Human T-cell lymphotropic virus oncoprotein Tax represses TGF-β1 signaling in human T cells via c-Jun activation: a potential mechanism of HTLV-I leukemogenesis

Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4129-4138 ◽  
Author(s):  
Bertrand Arnulf ◽  
Aude Villemain ◽  
Christophe Nicot ◽  
Elodie Mordelet ◽  
Pierre Charneau ◽  
...  

Human T-cell leukemia virus I is the etiologic agent of adult T-cell leukemia (ATL), an aggressive T-cell malignancy. The viral oncoprotein Tax, through the activation of nuclear factorκB (NF-κB), CCAAT-enhancer binding protein (CREB), and activated protein-1 (AP-1) pathways, is a transcriptional regulator of critical genes for T-cell homeostasis. In ATL cells, activated AP-1 complexes induce the production of transforming growth factor β1 (TGF-β1). TGF-β1 is an inhibitor of T-cell proliferation and cytotoxicity. Here we show that, in contrast to normal peripheral T cells, ATL cells are resistant to TGF-β1–induced growth inhibition. The retroviral transduction of the Tax protein in peripheral T cells resulted in the loss of TGF-β1 sensitivity. Transient transfection of Tax in HepG2 cells specifically inhibited Smad/TGF-β1 signaling in a dose-dependent manner. In the presence of Tax transfection, increasing amounts of Smad3 restored TGF-β1 signaling. Tax mutants unable to activate NF-κB or CREB pathways were also able to repress Smad3 transcriptional activity. Next we have demonstrated that Tax inhibits TGF-β1 signaling by reducing the Smad3 DNA binding activity. However, Tax did not decrease the expression and the nuclear translocation of Smad3 nor did it interact physically with Smad3. Rather, Tax induced c-Jun N-terminal kinase (JNK) activity and c-Jun phosphorylation, leading to the formation of Smad3/c-Jun complexes. Whereas c-Jun alone abrogates Smad3 DNA binding, cotransfection of Tax and of a dominant-negative form of JNK or a c-Jun antisense-restored Smad3 DNA binding activity and TGF-β1 responsiveness. In ATL and in normal T cells transduced by Tax, c-Jun was constitutively phosphorylated. Thus, we describe a new function of Tax, as a repressor of TGF-β1 signaling through JNK/c-Jun constitutive activation, which may play a critical role in ATL leukemogenesis.

Blood ◽  
2011 ◽  
Vol 117 (13) ◽  
pp. 3609-3612 ◽  
Author(s):  
Andrea K. Kress ◽  
Martina Kalmer ◽  
Aileen G. Rowan ◽  
Ralph Grassmann ◽  
Bernhard Fleckenstein

AbstractOncogenic transformation of CD4+ T cells by human T-cell lymphotropic virus type 1 (HTLV-1) is understood as the initial step to adult T-cell leukemia/lymphoma, a process that is mainly initiated by perturbation of cellular signaling by the viral Tax oncoprotein, a potent transcriptional regulator. In search of novel biomarkers with relevance to oncogenesis, we identified the tumor marker and actin-bundling protein Fascin (FSCN1) to be specifically and strongly up-regulated in both HTLV-1–transformed and adult T-cell leukemia/lymphoma patient-derived CD4+ T cells. Fascin is important for migration and metastasis in various types of cancer. Here we report that a direct link can exist between a single viral oncoprotein and Fascin expression, as the viral oncoprotein Tax was sufficient to induce high levels of Fascin. Nuclear factor-κB signals were important for Tax-mediated transcriptional regulation of Fascin in T cells. This suggests that Fascin up-regulation by Tax contributes to the development of HTLV-1–associated pathogenesis.


2021 ◽  
Author(s):  
Waqas Nawaz ◽  
Bilian Huang ◽  
Shijie Xu ◽  
Yanlei Li ◽  
Linjing Zhu ◽  
...  

AbstractChimeric antigen receptor (CAR) T cell therapy is the most active field in immuno-oncology and brings substantial benefit to patients with B cell malignancies. However, the complex procedure for CAR T cell generation hampers its widespread applications. Here, we describe a novel approach in which human CAR T cells can be generated within the host upon injecting an Adeno-associated virus (AAV)vector carrying the CAR gene, which we call AAV delivering CAR gene therapy (ACG). Upon single infusion into a humanized NCG tumor mouse model of human T cell leukemia, AAV generates sufficient numbers of potent in vivo CAR cells, resulting in tumor regression; these in vivo generated CAR cells produce antitumor immunological characteristics. This instantaneous generation of in vivo CAR T cells may bypass the need for patient lymphodepletion, as well as the ex vivo processes of traditional CAR T cell production, which may make CAR therapy simpler and less expensive. It may allow the development of intricate, individualized treatments in the form of on-demand and diverse therapies.Significance StatementAAV can generate enough CAR cells within the host. That act as a living drug, distributed throughout the body, and persist for weeks, with the ability to recognize and destroy tumor cells.


