MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4

Blood ◽  
2008 ◽  
Vol 111 (2) ◽  
pp. 588-595 ◽  
Author(s):  
Qiang Wang ◽  
Zheng Huang ◽  
Huiling Xue ◽  
Chengcheng Jin ◽  
Xiu-Li Ju ◽  
...  

MicroRNAs have been suggested to modulate a variety of cellular events. Here we report that miR-24 regulates erythroid differentiation by influencing the expression of human activin type I receptor ALK4 (hALK4). Ectopic expression of miR-24 reduces the mRNA and protein levels of hALK4 by targeting the 3′-untranslated region of hALK4 mRNA and interferes with activin-induced Smad2 phosphorylation and reporter expression. Furthermore, miR-24 represses the activin-mediated accumulation of hemoglobin, an erythroid differentiation marker, in erythroleukemic K562 cells and decreases erythroid colony-forming and burst-forming units of CD34+ hematopoietic progenitor cells. ALK4 expression is inversely correlated with miR-24 expression during the early stages of erythroid differentiation, and the forced expression of miR-24 leads to a delay of activin-induced maturation of hematopoietic progenitor cells in liquid culture. Thus, our findings define a regulation mode of miR-24 on erythropoiesis by impeding ALK4 expression.

2006 ◽  
Vol 203 (1) ◽  
pp. 227-238 ◽  
Author(s):  
Nobuyuki Onai ◽  
Aya Obata-Onai ◽  
Roxane Tussiwand ◽  
Antonio Lanzavecchia ◽  
Markus G. Manz

Flt3 ligand (Flt3L) is a nonredundant cytokine in type I interferon–producing cell (IPC) and dendritic cell (DC) development, and IPC and DC differentiation potential is confined to Flt3+ hematopoietic progenitor cells. Here, we show that overexpression of human Flt3 in Flt3− (Flt3−Lin−IL-7Rα−Thy1.1−c-Kit+) and Flt3+ (Flt3+Lin−IL-7Rα−Thy1.1−c-Kit+) hematopoietic progenitors rescues and enhances their IPC and DC differentiation potential, respectively. In defined hematopoietic cell populations, such as Flt3− megakaryocyte/erythrocyte-restricted progenitors (MEPs), enforced Flt3 signaling induces transcription of IPC, DC, and granulocyte/macrophage (GM) development–affiliated genes, including STAT3, PU.1, and G-/M-/GM-CSFR, and activates differentiation capacities to these lineages. Moreover, ectopic expression of Flt3 downstream transcription factors STAT3 or PU.1 in Flt3− MEPs evokes Flt3 receptor expression and instructs differentiation into IPCs, DCs, and myelomonocytic cells, whereas GATA-1 expression and consecutive megakaryocyte/erythrocyte development is suppressed. Based on these data, we propose a demand-regulated, cytokine-driven DC and IPC regeneration model, in which high Flt3L levels initiate a self-sustaining, Flt3-STAT3– and Flt3-PU.1–mediated IPC and DC differentiation program in Flt3+ hematopoietic progenitor cells.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Jason Jacob ◽  
Jeffery S. Haug ◽  
Sofia Raptis ◽  
Daniel C. Link

Abstract Granulocyte colony-stimulating factor (G-CSF) is the principal growth factor regulating the production of neutrophils, yet its role in lineage commitment and terminal differentiation of hematopoietic progenitor cells is controversial. In this study, we describe a system to study the role of G-CSF receptor (G-CSFR) signals in granulocytic differentiation using retroviral transduction of G-CSFR–deficient, primary hematopoietic progenitor cells. We show that ectopic expression of wild-type G-CSFR in hematopoietic progenitor cells supports G-CSF–dependent differentiation of these cells into mature granulocytes, macrophages, megakaryocytes, and erythroid cells. Furthermore, we show that two mutant G-CSFR proteins, a truncation mutant that deletes the carboxy-terminal 96 amino acids and a chimeric receptor containing the extracellular and transmembrane domains of the G-CSFR fused to the cytoplasmic domain of the erythropoietin receptor, are able to support the production of morphologically mature, chloroacetate esterase-positive, Gr-1/Mac-1–positive neutrophils in response to G-CSF. These results demonstrate that ectopic expression of the G-CSFR in hematopoietic progenitor cells allows for multilineage differentiation and suggest that unique signals generated by the cytoplasmic domain of the G-CSFR are not required for G-CSF–dependent granulocytic differentiation.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1840-1849 ◽  
Author(s):  
Kandasamy Krishnaraju ◽  
Barbara Hoffman ◽  
Dan A. Liebermann

