scholarly journals The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice

Blood ◽  
2009 ◽  
Vol 113 (13) ◽  
pp. 2914-2923 ◽  
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Stefan Butz ◽  
Koichi Kokame ◽  
Paul W. Kincade ◽  
...  

Abstract Although recent advances have enabled hematopoietic stem cells (HSCs) to be enriched to near purity, more information about their characteristics will improve our understanding of their development and stage-related functions. Here, using microarray technology, we identified endothelial cell-selective adhesion molecule (ESAM) as a novel marker for murine HSCs in fetal liver. Esam was expressed at high levels within a Rag1− c-kitHi Sca1+ HSC-enriched fraction, but sharply down-regulated with activation of the Rag1 locus, a valid marker for the most primitive lymphoid progenitors in E14.5 liver. The HSC-enriched fraction could be subdivided into 2 on the basis of ESAM levels. Among endothelial antigens on hematopoietic progenitors, ESAM expression showed intimate correlation with HSC activity. The ESAMHi population was highly enriched for multipotent myeloid-erythroid progenitors and primitive progenitors with lymphopoietic activity, and exclusively reconstituted long-term lymphohematopoiesis in lethally irradiated recipients. Tie2+ c-kit+ lymphohematopoietic cells in the E9.5–10.5 aorta-gonad-mesonephros region also expressed high levels of ESAM. Furthermore, ESAM was detected on primitive hematopoietic progenitors in adult bone marrow. Interestingly, ESAM expression in the HSC-enriched fraction was up-regulated in aged mice. We conclude that ESAM marks HSC in murine fetal liver and will facilitate studies of hematopoiesis throughout life.

Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1283-1290 ◽  
Author(s):  
Robert C. Fisher ◽  
Joshua D. Lovelock ◽  
Edward W. Scott

We have previously demonstrated that PU.1 is required for the production of lymphoid and myeloid, but not of erythroid progenitors in the fetal liver. In this study, competitive reconstitution assays show that E14.5 PU.1−/− hematopoietic progenitors (HPC) fail to sustain definitive/adult erythropoiesis or to contribute to the lymphoid and myeloid lineages. PU.1−/−HPC are unable to respond synergistically to erythropoietin plus stem cell factor and have reduced expression of c-kit, which may explain the erythroid defect. Fluorescently labeled,PU.1−/−, AA4.1+, fetal liver HPC were transferred into irradiated recipients, where they demonstrated a severely impaired ability to home to and colonize the bone marrow.PU.1−/− HPC were found to lack integrins 4 (VLA-4/CD49d), 5 (VLA-5/CD49e), and CD11b (M). Collectively, this study has shown that PU.1 plays an important role in controlling migration of hematopoietic progenitors to the bone marrow and the establishment of long-term multilineage hematopoiesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4159-4159
Author(s):  
Francesco Cerisoli ◽  
Letizia Cassinelli ◽  
Giuseppe Lamorte ◽  
Stefania Citterio ◽  
Maria Cristina Magli ◽  
...  

Abstract The hierarchy of transcription factors and signalling molecules involved in hematopoietic development has been dissected through transgenic and knock-out experiments, leading to the identification of several important genes. Less well known are the networks of transcription factors which regulate the activities of the main genes identified. Kit, encoding the membrane receptor of Stem Cell Factor (SCF), is a critical molecule for Hematopoietic Stem Cells (HSC) and some early progenitors, in which it is expressed. In a previous work (Cairns et al., Blood102, 3954;2003), we used mouse lines expressing transgenic Green Fluorescent Protein (GFP) under the control of Kit regulatory elements to investigate Kit regulation in different cell systems such as the hematopoietic and germ cell lineages. We generated a mouse Kit transgene capable of efficiently driving GFP expression both in PGC and in hematopoietic progenitors, such as CFU-Mix and BFU-Es. In the present work, we evaluated the functional efficiency of the same transgene also in HSC residing in the Fetal Liver (FL) and adult Bone Marrow (BM). To test if the construct is expressed in HSC, we transplanted FL or BM cells, fractionated on the basis of Kit expression and the level of GFP fluorescence, into irradiated non-transgenic mice. At the same time, the proportion of hematopoietic progenitors in the various fractions was assessed by in vitro colony assays. Following long term hematological reconstitution, the contribution of transplanted GFP cells was evaluated by the proportion of fluorescent mixed colonies in colture as well as by the proportion of fluorescent bone marrow cells, as assessed by FACS analysis. Long term reconstitution was confirmed by secondary transplants. Results show that the repopulating cells derived from fetal liver and adult bone marrow reside in a fraction of Kit+ cells with intermediate GFP fluorescence level, whereas CFU-Mix and BFU-E are in the highly GFP fluorescent fraction. Furthermore, flow cytometry of fetal liver shows that the intermediate fluorescence fraction is highly enriched in Kit+, Sca1+, CD11b+ cells (the expected HSC immunophenotype), whereas the high fluorescence fraction contains mainly Kit+, Sca1−, CD11b− cells. Similarly, the HSC-enriched tip of the Side Population (SP) of adult bone marrow is highly enriched in Kit+, Sca1+ cells of intermediate GFP fluorescence, whereas the upper part of the SP is enriched in Kit+, Sca1− cells of high GFP fluorescence. Our results indicate that the transgene (and possibly the endogenous Kit gene as well) might be transcribed at relatively low levels in HSC versus other progenitors. Noteworthy, the same transgene is also highly expressed in PGC and in Cardiac Stem Cells (CSC) (Messina et al., Circ. Res. 95,911;2004) and in blastocyst inner mass grown in vitro, indicating that the most 5′ part of the intron (4kb), added to the otherwise inactive promoter might include sites regulating Kit expression in multiple stem cell types.


Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1283-1290 ◽  
Author(s):  
Robert C. Fisher ◽  
Joshua D. Lovelock ◽  
Edward W. Scott

Abstract We have previously demonstrated that PU.1 is required for the production of lymphoid and myeloid, but not of erythroid progenitors in the fetal liver. In this study, competitive reconstitution assays show that E14.5 PU.1−/− hematopoietic progenitors (HPC) fail to sustain definitive/adult erythropoiesis or to contribute to the lymphoid and myeloid lineages. PU.1−/−HPC are unable to respond synergistically to erythropoietin plus stem cell factor and have reduced expression of c-kit, which may explain the erythroid defect. Fluorescently labeled,PU.1−/−, AA4.1+, fetal liver HPC were transferred into irradiated recipients, where they demonstrated a severely impaired ability to home to and colonize the bone marrow.PU.1−/− HPC were found to lack integrins 4 (VLA-4/CD49d), 5 (VLA-5/CD49e), and CD11b (M). Collectively, this study has shown that PU.1 plays an important role in controlling migration of hematopoietic progenitors to the bone marrow and the establishment of long-term multilineage hematopoiesis.


1984 ◽  
Vol 159 (3) ◽  
pp. 731-745 ◽  
Author(s):  
R A Fleischman ◽  
B Mintz

Bone marrow of normal adult mice was found, after transplacental inoculation, to contain cells still able to seed the livers of early fetuses. The recipients' own hematopoietic stem cells, with a W-mutant defect, were at a selective disadvantage. Progression of donor strain cells to the bone marrow, long-term self-renewal, and differentiation into myeloid and lymphoid derivatives was consistent with the engraftment of totipotent hematopoietic stem cells (THSC) comparable to precursors previously identified (4) in normal fetal liver. More limited stem cells, specific for the myeloid or lymphoid cell lineages, were not detected in adult bone marrow. The bone marrow THSC, however, had a generally lower capacity for self-renewal than did fetal liver THSC. They had also embarked upon irreversible changes in gene expression, including partial histocompatibility restriction. While completely allogeneic fetal liver THSC were readily accepted by fetuses, H-2 incompatibility only occasionally resulted in engraftment of adult bone marrow cells and, in these cases, was often associated with sudden death at 3-5 mo. On the other hand, H-2 compatibility, even with histocompatibility differences at other loci, was sufficient to ensure long-term success as often as with fetal liver THSC.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4057-4067 ◽  
Author(s):  
TD Randall ◽  
FE Lund ◽  
MC Howard ◽  
IL Weissman

Using a monoclonal antibody to murine CD38, we showed that a population of adult bone marrow cells that expressed the markers Sca-1 and c-kit but lacked the lineage markers Mac-1, GR-1, B220, IgM, CD3, CD4, CD8 and CD5 could be subdivided by the expression of CD38. We showed that CD38high c-kit+ Sca-1+, linlow/-cells sorted from adult bone marrow cultured with interleukin-3 (IL-3), IL-6, and kit-L produced much larger colonies in liquid culture at a greater frequency than their CD38low/- counterparts. In addition, we found that CD36low/ - cells contained most of the day-12 colony-forming units-spleen (CFU-S) but were not long-term reconstituting cells, whereas the population that expressed higher levels of CD38 contained few, but significant, day-12 CFU-S and virtually all the long-term reconstituting stem cells. Interestingly, the CD38high Sca-1+ c-kit+ linlow/- cells isolated from day-E14.5 fetal liver were also found to be long-term reconstituting stem cells. This is in striking contrast to human hematopoietic progenitors in which the most primitive hematopoietic cells from fetal tissues lack the expression of CD38. Furthermore, because antibodies to CD38 could functionally replace antibodies to Thy-1.1 in a stem cell purification procedure, the use of anti-CD38 may be more generally applicable to the purification of hematopoietic stem cells from mouse strains that do not express the Thy-1.1 allele.


