Graft-versus-leukemia effect after suicide-gene–mediated control of graft-versus-host disease

Blood ◽  
2002 ◽  
Vol 100 (6) ◽  
pp. 2020-2025 ◽  
Author(s):  
Elena Litvinova ◽  
Sébastien Maury ◽  
Olivier Boyer ◽  
Sylvie Bruel ◽  
Laurent Benard ◽  
...  

Abstract Clinical data indicate that after allogeneic hematopoietic stem cell transplantation (HSCT) for hematological malignancies, the graft-versus-leukemia (GVL) effect is in large part mediated by the graft-versus-host reaction (GVHR), which also often leads to graft-versus-host disease (GVHD). Controlling alloreactivity to prevent GVHD while retaining GVL poses a true dilemma for the successful treatment of such malignancies. We reasoned that suicide gene therapy, which kills dividing cells expressing the thymidine kinase (TK) “suicide” gene using time-controlled administration of ganciclovir (GCV), might solve this dilemma. We have previously shown that after infusion of allogeneic TK T cells along with HSCT to an irradiated recipient, an early and short GCV treatment efficiently prevents GVHD by selectively eliminating alloreactive T cells while sparing nonalloreactive T cells, which can then contribute to immune reconstitution. Nevertheless, it remained to be established that this therapeutic strategy retained the desired GVL effect. Hypothesizing that a contained GVHR would be essential, we evaluated the GVL effect using different protocols of GCV administration. We were able to show that when the GCV treatment is initiated at, or close to, the time of grafting, GVHD is controlled but GVL is lost. In contrast, when the onset of GCV administration is delayed until day 6, a potent GVL effect is retained while GVHD is still controlled. These data emphasize that, by a time-optimized scheduling of the administration of GCV, this TK/GCV strategy can be tuned to efficiently treat malignant hemopathies.

2020 ◽  
Vol 21 (12) ◽  
pp. 4281
Author(s):  
Sena Kim ◽  
Srikanth Santhanam ◽  
Sora Lim ◽  
Jaebok Choi

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the main therapeutic strategy for patients with both malignant and nonmalignant disorders. The therapeutic benefits of allo-HSCT in malignant disorders are primarily derived from the graft-versus-leukemia (GvL) effect, in which T cells in the donor graft recognize and eradicate residual malignant cells. However, the same donor T cells can also recognize normal host tissues as foreign, leading to the development of graft-versus-host disease (GvHD), which is difficult to separate from GvL and is the most frequent and serious complication following allo-HSCT. Inhibition of donor T cell toxicity helps in reducing GvHD but also restricts GvL activity. Therefore, developing a novel therapeutic strategy that selectively suppresses GvHD without affecting GvL is essential. Recent studies have shown that inhibition of histone deacetylases (HDACs) not only inhibits the growth of tumor cells but also regulates the cytotoxic activity of T cells. Here, we compile the known therapeutic potential of HDAC inhibitors in preventing several stages of GvHD pathogenesis. Furthermore, we will also review the current clinical features of HDAC inhibitors in preventing and treating GvHD as well as maintaining GvL.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3820-3820
Author(s):  
Lingling Zhang ◽  
Shuting Zhao ◽  
Steven M. Devine ◽  
Xiaoming He ◽  
Jianhua Yu

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) has curative potential for hematological malignancies, but is often associated with life-threatening complications including graft-versus-host disease (GVHD). The graft-versus-leukemia (GVL) activity which accompanies HSCT is responsible for eradication of tumor cells and prevention of relapse. GVHD and GVL are usually associated with each other and the separation of the two activities occurs in limited circumstances. In this study, we aimed to mitigate GVHD but retain GVL through transplantation of allogeneic T cells encapsulated with bio-degradable nanoparticle materials. For the above purpose, donor T cells were encapsulated with chitosan and alginate through layer-by-layer coating using electrostatic deposition. Encapsulated donor T cells were characterized in vitro, and their ability to inhibit GVHD and retain GVL was determined in vivo after being transplanted together with non-encapsulated donor bone marrow (BM) cells in a C57BL/6 → BALB/c HSCT mouse model. We found 85.7% of donor T cells were successfully encapsulated by the above method (Fig 1A). In vitro studies showed that the encapsulation did not change the phenotype of T cells as defined through the following parameters: size, viability, proliferation, antibody binding, cytokine secretion, and cytotoxicity of T cells (Fig. 1B and data not shown). Mice transplanted with encapsulated allogeneic T cells exhibited less severe acute GVHD and prolonged survival (Fig. 1 C-E). The mice showed a lower GVHD score, less liver damage, a smaller CD8/CD4 T cell ratio, and a higher number of donor BM-derived cells following transplantation with encapsulated donor T cells (Fig. 1 C-E and data not shown). When this GVHD model was combined with implantation of A20 lymphoma cells, GVL of encapsulated T cells was not compromised, while GVHD was still suppressed and the mouse survival also prolonged (Figure 2). In summary, nanoencapsulation of T cells with bio-degradable materials attenuated the severity of GVHD but retained GVL, presenting a novel and potentially safer and effective approach of allogeneic HSCT for future clinical application. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2476-2484 ◽  
Author(s):  
Hong Zheng ◽  
Catherine Matte-Martone ◽  
Hongmei Li ◽  
Britt E. Anderson ◽  
Srividhya Venketesan ◽  
...  