Abstract Homeobox proteins comprise a major class of transcription factors, which have been implicated in normal hematopoiesis and leukemogenesis. Notable in this context is the homeobox gene HOX-B8 (formerly known as HOX-2.4), which was shown to cooperate with hematokines to induce leukemia, and to enhance self-renewal of immature myeloid progenitors when expressed alone. How HOX-B8 may affect lineage specific development of hematopoietic progenitor cells is unknown. Here it is shown that ectopic expression of HOX-B8 specifically inhibited dimethyl sulfoxide (DMSO)-induced granulocytic differentiation of autonomously proliferating HL-60 myeloid progenitor cells. HOX-B8 also inhibited the granulocyte colony-stimulating factor (G-CSF )–induced granulocytic developmental program of factor dependent 32Dcl3 hematopoietic progenitors, including survival, proliferation, and differentiation, as evident by rapid apoptosis of the cells following removal of interleukin-3 (IL-3) and addition of G-CSF. In sharp contrast, HOX-B8 had no effect on macrophage differentiation of M1 and HL-60 cells induced by IL-6 and phorbol-12-myristate-13-acetate, respectively. Moreover, HOX-B8 expression endowed the 32Dcl3 cells with the ability to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF ) for terminal differentiation exclusively along the macrophage lineage; this effect was at least partially mediated via expression of the zinc finger transcription factor Egr-1. Thus, ectopic expression of HOX-B8 in hematopoietic progenitor cells appears to differentially affect lineage specific development, negatively regulating granulocyte development and positively regulating macrophage development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1285-1285
Author(s):  
Jianhua Wang ◽  
Russell Taichman ◽  
Younghun Jung ◽  
Aaron Havens ◽  
Yanxi Sun ◽  
...  

Abstract Osteoblasts constitute part of the stromal cell support system in marrow for hematopoiesis, however little is known as to how they interact with hematopoietic stem cells (HSCs). In vitro studies have demonstrated that the survival of HSCs in co-culture with osteoblasts requires intimate cell-to-cell contact. This suggests that the osteoblast-derived factor(s) that supports stem cell activities are either produced in very small quantities, are rapidly turned over, may be membrane-anchored and/or requires the engagement of cell-cell adhesion molecules yet to be determined. In the present report we found that survival of hematopoietic progenitor cells on osteoblasts is dependent upon the engagement of VLA-4 (α4β1) and VLA-5 (α5ß1) receptors using function blocking antibodies. Surprisingly, cell-to-cell contact is not absolutely required to support progenitor activity, but does not require receptor-ligand engagement of the VLA-4 and LFA-1 complexes, which can in part be replaced through the use of recombinant ligands (fibronectin, ICAM-1, VCAM-1). Moreover conditioned once these receptors were engaged, medium derived from HSCs grown on osteoblasts ligands supported significantly greater hematopoietic progenitors in vitro than did osteoblast-conditioned or HSC-conditioned medium alone. As an initial attempt to identify the activity we examined which genes are activated following the establishment of osteoblast-CD34+ cell co-cultures nine separate co-cultures were establsihed and the RNA was pooled and analyized on Affymetrix HG-U133A chips at 24 hours. Initially our analysis revealed that there were 259 genes that are up regulated at 24 hours, and 14 genes that are down regulated. Inspection revealed that 30 of these signals were repeated at least once suggesting that 206 genuine gene candidates were differentially expressed resulting from the co-culture. A significant proportion of the differentially expressed cDNAs represent intracellular signaling ligands 16.5% (n=34) and cell surface receptors 13.5% (n=28). Molecules associated with assembly of the extra cellular matrix or its degradation comprised 7.2% (n=15) of the differentially up regulated molecules. Molecules associated with intracellular signaling, novel sequences and intermediate metabolism comprised the majority of the remaining activities. Amoung the candidates of extra cellular signaling molecules, we noted that IL-6, LIF, MIP-1alpha and SDF-1 were identified in the microarray analysis. This observation was most gratifying as we had previously reported that IL-6, LIF and MIP-1α activities are critical components of an HSC-osteoblast microenvironment. Other notable cytokine messages for BMP-2, CCL7, FGF2b, GRO1α, GRO3, IGF1, IL1ß, IL-8, IL-11, LIF, PDGF-D and the receptors for CCL7 (CCR7). Elevations in mRNA for fibronectin, lysine hydroxylase-like proteins, laminin and Type I collagen suggest that the presence of hematopoietic cells also induces osteoblastic activities. While the identity of those molecules present in the co-cultured medium remain to be identified, the data suggests that hematopoietic cells cooperate with osteoblasts to assemble the various marrow microenvironments by directing the synthesis of osteoblast-derived cytokines to improve HSC survival.


