Oral anticoagulation reduces activated protein C less than protein C and other vitamin K–dependent clotting factors

Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4232-4233 ◽  
Author(s):  
Marleen J. A. Simmelink ◽  
Philip G. de Groot ◽  
Ronald H. W. M. Derksen ◽  
José A. Fernández ◽  
John H. Griffin

Oral anticoagulant therapy, which is used for prophylaxis and management of thrombotic disorders, causes similar reductions in plasma levels of vitamin K–dependent procoagulant and anticoagulant clotting factor zymogens. When we measured levels of circulating activated protein C, a physiologically important anticoagulant and anti-inflammatory agent, in patients on oral anticoagulant therapy, the results unexpectedly showed that such therapy decreases levels of activated protein C substantially less than levels of protein C, prothrombin, and factor X, especially at lower levels of prothrombin and factor X. Thus, we suggest that oral anticoagulant therapy results in a relatively increased expression of the protein C pathway compared with procoagulant pathways not only because there is less prothrombin to inhibit activated protein C anticoagulant activity, but also because there is a disproportionately higher level of circulating activated protein C.

Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3839-3846 ◽  
Author(s):  
Mikhail D. Smirnov ◽  
Omid Safa ◽  
Naomi L. Esmon ◽  
Charles T. Esmon

Abstract In this study, we test the hypothesis that prothrombin levels may modulate activated protein C (APC) anticoagulant activity. Prothrombin in purified systems or plasma dramatically inhibited the ability of APC to inactivate factor Va and to anticoagulate plasma. This was not due solely to competition for binding to the membrane surface, as prothrombin also inhibited factor Va inactivation by APC in the absence of a membrane surface. Compared with normal factor Va, inactivation of factor Va Leiden by APC was much less sensitive to prothrombin inhibition. This may account for the observation that the Leiden mutation has less of an effect on plasma-based clotting assays than would be predicted from the purified system. Reduction of protein C levels to 20% of normal constitutes a significant risk of thrombosis, yet these levels are observed in neonates and patients on oral anticoagulant therapy. In both situations, the correspondingly low prothrombin levels would result in an increased effectiveness of the remaining functional APC of ≈5-fold. Thus, while the protein C activation system is impaired by the reduction in protein C levels, the APC that is formed is a more effective anticoagulant, allowing protein C levels to be reduced without significant thrombotic risk. In situations where prothrombin is high and protein C levels are low, as in early stages of oral anticoagulant therapy, the reduction in protein C would result only in impaired function of the anticoagulant system, possibly explaining the tendency for warfarin-induced skin necrosis.


1987 ◽  
Author(s):  
J Rouvier ◽  
H Vidal ◽  
J Gallino ◽  
M Boccia ◽  
A Scazziota ◽  
...  

It is still on discussion how oral anticoagulant therapy must be interrupted. A progressive diminution of drug intake have been proposed in order to avoid a MreboundM of vitamin K-dependent procoagulant factors. At the present, it is well known that coumarin drugs affect not only the biologic activity of factors II, VII, IX and X but also Protein C (PC), an inhibitor of coagulation kinetics, and their cofactor Protein S. With the aim to determine the recovery level of PC in relation with the others vitamin K-dependent factors, the effect of suppression of anticoagulant therapy in patients under chronic treatment with acenocoumarin was studied.Quick time, functional factors II, VII, X (one stage methods), functional PC (Francis method) and immunological Factor II and Protein C (Laurell) were determined before and 36 hours after suspension of acenocoumarin administration.Results showed that: 1) Recovery levels of functional Protein C (increased from 28.55% ±2.57 to 72.64% ±5.9) were significantly higer than functional Factor II (22.09% ±2.34 to 30.73% ±8.64), Factor VII (22.55% ±2.01 to 40.73% ±4.85) and Factor X (23.27% ±2.66 to 39.18% ±3.19). Statistical analysis (Newmann-Keuls test) showed at least a p<0.01 between PC increase and factors II, VII or X increment.2) No significant differences were seen between immunological levels of Factor II before and after suspension of acenocoumarin.3) Levels of immunological PC in patients under anticoagulant therapy were higer than functional PC. After acenocoumarin suppression, not correlation was seen between immunological and functional Protein C recovery.It is concluded that acute suppression of acenocoumarin does not induce a thrombotic tendency because the recuperation of functional Protein C is more important than factors II, VII and X recovery.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3839-3846 ◽  
Author(s):  
Mikhail D. Smirnov ◽  
Omid Safa ◽  
Naomi L. Esmon ◽  
Charles T. Esmon

