scholarly journals CD44-mediated phagocytosis induces inside-out activation of complement receptor-3 in murine macrophages

Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4492-4502 ◽  
Author(s):  
Eric Vachon ◽  
Raiza Martin ◽  
Vivian Kwok ◽  
Vera Cherepanov ◽  
Chung-Wai Chow ◽  
...  

Diverse receptors, including Fcγ receptors and β2 integrins (complement receptor-3 [CR3], CD11b/CD18), have been implicated in phagocytosis, but their distinct roles and interactions with other receptors in particle engulfment are not well defined. CD44, a transmembrane adhesion molecule involved in binding and metabolism of hyaluronan, may have additional functions in regulation of inflammation and phagocytosis. We have recently reported that CD44 is a fully competent phagocytic receptor that is able to trigger ingestion of large particles by macrophages. Here, we investigated the role of coreceptors and intracellular signaling pathways in modulation of CD44-mediated phagocytosis. Using biotinylated erythrocytes coated with specific antibodies (anti-CD44–coated erythrocytes [Ebabs]) as the phagocytic prey, we determined that CD44-mediated phagocytosis is reduced by 45% by a blocking CD11b antibody. Further, CD44-mediated phagocytosis was substantially (42%) reduced in CD18-null mice. Immunofluorescence microscopy revealed that CD11b is recruited to the phagocytic cup. The mechanism of integrin activation and mobilization involved activation of the GTPase Rap1. CD44-mediated phagocytosis was also sensitive to the extracellular concentration of the divalent cation Mg2+ but not Ca2+. In addition, buffering of intracellular Ca2+ did not affect CD44-mediated phagocytosis. Taken together, these data suggest that CD44 stimulation induces inside-out activation of CR3 through the GTPase Rap1.

Blood ◽  
2006 ◽  
Vol 107 (2) ◽  
pp. 835-840 ◽  
Author(s):  
Daniel E. Cramer ◽  
Daniel J. Allendorf ◽  
Jarek T. Baran ◽  
Richard Hansen ◽  
Jose Marroquin ◽  
...  

AbstractMyelotoxic injury in the bone marrow (BM) as a consequence of total body irradiation (TBI) or granulocyte colony-stimulating factor (G-CSF) mobilization results in the deposition of iC3b on BM stroma (stroma-iC3b). In the present study, we have examined how stroma-iC3b interacts with hematopoietic progenitor cells (HPCs) and the role of complement (C) and complement receptor 3 (CR3) in BM injury/repair. We demonstrate here that stroma-iC3b tethers HPCs via the inserted (I) domain of HPC complement receptor 3 (CR3, CD11b/CD18, Mac-1). Following irradiation, stroma-iC3b was observed in the presence of purified IgM and normal mouse serum (NMS), but not serum from Rag-2-/- mice, implicating a role for antibody (Ab) and the classic pathway of C activation. Furthermore, a novel role for soluble yeast β-glucan, a ligand for the CR3 lectin-like domain (LLD), in the priming of CR3+ HPC is suggested. Soluble yeast β-glucan could enhance the proliferation of tethered HPCs, promote leukocyte recovery following sublethal irradiation, and increase the survival of lethally irradiated animals following allogeneic HPC transplantation in a CR3-dependent manner. Taken together, these observations suggest a novel role for C, CR3, and β-glucan in the restoration of hematopoiesis following injury. (Blood. 2006;107:835-840)


Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5170-5180 ◽  
Author(s):  
Federica Moalli ◽  
Andrea Doni ◽  
Livija Deban ◽  
Teresa Zelante ◽  
Silvia Zagarella ◽  
...  