2003 ◽  
Vol 77 (14) ◽  
pp. 7728-7735 ◽  
Author(s):  
Jianxin Ye ◽  
Li Xie ◽  
Patrick L. Green

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are distinct oncogenic retroviruses that infect several cell types but display their biological and pathogenic activity only in T cells. Previous studies have indicated that in vivo HTLV-1 has a preferential tropism for CD4+ T cells, whereas HTLV-2 in vivo tropism is less clear but appears to favor CD8+ T cells. Both CD4+ and CD8+ T cells are susceptible to HTLV-1 and HTLV-2 infection in vitro, and HTLV-1 has a preferential immortalization and transformation tropism of CD4+ T cells, whereas HTLV-2 immortalizes and transforms primarily CD8+ T cells. The molecular mechanism that determines this tropism of HTLV-1 and HTLV-2 has not been determined. HTLV-1 and HTLV-2 carry the tax and rex transregulatory genes in separate but partially overlapping reading frames. Since Tax has been shown to be critical for cellular transformation in vitro and interacts with numerous cellular processes, we hypothesized that the viral determinant of transformation tropism is encoded by tax. Using molecular clones of HTLV-1 (Ach) and HTLV-2 (pH6neo), we constructed recombinants in which tax and overlapping rex genes of the two viruses were exchanged. p19 Gag expression from proviral clones transfected into 293T cells indicated that both recombinants contained functional Tax and Rex but with significantly altered activity compared to the wild-type clones. Stable transfectants expressing recombinant viruses were established, irradiated, and cocultured with peripheral blood mononuclear cells. Both recombinants were competent to transform T lymphocytes with an efficiency similar to that of the parental viruses. Flow cytometry analysis indicated that HTLV-1 and HTLV-1/TR2 had a preferential tropism for CD4+ T cells and that HTLV-2 and HTLV-2/TR1 had a preferential tropism for CD8+ T cells. Our results indicate that tax/rex in different genetic backgrounds display altered functional activity but ultimately do not contribute to the different in vitro transformation tropisms. This first study with recombinants between HTLV-1 and HTLV-2 is the initial step in elucidating the different pathobiologies of HTLV-1 and HTLV-2.


2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Veronica Galli ◽  
Christopher C. Nixon ◽  
Natasa Strbo ◽  
Maria Artesi ◽  
Maria F. de Castro-Amarante ◽  
...  

ABSTRACTHuman T cell leukemia virus type 1 (HTLV-1) is the ethological agent of adult T cell leukemia/lymphoma (ATLL) and a number of lymphocyte-mediated inflammatory conditions, including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1orf-Iencodes two proteins, p8 and p12, whose functions in humans are to counteract innate and adaptive responses and to support viral transmission. However, thein vivorequirements fororf-Iexpression vary in different animal models. In macaques, the ablation oforf-Iexpression by mutation of its ATG initiation codon abolishes the infectivity of the molecular clone HTLV-1p12KO. In rabbits, HTLV-1p12KOis infective and persists efficiently. We used humanized mouse models to assess the infectivity of both wild-type HTLV-1 (HTLV-1WT) and HTLV-1p12KO. We found that NOD/SCID/γC−/−c-kit+mice engrafted with human tissues 1 day after birth (designated NSG-1d mice) were highly susceptible to infection by HTLV-1WT, with a syndrome characterized by the rapid polyclonal proliferation and infiltration of CD4+CD25+T cells into vital organs, weight loss, and death. HTLV-1 clonality studies revealed the presence of multiple clones of low abundance, confirming the polyclonal expansion of HTLV-1-infected cellsin vivo. HTLV-1p12KOinfection in a bone marrow-liver-thymus (BLT) mouse model prone to graft-versus-host disease occurred only following reversion of theorf-Iinitiation codon mutation within weeks after exposure and was associated with high levels of HTLV-1 DNA in blood and the expansion of CD4+CD25+T cells. Thus, the incomplete reconstitution of the human immune system in BLT mice may provide a window of opportunity for HTLV-1 replication and the selection of viral variants with greater fitness.IMPORTANCEHumanized mice constitute a useful model for studying the HTLV-1-associated polyclonal proliferation of CD4+T cells and viral integration sites in the human genome. The rapid death of infected animals, however, appears to preclude the clonal selection typically observed in human ATLL, which normally develops in 2 to 5% of individuals infected with HTLV-1. Nevertheless, the expansion of multiple clones of low abundance in these humanized mice mirrors the early phase of HTLV-1 infection in humans, providing a useful model to investigate approaches to inhibit virus-induced CD4+T cell proliferation.