Blood ◽  
2005 ◽  
Vol 105 (11) ◽  
pp. 4170-4178 ◽  
Author(s):  
Regis Doyonnas ◽  
Julie S. Nielsen ◽  
Shierley Chelliah ◽  
Erin Drew ◽  
Takahiko Hara ◽  
...  

Abstract Podocalyxin/podocalyxin-like protein 1 [PCLP1]/thrombomucin/MEP21 is a CD34-related sialomucin. We have performed a detailed analysis of its expression during murine development and assessed its utility as a marker of hematopoietic stem cells (HSCs) and their more differentiated progeny. We find that podocalyxin is highly expressed by the first primitive hematopoietic progenitors and nucleated red blood cells to form in the embryonic yolk sac. Likewise, podocalyxin is expressed by definitive multilineage hematopoietic progenitors and erythroid precursors in fetal liver. The level of podocalyxin expression gradually declines with further embryo maturation and reaches near-background levels at birth. This is followed by a postnatal burst of expression that correlates with the seeding of new hematopoietic progenitors to the spleen and bone marrow. Shortly thereafter, podocalyxin expression gradually declines, and by 4 weeks postpartum it is restricted to a rare population of Sca-1+, c-kit+, lineage marker- (Lin-) cells in the bone marrow. These rare podocalyxin-expressing cells are capable of serially reconstituting myeloid and lymphoid lineages in lethally irradiated recipients, suggesting they have HSC activity. In summary, we find that podocalyxin is a marker of embryonic HSCs and erythroid cells and of adult HSCs and that it may be a valuable marker for the purification of these cells for transplantation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-10
Author(s):  
Na Yoon Paik ◽  
Grace E. Brown ◽  
Lijian Shao ◽  
Kilian Sottoriva ◽  
James Hyun ◽  
...  

Over 17,000 people require bone marrow transplants annually, based on the US department of Health and Human Services (https://bloodcell.transplant.hrsa.gov). Despite its high therapeutic value in treatment of cancer and autoimmune disorders, transplant of hematopoietic stem cells (HSC) is limited by the lack of sufficient source material due primarily inadequate expansion of functional HSCs ex vivo. Hence, establishing a system to readily expand human umbilical cord blood or bone marrow HSCs in vitro would greatly support clinical efforts, and provide a readily available source of functional stem cells for transplantation. While the bone marrow is the main site of adult hematopoiesis, the fetal liver is the primary organ of hematopoiesis during embryonic development. The fetal liver is the main site of HSC expansion during hematopoietic development, furthermore the adult liver can also become a temporary extra-medullary site of hematopoiesis when the bone marrow is damaged. We have created a bioengineered micropatterned coculture (MPCC) system that consists of primary human hepatocytes (PHHs) islands surrounded and supported by 3T3-J2 mouse embryonic fibroblasts. Long-term establishment of stable PHH-MPCC allows us to culture and expand HSC in serum-free medium supplemented with pro-hematopoietic cytokines such as stem cell factor (SCF) and thrombopoietin (TPO). HSCs cultured on this PHH-MPCC microenvironment for two weeks expanded over 200-fold and formed tight clusters around the periphery of the PHH islands. These expanded cells also retained the expression of progenitor markers of Lin-, Sca1+, cKit+, as well as the long-term HSC phenotypic markers of CD48- and CD150+. In addition to the phenotypic analysis, the expanded cells were transplanted into lethally irradiated recipient mice to determine HSC functionality. The expanded cells from the PHH-MPCC microenvironment were able to provide multi-lineage reconstitution potential in primary and secondary transplants. With our bioengineered MPCC system, we further plan to scale up functional expansion of human HSC ex vivo and to better understand the mechanistic, cell-based niche factors that lead to maintenance and expansion HSC. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 727-727 ◽  
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Stefan Butz ◽  
Koichi Kokame ◽  
Paul W Kincade ◽  
...  

