scholarly journals Absence of inducible costimulator on alloreactive T cells reduces graft versus host disease and induces Th2 deviation

Blood ◽  
2005 ◽  
Vol 106 (9) ◽  
pp. 3285-3292 ◽  
Author(s):  
Vanessa M. Hubbard ◽  
Jeffrey M. Eng ◽  
Teresa Ramirez-Montagut ◽  
Kartono H. Tjoe ◽  
Stephanie J. Muriglan ◽  
...  

AbstractInducible costimulator (ICOS) is expressed on activated and memory T cells and is involved in the regulation of cytokine production. We studied the role of ICOS on alloreactive T cells in graft versus host disease (GVHD) and determined that ICOS expression was up-regulated on alloreactive T cells in recipients of an allogeneic hematopoietic stem cell transplantation (allo-HSCT) with GVHD. We compared ICOS-/- T cells with wild-type (WT) T cells in 2 GVHD models. In both models, recipients of ICOS-/- T cells demonstrated significantly less GVHD morbidity and mortality, which was associated with less intestinal and hepatic GVHD but increased cutaneous GVHD. In addition, recipients of ICOS-/- donor T cells displayed a slight decrease in graft versus leukemia (GVL) activity. Further analysis of alloreactive ICOS-/- T cells showed no defect in activation, proliferation, cytotoxicity, and target organ infiltration. Recipients of ICOS-/- T cells had decreased serum levels of interferon-γ (IFN-γ), while interleukin-4 (IL-4) and IL-10 levels were increased, suggesting that alloreactive ICOS-/- T cells are skewed toward T helper-2 (Th2) differentiation. These data suggest a novel role for ICOS in the regulation of Th1/Th2 development of activated T cells. In conclusion, alloreactive ICOS-/- donor T cells induce less GVHD due to a Th2 immune deviation while GVL activity is slightly diminished.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3174-3174
Author(s):  
NgocDiep Le ◽  
Nelson Chao

Abstract OBJECTIVE: Mismatched allogeneic hematopoietic cell transplantation (alloHCT) carries a high risk of life-threatening graft-versus-host disease (GVHD) due to activation of donor T cells by antigens present on host cells. Removal of donor mature T cells can prevent GVHD but leads to an increased incidence of opportunistic infections and disease relapse. This study aims to selectively deplete host-reactive donor T cells responsible for GVHD while preserving T cells with anti-tumor and anti-viral effects. METHODS: We utilized a photosensitizer, 4,5-dibromorhodamine-methyl ester (TH9402, Celmed Biosciences Inc., Saint-Laurent, Canada), in an ex vivo photodynamic purging (PDP) process to specifically eradicate host-reactive T cells. Donor T cells with anti-host specificity were identified in a unidirectional mixed lymphocyte culture (MLC) where they were activated and became proliferating. TH9402 is taken up by all cells and extruded out of the cell by P-glycoprotein (Pgp) in non-activated cells. However, due to inactivation of Pgp in activated T cells, TH9402 is retained in the mitochondria. Upon exposure to 514 nm light in the Theralux™ device (Celmed), it becomes extremely cytotoxic resulting in cell death. In this study, after treatment with various concentrations of TH9402, the cells were exposed to light for the elimination of alloreactive T cells. The efficiency of allodepletion was assessed by Granzyme B (GrB) assay. T-cell proliferation assays were used to demonstrate the preservation of anti-tumor and anti-viral effects. Finally, the skin explant assay, an in vitro model of GVHD, was utilized to examine the efficacy of the PDP treatment in the removal of alloreactive T cells responsible for GVHD. The parameters of the PDP treatment were optimized for use in subsequent clinical studies. RESULTS: After 72-hour MLC, optimal proliferative response was obtained at a responder: stimulator ratio of 1:1. Activated T cells expressed high level of activation markers such as CD25 and CD69. After the PDP treatment with 20μM of TH9402, alloreactive T cells were consistently depleted by more than 2 logs (Figure 1). Moreover, the PDP treatment did not significantly affect anti-tumor and anti-viral effects as evidenced by responses to third-party stimulators (Figure 2A), cytomegalovirus (CMV) (Figure 2B) and Candida antigens. Most importantly, co-culture of recipient’s skin with PDP-treated cells showed a reduction of graft-versus-host reaction (GVHR) in a TH9402-dose dependent manner. The PDP treatment with 20μM of TH9402 completely abolished GVHR in a skin explant assay. CONCLUSIONS: The PDP treatment can effectively remove donor T cells responsible for GVHD while preserve T cells with anti-tumor and anti-viral effects. These preclinical results provide a basis for initiating a clinical trial to assess the feasibility and efficacy of infusing PDP-treated donor T cells to alloHCT recipient in order to augment anti-tumor and anti-pathogen effects without causing GVHD. Figure 1 PDP treatment reduceds the frequency of alloreactive T cells in a TH9402 does dependent manner. Figure 1. PDP treatment reduceds the frequency of alloreactive T cells in a TH9402 does dependent manner. Figure 2 PDP treatment preserves responses to third-party stimulator and viral antigens. Figure 2. PDP treatment preserves responses to third-party stimulator and viral antigens.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3820-3820
Author(s):  
Lingling Zhang ◽  
Shuting Zhao ◽  
Steven M. Devine ◽  
Xiaoming He ◽  
Jianhua Yu