AbstractPentraxin 3 (PTX3) is a soluble pattern recognition molecule playing a nonredundant role in resistance against Aspergillus fumigatus. The present study was designed to investigate the molecular pathways involved in the opsonic activity of PTX3. The PTX3 N-terminal domain was responsible for conidia recognition, but the full-length molecule was necessary for opsonic activity. The PTX3-dependent pathway of enhanced neutrophil phagocytic activity involved complement activation via the alternative pathway; Fcγ receptor (FcγR) IIA/CD32 recognition of PTX3-sensitized conidia and complement receptor 3 (CR3) activation; and CR3 and CD32 localization to the phagocytic cup. Gene targeted mice (ptx3, FcR common γ chain, C3, C1q) validated the in vivo relevance of the pathway. In particular, the protective activity of exogenous PTX3 against A fumigatus was abolished in FcR common γ chain-deficient mice. Thus, the opsonic and antifungal activity of PTX3 is at the crossroad between complement, complement receptor 3-, and FcγR-mediated recognition. Because short pentraxins (eg, C-reactive protein) interact with complement and FcγR, the present results may have general significance for the mode of action of these components of the humoral arm of innate immunity.


Endocrinology ◽  
2014 ◽  
Vol 155 (1) ◽  
pp. 98-107 ◽  
Author(s):  
Bharath K. Mani ◽  
Jen-Chieh Chuang ◽  
Lilja Kjalarsdottir ◽  
Ichiro Sakata ◽  
Angela K. Walker ◽  
...  

Ghrelin is an orexigenic hormone secreted principally from a distinct population of gastric endocrine cells. Molecular mechanisms regulating ghrelin secretion are mostly unknown. Recently, norepinephrine (NE) was shown to enhance ghrelin release by binding to β1-adrenergic receptors on ghrelin cells. Here, we use an immortalized stomach-derived ghrelin cell line to further characterize the intracellular signaling pathways involved in NE-induced ghrelin secretion, with a focus on the roles of Ca2+ and cAMP. Several voltage-gated Ca2+ channel (VGCC) family members were found by quantitative PCR to be expressed by ghrelin cells. Nifedipine, a selective L-type VGCC blocker, suppressed both basal and NE-stimulated ghrelin secretion. NE induced elevation of cytosolic Ca2+ levels both in the presence and absence of extracellular Ca2+. Ca2+-sensing synaptotagmins Syt7 and Syt9 were also highly expressed in ghrelin cell lines, suggesting that they too help mediate ghrelin secretion. Raising cAMP with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated ghrelin secretion, although such a cAMP-mediated effect likely does not involve protein kinase A, given the absence of a modulatory response to a highly selective protein kinase A inhibitor. However, pharmacological inhibition of another target of cAMP, exchange protein-activated by cAMP (EPAC), did attenuate both basal and NE-induced ghrelin secretion, whereas an EPAC agonist enhanced basal ghrelin secretion. We conclude that constitutive ghrelin secretion is primarily regulated by Ca2+ influx through L-type VGCCs and that NE stimulates ghrelin secretion predominantly through release of intracellular Ca2+. Furthermore, cAMP and its downstream activation of EPAC are required for the normal ghrelin secretory response to NE.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1744-1744
Author(s):  
Vineet Awasthi ◽  
Samir Mandal ◽  
Veena Papanna ◽  
L. Vijaya Mohan Rao ◽  
Usha Pendurthi