2008 ◽  
Vol 82 (17) ◽  
pp. 8442-8455 ◽  
Author(s):  
Meihong Liu ◽  
Liangpeng Yang ◽  
Ling Zhang ◽  
Baoying Liu ◽  
Randall Merling ◽  
...  

ABSTRACT Infection by the human T-cell leukemia virus type 1 (HTLV-1) is thought to cause dysregulated T-cell proliferation, which in turn leads to adult T-cell leukemia/lymphoma. Early cellular changes after HTLV-1 infection have been difficult to study due to the poorly infectious nature of HTLV-1 and the need for cell-to-cell contact for HTLV-1 transmission. Using a series of reporter systems, we show that HeLa cells cease proliferation within one or two division cycles after infection by HTLV-1 or transduction of the HTLV-1 tax gene. HTLV-1-infected HeLa cells, like their tax-transduced counterparts, expressed high levels of p21 CIP1/WAF1 and p27 KIP1 , developed mitotic abnormalities, and became arrested in G1 in senescence. In contrast, cells of a human osteosarcoma lineage (HOS) continued to divide after HTLV-1 infection or Tax expression, albeit at a reduced growth rate and with mitotic aberrations. Unique to HOS cells is the dramatic reduction of p21 CIP1/WAF1 and p27 KIP1 expression, which is in part associated with the constitutive activation of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway. The loss of p21 CIP1/WAF1 and p27 KIP1 in HOS cells apparently allows HTLV-1- and Tax-induced G1 arrest to be bypassed. Finally, HTLV-1 infection and Tax expression also cause human SupT1 T cells to arrest in the G1 phase of the cell cycle. These results suggest that productive HTLV-1 infection ordinarily leads to Tax-mediated G1 arrest. However, T cells containing somatic mutations that inactivate p21 CIP1/WAF1 and p27 KIP1 may continue to proliferate after HTLV-1 infection and Tax expression. These infected cells can expand clonally, accumulate additional chromosomal abnormalities, and progress to cancer.


1989 ◽  
Vol 9 (4) ◽  
pp. 1733-1745 ◽  
Author(s):  
T H Tan ◽  
M Horikoshi ◽  
R G Roeder

Within the human T-cell leukemia virus type I promoter, there are three copies of a 21-base-pair repeat (hereafter called the tax-responsive element [TRE]) that both contributes to basal promoter activity and mediates induction by the viral activator TAX. We have identified and separated three nuclear proteins that interact with the TRE. The TRE-binding protein designated TREB-3 bound more avidly to a multimerized TRE than to a single-copy TRE, while the other two TRE-binding proteins, TREB-1 and TREB-2, bound equally well to either TRE. TREB-1 has been purified to near homogeneity, and binding activity was localized to a protein of 35 to 43 kilodaltons. The affinity-purified TREB-1 activated transcription from the human T-cell leukemia virus type I promoter in vitro. The purified TREB-1 fraction contained activating transcription factor binding activity and showed a cooperative interaction with the TATA-binding factor (TFIID) on the adenovirus E4 promoter.


2004 ◽  
Vol 78 (8) ◽  
pp. 3827-3836 ◽  
Author(s):  
Machiko Nomura ◽  
Takashi Ohashi ◽  
Keiko Nishikawa ◽  
Hironori Nishitsuji ◽  
Kiyoshi Kurihara ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Although the viral transactivation factor, Tax, has been known to have apparent transforming ability, the exact function of Tax in ATL development is still not clear. To understand the role of Tax in ATL development, we introduced short-interfering RNAs (siRNAs) against Tax in a rat HTLV-1-infected T-cell line. Our results demonstrated that expression of siRNA targeting Tax successfully downregulated Tax expression. Repression of Tax expression was associated with resistance of the HTLV-1-infected T cells to Tax-specific cytotoxic-T-lymphocyte killing. This may be due to the direct effect of decreased Tax expression, because the Tax siRNA did not alter the expression of MHC-I, CD80, or CD86. Furthermore, T cells with Tax downregulation appeared to lose the ability to develop tumors in T-cell-deficient nude rats, in which the parental HTLV-1-infected cells induce ATL-like lymphoproliferative disease. These results indicated the importance of Tax both for activating host immune response against the virus and for maintaining the growth ability of infected cells in vivo. Our results provide insights into the mechanisms how the host immune system can survey and inhibit the growth of HTLV-1-infected cells during the long latent period before the onset of ATL.


Sign in / Sign up

Export Citation Format

Share Document