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) has curative potential for hematological malignancies, but is often associated with life-threatening complications including graft-versus-host disease (GVHD). The graft-versus-leukemia (GVL) activity which accompanies HSCT is responsible for eradication of tumor cells and prevention of relapse. GVHD and GVL are usually associated with each other and the separation of the two activities occurs in limited circumstances. In this study, we aimed to mitigate GVHD but retain GVL through transplantation of allogeneic T cells encapsulated with bio-degradable nanoparticle materials. For the above purpose, donor T cells were encapsulated with chitosan and alginate through layer-by-layer coating using electrostatic deposition. Encapsulated donor T cells were characterized in vitro, and their ability to inhibit GVHD and retain GVL was determined in vivo after being transplanted together with non-encapsulated donor bone marrow (BM) cells in a C57BL/6 → BALB/c HSCT mouse model. We found 85.7% of donor T cells were successfully encapsulated by the above method (Fig 1A). In vitro studies showed that the encapsulation did not change the phenotype of T cells as defined through the following parameters: size, viability, proliferation, antibody binding, cytokine secretion, and cytotoxicity of T cells (Fig. 1B and data not shown). Mice transplanted with encapsulated allogeneic T cells exhibited less severe acute GVHD and prolonged survival (Fig. 1 C-E). The mice showed a lower GVHD score, less liver damage, a smaller CD8/CD4 T cell ratio, and a higher number of donor BM-derived cells following transplantation with encapsulated donor T cells (Fig. 1 C-E and data not shown). When this GVHD model was combined with implantation of A20 lymphoma cells, GVL of encapsulated T cells was not compromised, while GVHD was still suppressed and the mouse survival also prolonged (Figure 2). In summary, nanoencapsulation of T cells with bio-degradable materials attenuated the severity of GVHD but retained GVL, presenting a novel and potentially safer and effective approach of allogeneic HSCT for future clinical application. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 843-843
Author(s):  
Natalie Stickel ◽  
Gabriele Prinz ◽  
Dietmar Pfeifer ◽  
Annette Schmitt-Graeff ◽  
Marie Follo ◽  
...  

Abstract Introduction: Acute graft-versus-host disease (GvHD) arises from the attack of recipient tissues by donor allogeneic T cells and represents one of the major limitations of allogeneic hematopoietic cell transplantation (allo-HCT). In spite of many clinical trials, the standard immunosuppressive regimens for prevention of acute GvHD have improved little in the last two decades. Hence, a better understanding of the biology of acute GvHD may improve therapeutic options. MicroRNA-146a (miR-146a) was found to be increased in the sera of patients with GvHD. Therefore, we aimed to decipher the role of miR-146a in allogeneic donor T cells during GvHD by functional studies and in patients undergoing allo-HCT by single nucleotide polymorphism (SNP) analysis. Methods: We used two different murine major MHC mismatch models for acute GvHD. Recipient mice were conditioned with irradiation before transplantation of bone marrow and either wildtype or miR-146a deficient T cells from allogeneic donor mice. Furthermore, genomic DNA from 289 patients that underwent allo-HCT and their respective hematopoietic stem cell donors was isolated in order to determine their miR-146a rs2910164genotype. Results: We observed miR-146a upregulation in T cells of mice developing acute GvHD compared to untreated mice in a major MHC and a minor histocompatibility antigen mismatch model. Transfer of miR-146a deficient T cells caused increased GvHD severity, elevated TNF serum levels and reduced survival. Conversely, the phytochemical induction of miR-146a or its overexpression in donor T cells using a specific miR-146a mimic reduced GvHD severity. TNF receptor-associated factor 6 (TRAF6), a verified target of miR-146a, was upregulated in miR-146a-/- T cells following alloantigen stimulation. Higher TRAF6 levels translated into increased NF-κB activity and TNF production in miR-146a-/- T cells, while other pro-inflammatory cytokine levels were unaffected. The detrimental effect of miR-146a deficiency in T cells could be antagonized by TNF blockade in vivo. Moreover, in contrast to WT T cells, over expression of miR-146a in Tnf deficient T cells had no effect on their alloreactivity. In the human system, the minor genotype of the SNP rs2910164, which causes reduced miR-146a expression, was more frequent in patients developing acute GvHD grade III/IV compared to all other allo-HCT recipients (n=289). Conclusions: Taken together we show that miR-146a functions as a negative regulator of the TRAF6/TNF-axis in allogeneic donor T cells during GvHD, leading to reduced TNF transcription. Given our observation on the predictive role of the SNP leading to decreased miR-146a expression in acute GvHD in patients and the possibility to exogenously enhance miR-146a expression, we provide a novel and targeted molecular approach to mitigate GvHD. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 390-400 ◽  
Author(s):  
Sylvie Brochu ◽  
Benjamin Rioux-Massé ◽  
Jean Roy ◽  
Denis-Claude Roy ◽  
Claude Perreault

