Trolox selectively enhances arsenic-mediated oxidative stress and apoptosis in APL and other malignant cell lines

Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1237-1245 ◽  
Author(s):  
Zuanel Diaz ◽  
Myrian Colombo ◽  
Koren K. Mann ◽  
Haixiang Su ◽  
Kamilah N. Smith ◽  
...  

AbstractAlthough arsenic trioxide (As2O3) is an effective therapy in acute promyelocytic leukemia (APL), its use in other malignancies is limited by the toxicity of concentrations required to induce apoptosis in non-APL tumor cells. We looked for agents that would synergize with As2O3 to induce apoptosis in malignant cells, but not in normal cells. We found that trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a widely known antioxidant, enhances As2O3-mediated apoptosis in APL, myeloma, and breast cancer cells. Treatment with As2O3 and trolox increased intracellular oxidative stress, as evidenced by heme oxygenase-1 (HO-1) protein levels, c-Jun terminal kinase (JNK) activation, and protein and lipid oxidation. The synergistic effects of trolox may be specific to As2O3, as trolox does not add to toxicity induced by other chemotherapeutic drugs. We explored the mechanism of this synergy using electron paramagnetic resonance and observed the formation of trolox radicals when trolox was combined with As2O3, but not with doxorubicin. Importantly, trolox protected nonmalignant cells from As2O3-mediated cytotoxicity. Our data provide the first evidence that trolox may extend the therapeutic spectrum of As2O3. Furthermore, the combination of As2O3 and trolox shows potential specificity for tumor cells, suggesting it may not increase the toxicity associated with As2O3 monotherapy in vivo.

Author(s):  
Anca D. Farcas ◽  
Augustin C. Mot ◽  
Cezara Zagrean-Tuza ◽  
Madalina Ticolea ◽  
Bogdan Sevastre ◽  
...  

Abstract Background Natural extracts with beneficial biological activities are nowadays of high interest, in various treatment or prophylaxis. Hypericum capitatum has been known for its curative effects for centuries and its extracts have become of interest due to their distinct activity among other Hypericaceae members. In this study, further light is aimed to be shed on the secondary-metabolites composition of H. capitatum extracts, using chromatographic techniques and Electron paramagnetic resonance profiles in alkaline medium. Considering that no previous works explored the anti-inflammatory activity of H. capitatum, here, an in vivo study is also designed in order to evaluate this property by assessing the impact of one of H. capitatum extracts in ameliorating turpentine oil-induced inflammation on rats and to quantify their blood antioxidants level. Methods Chromatographic techniques and Electron paramagnetic resonance spectroscopy were used in order to describe the chemical profile in different parts of the plant. The in vivo study on turpentine-oil induced inflammation in rats included three doses of H. capitatum extract expressed in rutin concentration. Oxidative stress was measured using total oxidative status, total antioxidant capacity, oxidative stress index, 3-nitrotyrosine, nitric oxide, malondialdehyde, superoxide dismutase, catalase and the inflammatory response was evaluated by performing a complete blood cells count and C reactive protein. Results The extract was remarkably rich in rutin; however, other polyphenolic-like minor components appeared important in explaining the observed biological properties. The tested extract prevents the increase of inflammation-induced white blood cell count, number of neutrophils, and serum nitric oxide, and did so in a dose-dependent manner, similarly to the positive control—diclofenac. In addition, the same extract appeared to be a good alternative to diclofenac to restore total oxidative status, thiobarbituric active reactive species, total proteins and C reactive proteins. Moreover, antioxidant enzymes such as catalase, superoxide dismutase and total serum thiol concentration were significantly increased by the tested extract. Conclusions Due to its powerful reservoir rich in rutin, H. capitatum extract depicted its in vivo antioxidant and anti-inflammatory effects indicating it to be a good alternative to conventional drugs for oxidative stress protection.


2005 ◽  
Vol 288 (3) ◽  
pp. F597-F603 ◽  
Author(s):  
Aki Hirayama ◽  
Sohji Nagase ◽  
Atsushi Ueda ◽  
Takaaki Oteki ◽  
Kenji Takada ◽  
...  

Oxidative stress during ischemia-reperfusion acute renal failure (IR-ARF) was noninvasively evaluated with in vivo electron paramagnetic resonance (EPR) imaging. Female ICR mice underwent left nephrectomy and 30-min ischemia-reperfusion of the right kidney. Oxidative stress was evaluated as organ reducing activity with the half-lives of the spin probe 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl-PROXYL) using 1) conventional L-band EPR, which showed organ-reducing activity in the whole abdominal area; and 2) EPR imaging, which showed semiquantitative but organ-specific reducing activity. The results were compared with the reducing activity of organ homogenate and phosphatidylcholine hydroperoxide (PC-OOH) concentrations. Half-lives of carbamoyl-PROXYL in the whole upper abdominal area, measured by L-band EPR, were prolonged on day 3 after ischemia-reperfusion and recovered to the level of nontreated mice on day 7. This trend resembled closely that of serum creatinine and blood urea nitrogen concentration. The EPR imaging-measured carbamoyl-PROXYL half-life was also prolonged on day 3 in both the kidney and the liver. However, in the kidney this showed only partial recovery on day 7. In the liver, this convalescence was more remarkable. The ex vivo studies of organ reducing activity and PC-OOH agreed with the results from EPRI, but not with those from L-band EPR. These results indicate that renal reducing activity shows only partial recovery on day 7 after ischemia-reperfusion, when serum creatinine and blood urea nitrogen have recovered. EPR imaging is an appropriate and useful method for the noninvasive evaluation of oxidative stress in the presence of renal injury.


2020 ◽  
Vol 65 (6) ◽  
pp. 1142-1153
Author(s):  
В.Д. Микоян ◽  
◽  
Е.Н. Бургова ◽  
Р.Р. Бородулин ◽  
А.Ф. Ванин ◽  
...  

The number of mononitrosyl iron complexes with diethyldithiocarbamate, formed in the liver of mice in vivo and in vitro after intraperitoneal injection of binuclear dinitrosyl iron complexes with N-acetyl-L-cysteine or glutathione, S-nitrosoglutathione, sodium nitrite or the vasodilating drug Isoket® was assessed by electron paramagnetic resonance (EPR). The number of the said complexes, in contrast to the complexes, formed after nitrite or Isoket administration, the level of which sharply increased after treatment of liver preparations with a strong reducing agent - dithionite, did not change in the presence of dithionite. It was concluded that, in the first case, EPR-detectable mononitrosyl iron complexes with diethyldithiocarbamate in the absence and presence of dithionite appeared as a result of the reaction of NO formed from nitrite with Fe2+-dieth- yldithiocarbamate and Fe3+-diethyldithiocarbamate complexes, respectively. In the second case, mononitrosyl iron complexes with diethyldithiocarbamate appeared as a result of the transition of iron-mononitosyl fragments from ready-made iron-dinitrosyl groups of binuclear dinitrosyl complexes, which is three to four times higher than the content of the mononuclear form of these complexes in the tissue...


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document