Cell surface-associated Tat modulates HIV-1 infection and spreading through a specific interaction with gp120 viral envelope protein

Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2802-2811 ◽  
Author(s):  
S. Marchio
Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4693-4699 ◽  
Author(s):  
Stuart J. D. Neil ◽  
Áine McKnight ◽  
Kenth Gustafsson ◽  
Robin A. Weiss

Abstract ABO histo-blood group antigens have been postulated to modify pathogen spread through the action of natural antibodies and complement. The antigens are generated by a polymorphic glycosyl-transferase encoded by 2 dominant active and a recessive inactive allele. In this study we investigated whether ABO sugars are incorporated into the envelope of HIV-1 virions. HIV vectors derived from cells expressing ABO antigens displayed sensitivity to fresh human serum analogous to ABO incompatibility, and ABO histo-blood group sugars were detected on the viral envelope protein, glycoprotein 120 (gp120). Moreover, lymphocyte-derived virus also displayed serum sensitivity, reflecting the ABO phenotype of the host when cultured in autologous serum due to adsorption of antigens to cell surfaces. Serum sensitivity required both active complement and specific anti-ABO antibodies. Thus, incorporation of ABO antigens by HIV-1 may affect transmission of virus between individuals of discordant blood groups by interaction with host natural antibody and complement. (Blood. 2005;105:4693-4699)


2011 ◽  
Vol 25 (7) ◽  
pp. 2156-2166 ◽  
Author(s):  
Avraham Ashkenazi ◽  
Mathias Viard ◽  
Yael Wexler‐Cohen ◽  
Robert Blumenthal ◽  
Yechiel Shai

1999 ◽  
Vol 73 (2) ◽  
pp. 1293-1301 ◽  
Author(s):  
Kazunori Inabe ◽  
Masako Nishizawa ◽  
Shigeru Tajima ◽  
Kazuyoshi Ikuta ◽  
Yoko Aida

ABSTRACT The cytoplasmic domain of an envelope transmembrane glycoprotein (gp30) of bovine leukemia virus (BLV) has two overlapping copies of the (YXXL)2 motif. The N-terminal motif has been implicated in in vitro signal transduction pathways from the external to the intracellular compartment and is also involved in infection and maintenance of high viral loads in sheep that have been experimentally infected with BLV. To determine the role of YXXL sequences in the replication of BLV in vitro, we changed the tyrosine or leucine residues of the N-terminal motif in an infectious molecular clone of BLV, pBLV-IF, to alanine to produce mutated proviruses designated Y487A, L490A, Y498A, L501A, and Y487/498A. Transient transfection of African green monkey kidney COS-1 cells with proviral DNAs that encoded wild-type and mutant sequences revealed that all of the mutated proviral DNAs synthesized mature envelope proteins and released virus particles into the growth medium. However, serial passages of fetal lamb kidney (FLK) cells, which are sensitive to infection with BLV, after transient transfection revealed that mutation of a second tyrosine residue in the N-terminal motif completely prevented the propagation of the virus. Similarly, Y498A and Y487/498A mutant BLV that was produced by the stably transfected COS-1 cells exhibited significantly reduced levels of cell-free virion-mediated transmission. Analysis of the protein compositions of mutant viruses demonstrated that lower levels of envelope protein were incorporated by two of the mutant virions than by wild-type and other mutant virions. Furthermore, a mutation of a second tyrosine residue decreased the specific binding of BLV particles to FLK cells and the capacity for viral penetration. Our data indicate that the YXXL sequences play critical roles in both viral entry and the incorporation of viral envelope protein into the virion during the life cycle of BLV.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 493 ◽  
Author(s):  
Helge Kampen ◽  
Cora M. Holicki ◽  
Ute Ziegler ◽  
Martin H. Groschup ◽  
Birke Andrea Tews ◽  
...  

In 2018, West Nile virus (WNV) broke out for the first time in Germany, with continuation of the epidemic in 2019, involving birds, horses and humans. To identify vectors and characterize the virus, mosquitoes were collected in both years in zoological gardens and on a horse meadow immediately following the diagnosis of disease cases in birds and horses. Mosquitoes were identified and screened for WNV by qRT-PCR, with virus-positive samples being sequenced for the viral envelope protein gene. While no positive mosquitoes were found in 2018, seven mosquito pools tested positive for WNV in 2019 in the Tierpark (Wildlife Park) Berlin. The pools consisted of Cx. pipiens biotype pipiens (n = 5), and a mixture of Cx. p. biotype pipiens and Cx. p. biotype molestus (n = 2), or hybrids of these, and were collected between 13 August and 24 September 2019. The virus strain turned out to be nearly identical to two WNV strains isolated from birds diseased in 2018 in eastern Germany. The findings represent the first demonstration of WNV in mosquitoes in Germany and include the possibility of local overwintering of the virus.


Sign in / Sign up

Export Citation Format

Share Document