After hematopoietic stem cell transplantation, the persistence and expansion of grafted mature postthymic T cells allow both transfer of donor immunologic memory and generation of a diverse T repertoire. This thymic-independent process, which is particularly important in humans, because most transplant recipients present severe thymus atrophy, is impaired by graft-versus-host disease (GVHD). The goal of this study was to decipher how GVHD influences the fate of grafted postthymic T cells. Two major findings emerged. First, we found that, after a brisk proliferation phase, alloreactive antihost T cells underwent a massive activation-induced cell death (AICD). For both CD4+ and CD8+ T cells, the Fas pathway was found to play a major role in this AICD: alloreactive T cells upregulated Fas and FasL, and AICD of antihost T cells was much decreased in the case of lpr (Fas-deficient) donors. Second, whereas non–host-reactive donor T cells neither upregulated Fas nor suffered apoptosis when transplanted alone, they showed increased membrane Fas expression and apoptosis when coinjected with host-reactive T cells. We conclude that GVHD-associated AICD of antihost T cells coupled with bystander lysis of grafted non–host-reactive T cells abrogate immune reconstitution by donor-derived postthymic T lymphocytes. Furthermore, we speculate that massive lymphoid apoptosis observed in the acute phase of GVHD might be responsible for the occurrence of autoimmunity in the chronic phase of GVHD.


Blood ◽  
2011 ◽  
Vol 117 (5) ◽  
pp. 1723-1733 ◽  
Author(s):  
Fang Zhao ◽  
Yi Zhang ◽  
Hao Wang ◽  
Min Jin ◽  
Shan He ◽  
...  

Abstract Graft-versus-host disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is caused by alloreactive donor T cells that trigger host tissue damage. The inflammatory environment inside recipients is critical for GVHD pathogenesis, but the underpinning mechanisms remain elusive. Using mouse model of human GVHD, we demonstrate osteopontin (OPN), a potent proinflammatory cytokine, plays an important role in regulating activation, migration, and survival of alloreactive T cells during GVHD. OPN was significantly elevated after irradiation and persisted throughout the course of GVHD. Blockade of OPN attenuated GVHD with reduced accumulation of donor T cells in recipient organs. Amelioration was the result of migration and survival suppression caused by anti-OPN treatment on donor-derived T cells for 2 reasons. First, OPN promoted the migration and infiltration of naive and alloreactive CD8+ T cells into host organs. Second, it also facilitated activation and viability of donor-derived CD8+ T cells via synergizing with T-cell receptor/CD3 signaling. Finally, anti-OPN treatment retained graft-versus-leukemia effect of alloreactive CD8+ T cells. This study demonstrates, to our knowledge for the first time, the critical effect of OPN in the initiation and persistence of CD8+ T cell-mediated GVHD and validates OPN as a potential target in GVHD prevention.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1703-1711 ◽  
Author(s):  
Elisha Waldman ◽  
Sydney X. Lu ◽  
Vanessa M. Hubbard ◽  
Adam A. Kochman ◽  
Jeffrey M. Eng ◽  
...  