2009 ◽  
Vol 18 (8) ◽  
pp. 887-897 ◽  
Author(s):  
Xiaosong Huang ◽  
L. Jeanne Pierce ◽  
Paul A. Cobine ◽  
Dennis R. Winge ◽  
Gerald J. Spangrude

Copper chelation has been shown to favor the expansion of human hematopoietic stem/progenitor cells in vitro. To further understand the effects of copper modulation on defined subsets of stem cells versus progenitor cells, we extended the studies in a mouse system. We isolated mouse hematopoietic stem cells (HSCs) or hematopoietic progenitor cells (HPCs) and cultured them with or without the copper chelator tetraethylenepentamine (TEPA) or CuCl2. Cytokine-stimulated HPC cultures treated with TEPA for 7 days generated about two to three times more total and erythroid colony-forming cells (CFCs) compared to control cultures. In contrast, CuCl2 treatment decreased the CFC numbers. Similar results were seen with HSC after 14, but not 7, days of culture. Transplant studies showed that HPCs cultured for 7 days in TEPA had about twofold higher short-term erythroid repopulation potential compared to control cultures, while CuCl2 decreased the erythroid potential of cultured HPCs compared to control cultures. HSCs cultured with TEPA for 7 days did not exhibit significantly higher repopulation potential in either leukocyte or erythrocyte lineages compared to control cultures in short-term or long-term assays. Based on JC-1 staining, the mitochondrial membrane potential of HPCs cultured with TEPA was lower relative to control cultures. Our data suggest that decreasing the cellular copper content with TEPA results in preferential expansion or maintenance of HPC that are biased for erythroid differentiation in vivo, but does not enhance the maintenance of HSC activity in culture.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3856-3856
Author(s):  
Vladan P Cokic ◽  
Pascal Mossuz ◽  
Jing Han ◽  
Milos Diklic ◽  
Mirela Budec ◽  
...  