Abstract Tissue factor (TF) is a cellular receptor for clotting factor VIIa (VIIa) and the formation of TF-VIIa complexes on cell surfaces not only triggers the coagulation cascade but also transduces cell signaling via activation of protease-activated receptors (PARs), particularly PAR2. Although a number of recent studies provide valuable information on intracellular signaling pathways that are activated by TF-VIIa, the role of various cell surface components in mediating the interaction of TF-VIIa with PARs, and the subsequent signal transmittance are unknown. Unlike thrombin and trypsin, VIIa has to bind to its cellular receptor (TF) to activate PARs. The inability of TF-VIIa to effectively activate Ca2+ signaling and failure to desensitize the signaling to subsequently added trypsin suggest that the TF-VIIa is a poor activator of PAR2. Despite this, a number of studies have shown that VIIa is as effective as trypsin or PAR2 agonist peptide in activating intracellular signaling pathways and gene expression in cells expressing TF. Although the potential mechanism for this phenomenon is unknown, compartmentalization of TF, PAR2, and G-proteins in plasma membrane microdomains could facilitate a robust TF-VIIa-induced PAR2-mediated cell signaling. Although certain G-protein coupled receptors and G-proteins are known to be segregated into specialized membrane microdomains, lipid rafts and caveolae, little is known whether PARs are segregated into lipid rafts and caveolae, and how such segregation might influence their activation by TF-VIIa and the subsequent coupling to G-proteins. To obtain answers to some of these questions, in the present study, we have characterized TF and PAR2 distribution on tumor cell surfaces and investigated the role of lipid raft/caveolae in modulating the TF-VIIa signaling in tumor cells. Detergent extraction of cells followed by fractionation on sucrose gradient centrifugation showed that TF and PAR2 were distributed both in lipid rafts (low-density) and soluble fractions. Immunofluorescence confocal microscopy revealed that TF at the cell surface is localized in discrete plasma membrane microdomains, and colocalized with caveolin-1, a structural integral protein of caveolae, indicating caveolar localization of TF. Similar to TF, PAR2 also displayed significant punctuate staining and colocalization with caveloin-1. Further, a substantial fraction of TF and PAR2 was colocalized in caveolae. Disruption of lipid rafts/caveolae by ß-methyl cyclodextrin or filipin treatments reduced TF association with PAR2 in lipid rafts and caveolar fractions and impaired the TF-VIIa-induced cell signaling (PI hydrolysis and IL-8 gene expression). Additional studies showed that both mßCD and filipin treatments specifically impaired TF-VIIa cleavage of PAR2 and but had no significant effect on trypsin cleavage of PAR2. Disruption of caveolae with caveolin-1 silencing had no effect on the TF-VIIa coagulant activity but inhibited the TF-VIIa-induced cell signaling. In summary, the data presented herein demonstrate that TF localization at the cell membrane could influence different functions of TF differently. While caveolar localization of TF had no influence in propagating the procoagulant activity of TF, it is essential in supporting the TF-VIIa-induced cell signaling.


2002 ◽  
Vol 196 (3) ◽  
pp. 407-412 ◽  
Author(s):  
Gordon D. Brown ◽  
Philip R. Taylor ◽  
Delyth M. Reid ◽  
Janet A. Willment ◽  
David L. Williams ◽  
...  

Zymosan is a β-glucan– and mannan-rich particle that is widely used as a cellular activator for examining the numerous responses effected by phagocytes. The macrophage mannose receptor (MR) and complement receptor 3 (CR3) have historically been considered the major macrophage lectins involved in the nonopsonic recognition of these yeast-derived particles. Using specific carbohydrate inhibitors, we show that a β-glucan receptor, but not the MR, is a predominant receptor involved in this process. Furthermore, nonopsonic zymosan binding was unaffected by genetic CD11b deficiency or a blocking monoclonal antibody (mAb) against CR3, demonstrating that CR3 was not the β-glucan receptor mediating this activity. To address the role of the recently described β-glucan receptor, Dectin-1, we generated a novel anti–Dectin-1 mAb, 2A11. Using this mAb, we show here that Dectin-1 was almost exclusively responsible for the β-glucan–dependent, nonopsonic recognition of zymosan by primary macro-phages. These findings define Dectin-1 as the leukocyte β-glucan receptor, first described over 50 years ago, and resolves the long-standing controversy regarding the identity of this important molecule. Furthermore, these results identify Dectin-1 as a new target for examining the immunomodulatory properties of β-glucans for therapeutic drug design.


2017 ◽  
Vol 59 (4) ◽  
pp. R141-R154 ◽  
Author(s):  
Marika H Tesselaar ◽  
Johannes W Smit ◽  
James Nagarajah ◽  
Romana T Netea-Maier ◽  
Theo S Plantinga

While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations inBRAF,TERTpromoter andTP53are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.


2013 ◽  
Vol 93 (6) ◽  
pp. 921-932 ◽  
Author(s):  
Rachel Polando ◽  
Upasna Gaur Dixit ◽  
Cristina R. Carter ◽  
Blake Jones ◽  
James P. Whitcomb ◽  
...  

2003 ◽  
Vol 35 (3) ◽  
pp. 125-131 ◽  
Author(s):  
Marco Antonio Velasco-Velázquez ◽  
Diana Barrera ◽  
Aliesha González-Arenas ◽  
Carlos Rosales ◽  
José Agramonte-Hevia

Sign in / Sign up

Export Citation Format

Share Document