the powder X-ray diffraction pattern [d (in Å), I, (hkl)] are: 2.728, 100, (151); 2.513, 77, ($\bar 2$02); 3.079, 62, (310); 8.321, 60, (110); 3.421, 54, (131); 2.603, 42, (061); 2.175, 42, (261); 3.253, 41, (240); 2.969, 40, (221); 9.036, 40, (020).


2018 ◽  
Vol 83 (03) ◽  
pp. 361-371 ◽  
Author(s):  
Maxwell C. Day ◽  
Frank C. Hawthorne ◽  
Umberto Susta ◽  
Giancarlo Della Ventura ◽  
George E. Harlow

AbstractThe crystal structures of six gem-quality pargasites and fluoro-pargasites from Mogok, Myanmar, space group C2/m, Z = 2, have been refined to R1 indices of 2.20–2.90% using MoKα X-radiation. The unit formulae were calculated from the results of electron-microprobe analysis, and were used with the refined site-scattering values and the observed mean bond lengths to assign site populations. TAl occurs at both the T(1) and T(2) sites but is strongly ordered at T(1). [6]Al is partly disordered over the M(2) and M(3) sites but does not occur at the M(1) site. ANa is split between the A(2) and A(m) sites and K occurs at the A(m) site. The infrared spectra in the principal OH-stretching region were measured and the fine structure was fit to component bands. The component bands were assigned to short-range ion arrangements over the configuration symbol M(1)M(1)M(3)–O(3)–A–O(3):T(1)T(1) using the refined site-populations and the expected frequencies from previously assigned spectra in more simple amphibole compositions, and correspond to the local arrangements: (1) MgMgMg–OH–Na–OH:SiAl; (2) MgMgMg–OH–Na–F:SiAl; (3) MgMgAl–OH–Na–OH:SiAl and (4) MgMgAl–OH–Na–F:SiAl.


2018 ◽  
Vol 82 (6) ◽  
pp. 1253-1259
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti

ABSTRACTMagnesio-hornblende (IMA2017-059) has been characterized in a specimen collected in the sand dunes of Lüderitz, Karas Region, Namibia. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is A(□0.73Na0.22K0.05)Σ1.00B(Ca1.79Fe2+0.10Mg0.04Mn2+0.03Na0.04)Σ2.00C(Mg3.48Fe2+0.97Al0.28Fe3+0.23Cr3+0.01Ti0.03)Σ5.00T(Si7.18Al0.82)Σ8.00O22W[(OH)1.93F0.05Cl0.02]Σ2.00. Magnesio-hornblende is biaxial (–), with α = 1.640(2), β = 1.654(2), γ = 1.666(2) (measured with gel-filtered Na light, λ = 589.9 nm), 2V (meas.) = 82(1)° and 2V (calc.) = 84.9°. The unit-cell parameters are a = 9.8308(7), b = 18.0659(11), c = 5.2968(4) Å, β = 104.771(6)° and V = 909.64 (11) Å3 with Z = 2 and space group C2/m. The strongest eight reflections in the X-ray powder pattern [d values (in Å), I, (hkl)] are: 2.709, 100, (151); 8.412, 74, (110); 3.121, 73, (310); 2.541, 58, ($\bar{2}$02); 3.386, 49, (131); 2.596, 45, (061); 2.338, 41, ($\bar{3}$51); and 2.164, 39, (261).


2018 ◽  
Vol 82 (4) ◽  
pp. 787-807 ◽  
Author(s):  
Elena Sokolova ◽  
Frank C. Hawthorne