The α4β7 integrin plays a central role in the homing of T cells to the gut. We hypothesized that absence of the β7 subunit would result in a reduction of intestinal graft-versus-host disease (GVHD) and an improvement in overall GVHD morbidity and mortality in recipients of hematopoietic stem cell transplantation (HSCT). Analysis of alloreactive β7-/- T cells showed intact activation, proliferation, cytokine production, and cytotoxicity. However, recipients of β7-/- donor T cells in murine HSCT models experienced less GVHD morbidity and mortality than recipients of wild-type (WT) T cells, associated with a decrease in donor T-cell infiltration of the liver and intestine and with an overall significant decrease in hepatic and intestinal GVHD. In graft-versus-tumor (GVT) experiments, we demonstrated intact or even enhanced GVT activity of β7-/- donor T cells. In conclusion, β7-/- donor T cells caused less GVHD morbidity and mortality than WT donor T cells because of selectively decreased T-cell infiltration of the liver and intestines. Our data suggest that strategies to target the β7 integrin have the clinical potential to alleviate or prevent GVHD while sparing or potentiating GVT activity.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1335-1335
Author(s):  
Sydney X Lu ◽  
Maria Lia Palomba ◽  
Il-Kang Na ◽  
Theis Terwey ◽  
Onder Alpdogan ◽  
...  

Abstract Abstract 1335 Poster Board I-357 Alloreactive T cells are crucial for graft-versus-host-disease (GVHD) pathophysiology, and we hypothesized that controlling their trafficking can ameliorate GVHD. P-selectin is a dimeric glycoprotein found on most inflamed endothelium, which interacts with multiple lectin-type molecules on leukocytes, including T cells. We used murine allogenienc BMT models to study GVHD and found that P-selectin−/− recipients exhibited significantly less GVHD mortality and morbidity, as well as decreased GVHD of the skin, liver and small bowels. However, WT and P-selectin−/− allo-BMT recipients had comparable large bowel GVHD. This decrease in target organ and systemic GVHD was associated with diminished infiltration of alloactivated T cells into the Peyer's Patches and small bowels, coupled with increased numbers of donor T cells in the spleen and secondary lymphoid organs (SLO) on day 14 and day 35 post-transplant. However, donor alloreactive T cells in WT and P-selectin−/− allo-BMT recipients had similar alloactivation and apoptosis, and donor alloactivated T cells from WT and P-selectin−/− allo-BMT recipients with GVHD showed similar proliferation in vitro in a mixed leukocyte reaction, suggesting that the inflammatory environment in WT and P-selectin−/− recipients was comparable. Finally, non-transplanted P-selectin−/− mice, and P-selectin−/− mice which had received the allo-BMT conditioning regimen but not a donor graft, had similar cellularity in the majority of tissues examined as corresponding WT controls. This suggests that the differential cellularity of donor alloactivated T cells in WT and P-selectin−/− allo-BMT recipients with GVHD is probably largely dependent on trafficking and tissue infiltration during inflammation. Since P-selectin glycoprotein ligand 1 (PSGL1) is the best-described P-selectin ligand, and all leukocytes constitutively bear high levels of membrane PSGL1, we next hypothesized that PSGL1−/− donor alloreactive T cells would be defective in trafficking into GVHD target organs, and that PSGL1−/− donor T cells would cause decreased target organ damage, systemic GVHD, and mortality. However, allo-BMT recipients of WT and PSGL1−/− donor T cells had comparable survival and clinical GVHD scores, and further analyses on day 14 post-transplant revealed that recipients of WT and PSGL1−/− donor T cells also had similar numbers of donor alloactivated T cells in the spleen, liver, mesenteric and peripheral lymph nodes, and Peyer's Patches. Additionally, WT and PSGL1−/− donor T cells had comparable proliferation as measured by CFSE dilution, and comparable alloactivation in vivo as determined by levels of CD25, CD44, and CD62L, suggesting similar T cell function. As PSGL1−/− and WT donor T cells appeared to have equal functionality and accumulated in GVHD target tissues and lymphoid tissues in a similar fashion, we asked whether PSGL1−/− T cells might display other P-selectin ligands. Flow cytometric analyses of T cells from non-transplanted PSGL1−/− mice, and analyses of PSGL1−/− alloactivated T cells on day 14 after allo-BMT, revealed that these cells displayed substantial levels of cell-surface P-selectin ligands as defined by positive staining with recombinant P-selectin-IgG-Fc fusion protein at levels similar to those found on WT T cells, suggesting that although absence of P-selectin on host tissues may ameliorate GVHD, multiple donor leukocyte P-selectin ligands interact meaningfully with P-selectin. Our studies suggest that P-selectin may be required for trafficking into inflamed tissues but not SLO, and that donor T cells may utilize multiple P-selectin ligands apart from PSGL1 to interact with P-selectin and traffic into inflamed tissues during GVHD. We conclude that targeting P-selectin may be a viable target for GVHD prophylaxis or treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3828-3828
Author(s):  
Matthew L Cooper ◽  
Jaebok Choi ◽  
Julie Ritchey ◽  
John F. DiPersio