Much of the efficacy of allogeneic hematopoietic stem cell transplantation (alloSCT) in curing hematologic malignancies is due to a graft-versus-leukemia (GVL) effect mediated by donor T cells that recognize recipient alloantigens on leukemic cells. Donor T cells are also important for reconstituting immunity in the recipient. Unfortunately, donor T cells can attack nonmalignant host tissues and cause graft-versus-host disease (GVHD). We previously reported that donor CD4+ effector memory T cells (TEMs) do not cause GVHD but transfer functional T-cell memory. In the present work, we demonstrate in an MHC-mismatched model that CD4+ TEMs (unprimed to recipient antigens) mediate GVL against clinically relevant mouse models of chronic phase and blast crisis chronic myelogenous leukemia, without causing GVHD. By creating gene-deficient leukemias and using perforin-deficient T cells, we demonstrate that direct cytolytic function is essential for TEM-mediated GVL, but that GVL is retained when killing via FasL, TNF-α, TRAIL, and perforin is individually impaired. However, TEM-mediated GVL was diminished when both FasL and perforin pathways were blocked. Taken together, our studies identify TEMs as a clinically applicable cell therapy for promoting GVL and immune reconstitution, particularly in MHC-mismatched haploidentical alloSCTs in which T cell–depleted allografts are commonly used to minimize GVHD.


Blood ◽  
2017 ◽  
Vol 129 (20) ◽  
pp. 2737-2748 ◽  
Author(s):  
Qingrong Huang ◽  
Shan He ◽  
Yuanyuan Tian ◽  
Yuting Gu ◽  
Pan Chen ◽  
...  

Key Points Ezh2 requires Hsp90 to maintain Ezh2 protein stability and function in alloreactive T cells. Pharmacological inhibition of Hsp90 destabilizes Ezh2 protein in alloreactive T cells and reduces GVHD but preserves graft-versus-leukemia effects.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2560-2569 ◽  
Author(s):  
M Sykes ◽  
MW Harty ◽  
GL Szot ◽  
DA Pearson

Abstract We have recently shown that a short course of high-dose interleukin-2 (IL-2) can markedly inhibit the graft-versus-host disease (GVHD)- promoting activity of donor CD4+ T cells. The difficulty in dissociating GVHD-promoting from graft-versus-leukemia (GVL) effects of alloreactive donor T cells currently prevents clinical bone marrow transplantation (BMT) from fulfilling its full potential. To test the capacity of IL-2 treatment to promote such a dissociation, we have developed a new murine transplantable acute myelogenous leukemia model using a class II major histocompatibility complex-positive BALB/c Moloney murine leukemia virus-induced promonocytic leukemia, 2B-4–2. BALB/c mice receiving 2.5 x 10(5) 2B-4–2 cells intravenously 1 week before irradiation and syngeneic BMT died from leukemia within 2 to 4 weeks after BMT. Administration of syngeneic spleen cells and/or a 2.5- day course of IL-2 treatment alone did not inhibit leukemic mortality. In contrast, administration of non-T-cell-depleted fully allogeneic B10 (H-2b) spleen cells and T-cell-depleted B10 marrow led to a significant delay in leukemic mortality in IL-2-treated mice. In these animals GVHD was inhibited by IL-2 treatment. GVL effects were mediated entirely by donor CD4+ and CD8+ T cells. Remarkably, IL-2 administration did not diminish the magnitude of the GVL effect of either T-cell subset. This was surprising, because CD4-mediated GVHD was inhibited in the same animals in which CD4-mediated GVL effects were not reduced by IL-2 treatment. These results suggest a novel mechanism by which GVHD and GVL effects of a single unprimed alloreactive T-cell subset can be dissociated; different CD4 activities promote GVHD and GVL effects, and the former, but not the latter activities are inhibited by treatment with IL-2.


2015 ◽  
Vol 23 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Jan J Melenhorst ◽  
Paul Castillo ◽  
Patrick J Hanley ◽  
Michael D Keller ◽  
Robert A Krance ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document