ABSTRACTThe crystal structure of vigrishinite, ideally NaZnTi4(Si2O7)2O3(OH)(H2O)4, a murmanite-group mineral of the seidozerite supergroup from the type locality, Mt. Malyi Punkaruaiv, Lovozero alkaline massif, Kola Peninsula, Russia, was refined in space group C$\bar 1$, a = 10.530(2), b = 13.833(3), c = 11.659(2) Å, α = 94.34(3), β = 98.30(3), γ = 89.80(3)°, V = 1675.5(2.1) Å3 and R1 = 12.52%. Based on electron-microprobe analysis, the empirical formula calculated on 22 (O + F), with two constraints derived from structure refinement, OH + F = 1.96 pfu and H2O = 3.44 pfu, is: (Na0.67Zn0.21Ca0.05□1.07)Σ2 (Zn0.86□1.14)Σ2(Zn0.14□0.36)Σ0.5(Ti2.60Nb0.62Mn0.30${\rm Fe}_{{\rm 0}{\rm. 23}}^{{\rm 2 +}} $Mg0.10Zr0.06Zn0.05Al0.03Ta0.01)Σ4(Si4.02O14) [O2.60(OH)1.21F0.19]Σ4[(H2O)3.44(OH)0.56]Σ4{Zn0.24P0.03K0.03Ba0.02} with Z = 4. It seems unlikely that constituents in the {} belong to vigrishinite itself. The crystal structure of vigrishinite is an array of TS blocks (Titanium Silicate) connected via hydrogen bonds. The TS block consists of HOH sheets (H = heteropolyhedral and O = octahedral) parallel to (001). In the O sheet, the Ti-dominant MO(1,2) sites, Na-dominant MO(3) and □-dominant MO(4) sites give ideally Na□Ti2 pfu. In the H sheet, the Ti-dominant MH(1,2) sites, Zn-dominant AP(1) and vacant AP(2) sites give ideally Zn□Ti2 pfu. The MH and AP(1) polyhedra and Si2O7 groups constitute the H sheet. The ideal structural formula of vigrishinite of the form ${\rm A}_{\rm 2}^{P} {\rm M}_{\rm 2}^{\rm H} {\rm M}_{\rm 4}^{\rm O} $(Si2O7)2(${\rm X}_{\rm M}^{\rm O} $)2(${\rm X}_{\rm A}^{\rm O} $)2(${\rm X}_{{\rm M,A}}^{P} $)4 is Zn□Ti2Na□Ti2(Si2O7)2O2O(OH)(H2O)4. Vigrishinite is a Zn-bearing, Na-poor and OH-rich analogue of murmanite, ideally Na2Ti2Na2Ti2(Si2O7)2O2O2(H2O)4. Murmanite and vigrishinite are related by the following substitution: H(${\rm Na}_{\rm 2}^{\rm +} $)mur + O(Na+)mur + O(O2–)mur ↔ H(Zn2+)vig + H(□)vig + O(□)vig + O[(OH)–]vig. The doubling of the t1 and t2 translations of vigrishinite compared to those of murmanite is due to the order of Zn and □ in the H sheet and Na and □ in the O sheet of vigrishinite.


2016 ◽  
Vol 80 (7) ◽  
pp. 1233-1242 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
Fernando Cámara ◽  
...  

AbstractFerro-ferri-hornblende is a new member of the amphibole supergroup (IMA-CNMNC 2015-054). It has been found in a rock specimen from the historical collection of Leandro De Magistris, which was collected at the Traversella mine (Val Chiusella, Ivrea, Piemonte, Italy). The specimen was catalogued as ‘speziaite', and contains a wide range of amphibole compositions from tremolite/actinolite to magnesio-hastingsite. The end-member formula of ferro-ferri-hornblende is A□BCa2c(Fe+Fe3+)T(Si7Al) O22W(OH)2 , which requires SiO2 43.41, Al2O3 5.26, FeO 29.66, Fe2O3 8.24 CaO 11.57, H2O 1.86, total 100.00 wt.%. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement for the holotype crystal is A(Na0.10K0.13) Σ=0.23B(Ca 1.93Na0.07)Σ=2.00C(Mg1.16Fe2+3.21Mn0.O6Fe3+0.45 Al0.12Ti 0.01)Σ=5.01T(Si7.26Al0. 74)Σ=8.00 O22W(OH1.89F0.01C10.10)Σ=2.00- Ferro-ferri-hornblende is biaxial (-), with α = 1.697(2), P = 1 .722(5), γ = 1.726(5) and 2V (meas.) = 35.7(1.4)°, 2V (calc.) = 43.1°. The unit-cell parameters are a = 9.9307(5), b = 18.2232(10), c = 5.3190(3) Å, β = 104.857(1)°, V= 930.40 (9) Å3, Z= 2, space group C2/m. The a:b:c ratio is 0.545:1:0.292. The strongest eight reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 8.493, 100, (110); 2.728, 69, (151); 3.151, 47, (310); 2.555, 37, (); 2.615, 32, (061); 2.359, 28, (); 3.406, 26, (131); 2.180, 25, (261). Type material is deposited in the collections of the Museo di Mineralogia, Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, under the catalogue number 2015-01. Sample M/U15285 from the historical collection of Luigi Colomba, presently at the Museo Regionale di Scienze Naturali di Torino, was also checked, and the presence of ferro-ferri-hornblende was confirmed.