In this study, we test the hypothesis that prothrombin levels may modulate activated protein C (APC) anticoagulant activity. Prothrombin in purified systems or plasma dramatically inhibited the ability of APC to inactivate factor Va and to anticoagulate plasma. This was not due solely to competition for binding to the membrane surface, as prothrombin also inhibited factor Va inactivation by APC in the absence of a membrane surface. Compared with normal factor Va, inactivation of factor Va Leiden by APC was much less sensitive to prothrombin inhibition. This may account for the observation that the Leiden mutation has less of an effect on plasma-based clotting assays than would be predicted from the purified system. Reduction of protein C levels to 20% of normal constitutes a significant risk of thrombosis, yet these levels are observed in neonates and patients on oral anticoagulant therapy. In both situations, the correspondingly low prothrombin levels would result in an increased effectiveness of the remaining functional APC of ≈5-fold. Thus, while the protein C activation system is impaired by the reduction in protein C levels, the APC that is formed is a more effective anticoagulant, allowing protein C levels to be reduced without significant thrombotic risk. In situations where prothrombin is high and protein C levels are low, as in early stages of oral anticoagulant therapy, the reduction in protein C would result only in impaired function of the anticoagulant system, possibly explaining the tendency for warfarin-induced skin necrosis.


Blood ◽  
1984 ◽  
Vol 64 (6) ◽  
pp. 1297-1300 ◽  
Author(s):  
HP Schwarz ◽  
M Fischer ◽  
P Hopmeier ◽  
MA Batard ◽  
JH Griffin

Abstract A family with a history of severe recurrent venous thromboembolic disease was studied to determine if a plasma protein deficiency could account for observed disease. Protein S levels in plasma were determined immunologically using the Laurell rocket technique. The propositus, his mother, his aunt, and his cousin who were clinically affected had 17% to 65% of the control levels of protein S antigen (normal range, 71% to 147%). Since three of these patients were receiving oral anticoagulant therapy, the ratios of protein S to prothrombin, factor X, and protein C in these patients were compared with values for a group of orally anticoagulated controls. These results suggested that protein S is half-normal in all family members with thrombotic disease. Other proteins known to be associated with familial thrombotic disease, including antithrombin III, plasminogen, fibrinogen, and protein C, were normal. Because plasma protein S serves as a cofactor for the anticoagulant activity of activated protein C and because protein C deficiency is associated with recurrent thrombotic disease, it is suggested that recurrent thrombotic disease in this family is the result of an inherited deficiency of protein S.


1986 ◽  
Vol 149 (4) ◽  
pp. 351-357 ◽  
Author(s):  
HOYU TAKAHASHI ◽  
MASAHARU HANANO ◽  
SENJI HAYASHI ◽  
YUTAKA ARAI ◽  
NORIKO YOSHINO ◽  
...  

Blood ◽  
1984 ◽  
Vol 64 (6) ◽  
pp. 1297-1300 ◽  
Author(s):  
HP Schwarz ◽  
M Fischer ◽  
P Hopmeier ◽  
MA Batard ◽  
JH Griffin

A family with a history of severe recurrent venous thromboembolic disease was studied to determine if a plasma protein deficiency could account for observed disease. Protein S levels in plasma were determined immunologically using the Laurell rocket technique. The propositus, his mother, his aunt, and his cousin who were clinically affected had 17% to 65% of the control levels of protein S antigen (normal range, 71% to 147%). Since three of these patients were receiving oral anticoagulant therapy, the ratios of protein S to prothrombin, factor X, and protein C in these patients were compared with values for a group of orally anticoagulated controls. These results suggested that protein S is half-normal in all family members with thrombotic disease. Other proteins known to be associated with familial thrombotic disease, including antithrombin III, plasminogen, fibrinogen, and protein C, were normal. Because plasma protein S serves as a cofactor for the anticoagulant activity of activated protein C and because protein C deficiency is associated with recurrent thrombotic disease, it is suggested that recurrent thrombotic disease in this family is the result of an inherited deficiency of protein S.