Abstract Abstract 3856 The gene and protein expression profiles in myeloproliferative neoplasms (MPN) may reveal gene markers of a potential clinical function in diagnosis and prediction of response to therapy. Using cDNA microarray analysis, involving 25,100 unique genes, we studied the gene expression profile of hematopoietic CD34+ progenitor cells and granulocytes obtained from peripheral blood of patients with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) compared with healthy individuals. The microarray analyses of the hematopoietic progenitor cells and granulocytes have been performed on 9 patients with ET, 8 patients with PV, 4 patients with PMF and 8 healthy donors. The granulocytes for proteomic studies have been pooled in 4 groups: PV with JAK2 mutant allele burden above 80%, ET with JAK2 mutation, PMF with JAK2 mutation and ET/PMF with no JAK2 mutation. We focused our analysis to hematopoiesis related genes. In the collected patient samples, the increased number of granulocytes allowed for further validation by protein analysis of microarray gene expression suggested from less differentiated hematopoietic progenitor cells. Folate receptor 3 (FOLR3), constitutively secreted in hematopoietic tissues, has increased protein levels in granulocytes of JAK2V617F homozygous PV as well as mRNA levels in hematopoietic progenitor cells of patients with PV. The enzyme matrix metallopeptidase 9 (MMP9), involved in IL-8-induced mobilization of hematopoietic progenitor cells from bone marrow, also has significantly increased protein levels in granulocytes of PV patients with increased JAK2 mutation allele burden. In addition, Ras-related C3 botulinum toxin substrate 2 (RAC2) protein level, essential for erythropoiesis, is increased specifically in PV granulocytes with JAK2V617F homozygosity. Moreover, RAC2 gene expression is significantly increased in hematopoietic progenitor cells of PV, with no changes in its granulocytes. Although, like PV, RAC2 gene expression was also increased in ET and PMF hematopoietic progenitor cells compared to healthy individuals, in granulocytes of ET and PMF patients with JAK2 mutation RAC2 protein levels were decreased, contrary to the elevated level in PV. Furthermore, inconsistent with JAK2V617F homozygous PV patients, granulocytes of ET and PMF with the JAK2 mutation exhibit FOLR3 protein at levels lower than the ET and PMF with no JAK2 mutation. Investigating the extent to which these genes participate in the complex molecular and cellular mechanisms of MPN will likely lead to new insights of malignancy development. In conclusion, molecular profiling of hematopoietic progenitor cells and granulocytes of MPN patients revealed gene expression patterns that are beyond their recognized function in disease pathogenesis and can be related to patients' clinical characteristics with imminent prognostic relevance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Jason Jacob ◽  
Jeffery S. Haug ◽  
Sofia Raptis ◽  
Daniel C. Link

Granulocyte colony-stimulating factor (G-CSF) is the principal growth factor regulating the production of neutrophils, yet its role in lineage commitment and terminal differentiation of hematopoietic progenitor cells is controversial. In this study, we describe a system to study the role of G-CSF receptor (G-CSFR) signals in granulocytic differentiation using retroviral transduction of G-CSFR–deficient, primary hematopoietic progenitor cells. We show that ectopic expression of wild-type G-CSFR in hematopoietic progenitor cells supports G-CSF–dependent differentiation of these cells into mature granulocytes, macrophages, megakaryocytes, and erythroid cells. Furthermore, we show that two mutant G-CSFR proteins, a truncation mutant that deletes the carboxy-terminal 96 amino acids and a chimeric receptor containing the extracellular and transmembrane domains of the G-CSFR fused to the cytoplasmic domain of the erythropoietin receptor, are able to support the production of morphologically mature, chloroacetate esterase-positive, Gr-1/Mac-1–positive neutrophils in response to G-CSF. These results demonstrate that ectopic expression of the G-CSFR in hematopoietic progenitor cells allows for multilineage differentiation and suggest that unique signals generated by the cytoplasmic domain of the G-CSFR are not required for G-CSF–dependent granulocytic differentiation.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Shasha Wang ◽  
Chunyan Chen ◽  
Xiao Wu ◽  
Qunye Zhang ◽  
...  

Arsenic trioxide exhibits therapeutic effects on certain blood malignancies, at least partly by modulating cell differentiation. Previousin vitrostudies in human hematopoietic progenitor cells have suggested that arsenic may inhibit erythroid differentiation. However, these effects were all observed in the presence of arsenic compounds, while the concomitant cytostatic and cytotoxic actions of arsenic might mask a prodifferentiating activity. To eliminate the potential impacts of the cytostatic and cytotoxic actions of arsenic, we adopted a novel protocol by pretreating human bone marrow CD34+ cells with a low, noncytotoxic concentration of arsenic trioxide, followed by assaying the colony forming activities in the absence of the arsenic compound. Bone marrow specimens were obtained from chronic myeloid leukemia patients who achieved complete cytogenetic remission. CD34+ cells were isolated by magnetic-activated cell sorting. We discovered that arsenic trioxide enhanced the erythroid colony forming activity, which was accompanied by a decrease in the granulomonocytic differentiation function. Moreover, in erythroleukemic K562 cells, we showed that arsenic trioxide inhibited erythrocyte maturation, suggesting that arsenic might have biphasic effects on erythropoiesis. In conclusion, our data provided the first evidence showing that arsenic trioxide could prime human hematopoietic progenitor cells for enhanced erythroid differentiation.


Sign in / Sign up

Export Citation Format

Share Document