1999 ◽  
Vol 63 (3) ◽  
pp. 321-329 ◽  
Author(s):  
D. K. Teertstra ◽  
M. Schindler ◽  
B. L. Sherriff ◽  
F. C. Hawthorne

AbstractSilvialite, ideally Ca4Al6Si6O24SO4, is tetragonal, I4/m, Z = 2, with a = 12.160(3), c = 7.560(1) Å, V = 1117.9(8) Å3, c:a = 0.6217:1, ω = 1.583, ε = 1.558 (uniaxial negative), Dm = 2.75 g/cm3, Dcalc = 2.769 g/cm3 and H (Mohs) = 5.5. It is transparent and slightly yellow, has a good {100} cleavage, chonchoidal fracture, white streak and a vitreous lustre. It occurs in upper-mantle garnet-granulite xenoliths hosted by olivine nephelinite, from McBride Province, North Queensland, Australia. The empirical formula, derived from electron-microprobe analysis, is (Na1.06Ca2.86)(Al4.87Si7.13)O24 [(SO4)0.57(CO3)0.41]. Crystal-structure refinement shows disordered carbonate and sulfate groups along the fourfold axis. Silvialite is a primary cumulate phase precipitated from alkali basalt at 900–1000°C and 8–12 kbar under high fSO2 and fO2. The name silvialite, currently used in literature to describe the sulfate analogue of meionite, was suggested by Brauns (1914).


2008 ◽  
Vol 72 (5) ◽  
pp. 1083-1101 ◽  
Author(s):  
W. H. Paar ◽  
Y. Moëlo ◽  
N. N. Mozgova ◽  
N. I. Organova ◽  
C. J. Stanley ◽  
...  

AbstractCoiraite, ideally (Pb,Sn2+)12.5As3Fe2+Sn4+S28, occurs as an economically important tin ore in the large Ag-Sn-Zn polymetallic Pirquitas deposit, Jujuy Province, NW-Argentina. The new mineral species is the As derivative of franckeite and belongs to the cylindrite group of complex Pb sulphosalts with incommensurate composite-layered structures. It is a primary mineral, frequently found in colloform textures, and formed from hydrothermal solutions at low temperature. Associated minerals are franckeite, cylindrite, pyrite-marcasite, as well as minor amounts of hocartite, Ag-rich rhodostannite. arsenopyrite and galena. Laminae of coiraite consist of extremely thin bent platy crystals up to 50 urn long. Electron microprobe analysis (n = 31) gave an empirical formula Pb11.21As2.99Ag0.13Fe1.10Sn6.13S28.0 close to the ideal formula (Pb11.3Sn2+1.2)Σ=12.5As3Fe2+Sn4+S28. Coiraite has two monoclinic sub-cells, Q (pseudotetragonal) and H (pseudohexagonal). Q: a 5.84(1) Å, b 5.86(1) Å, c 17.32(1) Å, β 94.14(1)°, F 590.05(3) Å3, Z = 4, a:b:c = 0.997:1:2.955; H (orthogonal setting): a 6.28(1) Å, b 3.66(1) Å, c 17.33(1) Å, β 91.46(1)°, V398.01(6) Å3, Z = 2, a∶b∶c = 1.716∶1∶4.735. The strongest Debye-Scherrer camera X-ray powder-diffraction lines [d in Å, (I), (hkl)] are: 5.78, (20), (Q and H 003); 4.34, (40), (Q 004); 3.46, (30), (Q and H 005); 3.339, (20), (Q 104); 2.876, (100), (Q and H 006); 2.068, (60), (Q 220).


Sign in / Sign up

Export Citation Format

Share Document