Abstract The therapeutic benefit of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for treatment of hematologic malignancies is primarily derived from the anti-leukemia effect mediated by T cells contained in the donor graft. Unfortunately, these T cells also mediate graft-versus-host disease (GvHD), the major complication of allo-HSCT. We and others have demonstrated that interferon gamma receptor deficient (IFNγR-/-) allogeneic donor grafts, when transplanted into wild-type (WT) recipients (IFNγR-/- donors → WT recipients), reduce GvHD compared with WT donor grafts (WT donors → WT recipients) whilst maintaining a robust Graft vs. Leukemia effect (GvL). The aim of the present study was to elucidate the mechanism by which IFNyR deficient donor T cells reduce GvHD. To achieve this we performed RNA expression analyses on allo-activated T cells. To obtain allo-activated T cells, we co-cultured B6 CD4+CD25- T cells, isolated from WT and IFNγR-/- mice, with irradiated Balb/c antigen presenting cells (APCs). After six days of co-culture, CD4+CD25+ allo-activated T cells were sorted and total RNA extracted. Subsequent RNA profiling was performed using Mouse Genome 430 2.0 array (Affymetrix). From the numerous genes found to be differentially regulated between WT and IFNyR-/- T cells we sought to identify, for further analysis, those genes meeting the following criteria: (i.) genes with known human orthologs, (ii.) genes exhibiting the most pronounced differential expression between WT and IFNγR-/- T cells, (iii.) genes for which knockout or transgenic mice are available and (iv) genes with products that can be targeted by small molecule inhibitors. Two candidates were identified by applying all mentioned criteria: S100A8 and S100A9. Expression levels of S100A8 and S100A9 were 22 and 26 fold higher in APC activated IFNγR-/- T cells than WT T cells, respectively, which was also confirmed using qRT-PCR (Figure 1). It has been reported that S100A8 and S100A9, two members of the calgranulin family of proteins, form a heterodimer complex and may modulate/mitigate several inflammatory diseases by potentially binding NFKB intracellularly and inflammatory cytokines such as IL-6 and TNF when excreted extracellularly.1,2 Overexpression of S100A9 alone is sufficient to upregulate the expression of S100A8 and vice versa.3 In addition, S100A9-/- mice also lack expression of S100A8.4 We hypothesized that S100A8/S100A9 expression in allo-reactive donor T cells functions as a suppressor of GvHD. To test this hypothesis, we performed allo-HSCT with donor T cells isolated from either S100A9 overexpressing transgenic or WT B6 mice transplanted into Balb/c recipients. S100A9 overexpressing donor T cells induced significantly less GvHD than WT T cells. Recipients of S100A9 overexpressing T cells survived significantly longer (p=0.049, n=5), had reduced weight loss and higher percentages of B220+ B cells (indicative of less severe clinical GvHD) than recipients of WT T cells. This suggests that S100A9 might indeed function as a suppressor of GvHD and could account, at least in part, for the diminished GvHD potential of IFNyR-/- T cells. Modulation of the S100A9/A8 complex therefore represents a novel therapeutic target for the treatment of GvHD. Figure 1. The relative expression of S100A8 and S100A9 in allo-activated T Cells determined by qRT-PCR. IFNyR -/- vs. WT APC activated T cells. Figure 1. The relative expression of S100A8 and S100A9 in allo-activated T Cells determined by qRT-PCR. IFNyR -/- vs. WT APC activated T cells. 1. Otsuka K, Terasaki F, Ikemoto M, et al. Suppression of inflammation in rat autoimmune myocarditis by S100A8/A9 through modulation of the proinflammatory cytokine network. Eur J Heart Fail. 2009;11(3):229-237. 2. Ikemoto M, Murayama H, Itoh H, Totani M, Fujita M. Intrinsic function of S100A8/A9 complex as an anti-inflammatory protein in liver injury induced by lipopolysaccharide in rats. Clin Chim Acta. 2007;376(1-2):197-204. 3. Cheng P, Corzo CA, Luetteke N, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med. 2008;205(10):2235-2249. 4.Manitz MP, Horst B, Seeliger S, et al. Loss of S100A9 (MRP14) results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants invitro. Mol Cell Biol. 2003;23(3):1034-1043. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document