1977 ◽  
Vol 38 (02) ◽  
pp. 0465-0474 ◽  
Author(s):  
M Constantino ◽  
C Merskey ◽  
D. J Kudzma ◽  
M. B Zucker

SummaryLevels of blood coagulation factors, cholesterol and triglyceride were measured in human plasma. Prothrombin was significantly elevated in type Ha hyperlipidaemia; prothrombin and factors VII, IX and X in type lib; and prothrombin and factors VII and IX in type V. Multiple regression analysis showed significant correlation between the levels of these plasma lipids and the vitamin K-dependent clotting factors (prothrombin, factors VII, IX and X). Higher cholesterol levels were associated with higher levels of prothrombin and factor X while higher triglyceride levels were associated with higher levels of these as well as factors VII and IX. Prothrombin showed a significant cholesterol-triglyceride interaction in that higher cholesterol levels were associated with higher prothrombin levels at all levels of triglyceride, with the most marked effects in subjects with higher triglyceride levels. Higher prothrombin levels were noted in subjects with high or moderately elevated (but not low) cholesterol levels. Ultracentrifugation of plasma in a density of 1.21 showed activity for prothrombin and factors VII and X only in the lipoprotein-free subnatant fraction. Thus, a true increase in clotting factor protein was probably present. The significance of the correlation between levels of vitamin K-dependent clotting factors and plasma lipids remains to be determined.


Blood ◽  
1979 ◽  
Vol 53 (3) ◽  
pp. 366-374 ◽  
Author(s):  
LR Zacharski ◽  
R Rosenstein

Abstract The coagulant of normal human saliva has been identified as tissue factor (thromboplastin, TF) by virtue of its ability to cause rapid coagulation in plasmas deficient in first-stage coagulation factors and to activate factor x in the presence of factor VII and by virtue of the fact that its activity is expressed only in the presence of factor VII and is inhibited by an antibody to TF. The TF is related to cells and cell fragments in saliva. Salivary TF activity has been found to be significantly reduced in patients taking warfarin. The decline in TF activity during induction of warfarin anticoagulation occurs during the warfarin-induced decline in vitamin-K-dependent clotting factor activity, as judged by the prothrombin time. The decrease in TF activity is not related to a reduction in salivary cell count or total protein content or to a direct effect of warfarin on the assay. It is hypothesized that the mechanism by which warfarin inhibits TF activity may be related to the mechanism by which it inhibits expression of the activity of the vitamin-K-dependent clotting factors. Inhibition of the TF activity may be involved in the antithrombotic effect of warfarin.


1997 ◽  
Vol 272 (2) ◽  
pp. L197-L202 ◽  
Author(s):  
K. Murakami ◽  
K. Okajima ◽  
M. Uchiba ◽  
M. Johno ◽  
T. Nakagaki ◽  
...  

We investigated the effect of activated protein C (APC) on pulmonary vascular injury and the increase in tumor necrosis factor (TNF) levels in lipopolysaccharide (LPS)-treated rats to determine whether APC reduces LPS-induced endothelial damage by inhibiting cytokine production. Intravenously administered LPS (5 mg/kg) induced pulmonary vascular injury, as indicated by an increase in the lung wet-to-dry weight ratio. LPS-induced pulmonary vascular injury was prevented by APC but not by active site-blocked factor Xa [dansyl glutamyl-glycyl-arginyl chloromethyl detone-treated activated factor X (DEGR-Xa)], a selective inhibitor of thrombin generation, or inactivated APC [diisopropyl fluorophosphate-treated APC (DIP-APC)]. APC, but not DEGR-Xa or DIP-APC, significantly inhibited the LPS-induced increase in the plasma level of TNF. APC significantly inhibited the production of TNF by LPS-stimulated monocytes in a dose-dependent fashion in vitro, but DIP-APC did not. APC did not inhibit the functions of activated neutrophils in vitro. These findings suggest that APC prevented LPS-induced pulmonary vascular injury by inhibiting TNF production by monocytes and not via its anticoagulant activity. The serine protease activity of APC appears to be essential for inhibition of TNF production.


Sign in / Sign up

Export Citation Format

Share Document