Abstract Hematopoietic stem cells (HSC) are an important cell type with the capacity for self-renewal as well as differentiation into multi-lineage blood cells, maintaining the immune system throughout life. Many studies have attempted to identify unique markers associated with these extremely rare cells. In bone marrow of adult mice, the Lin-c-kitHi Sca1+ CD34−/Lo Thy1.1Lo subset is known to include HSC with long-term repopulating capacity. However, several of these parameters differ between strains of mice, change dramatically during developmental age and/or are expressed on many non-HSC during inflammation. Efficient HSC-based therapies and the emerging field of regenerative medicine will benefit from learning more about what defines stem cells. We previously determined that the most primitive cells with lymphopoietic potential first develop in the paraaortic splanchnopleura/aorta-gonad-mesonephros (AGM) region of embryos using Rag1/GFP knock-in mice. We also reported that Rag1/GFP-c-kitHi Sca1+ cells derived from E14.5 fetal liver (FL) reconstituted lympho-hematopoiesis in lethally irradiated adults, while Rag1/GFPLo c-kitHi Sca1+ cells transiently contributed to T and B lymphopoiesis. To extend those findings, microarray analyses were conducted to search for genes that characterize the initial transition of fetal HSC to primitive lymphopoietic cells. The comparisons involved mRNA from Rag1Lo ckitHi Sca1+, early lymphoid progenitors (ELP) and the HSC-enriched Rag1-ckitHi Sca1+ fraction isolated from E14.5 FL. While genes potentially related to early lymphopoiesis were discovered, our screen also identified genes whose expression seemed to correlate with HSC. Among those, endothelial cell-selective adhesion molecule (ESAM) attracted attention because of its conspicuous expression in the HSC fraction and sharp down-regulation on differentiation to ELP. ESAM was originally identified as an endothelial cell-specific protein, but expression on megakaryocytes and platelets was also reported (J. Biol. Chem., 2001, 2002). Flow cytometry analyses with anti-ESAM antibodies showed that the HSC-enriched Rag1-c-kitHi Sca1+ fraction could be subdivided into two on the basis of ESAM levels. The subpopulation with the high density of ESAM was enriched for c-kitHi Sca1Hi cells, while ones with negative or low levels of ESAM were found in the c-kitHi Sca1Lo subset. Among endothelial-related antigens on HSC, CD34 and CD31/PECAM1 were uniformly present on Rag1-c-kitHi Sca1+ cells in E14.5 FL and neither resolved into ESAMHi and ESAM−/Lo fractions. Expression profiles of Endoglin and Tie2 partially correlate with ESAM. The primitive ESAMHi fraction uniformly expressed high levels of Endoglin and Tie2, but many of the more differentiated ESAM−/Lo cells still retained the two markers. ESAM expression correlated well with HSC activity. Cells in the ESAMHi Rag1-ckitHi Sca1+ fraction formed more and larger colonies than those in the ESAM-/Lo Rag1-ckitHi Sca1+ fraction. Particularly, most CFU-Mix, primitive progenitors with both myeloid and erythroid potential, were found in the ESAMHi fraction. In limiting dilution stromal cell co-cultures, we found that 1 in 2.1 ESAMHi Rag1-ckitHi Sca1+ cells and 1 in 3.5 ESAM−/Lo Rag1-ckitHi Sca1+ cells gave rise to blood cells. However, while only 1 in 125 ESAM−/Lo Rag1-ckitHi Sca1+ cells were lymphopoietic under these conditions, 1 in 8 ESAMHi Rag1-ckitHi Sca1+ cells produced CD19+ B lineage cells. In long-term reconstituting assays, ESAMHi Rag1-ckitHi Sca1+ cells contributed highly to the multi-lineage recovery of lympho-hematopoiesis in recipients, but no chimerism was detected in mice transplanted with ESAM−/Lo Rag1-ckitHi Sca1+ cells. These results suggested that HSC in E14.5 FL are exclusively present in the ESAMHi fraction. Tie2+ c-kit+ lympho-hematopoietic cells of E10.5 AGM also expressed high levels of ESAM. Furthermore, ESAM expression in adult bone marrow was detected on primitive progenitors and cells in the side population within the Lin-ckitHi Sca1+ fraction. Interestingly, the expression was up-regulated in aged mice. Based on these observations, we conclude that ESAM marks HSC throughout life in mice. We also observed that many of human cord blood CD34+ CD38− cells express ESAM, suggesting potential application for the purification of human HSC.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1599-1599
Author(s):  
Kathleen E McGrath ◽  
Jenna M Frame ◽  
Anne Koniski ◽  
Paul D Kingsley ◽  
James Palis

Abstract Abstract 1599 The ontogeny of hematopoiesis in mammalian embryos is complicated by the requirement for functional blood cells prior to the emergence of hematopoietic stem cells or the bone marrow microenvironment. In the murine embryo, transplantable HSC are first evident at embryonic day (E) 10.5 and the first few HSC are found in the fetal liver hematopoietic environment by E12.5. However, two overlapping waves of hematopoietic potential arise in the yolk sac before E10.5. The first “primitive” wave produces progenitors from E7.25 to E8.5 with primitive erythroid, megakaryocyte and macrophage potentials. The resulting primitive erythroid cells mature within the circulation and support embryonic growth past E9.5. At E8.5, a second wave of hematopoiesis begins in the yolk sac and generates definitive erythroid and multiple myeloid progenitors that are the proposed source of the hematopoietic progenitors seeding the fetal liver before HSC colonization. We have identified a cell population displaying a unique cell surface immunophenotype in the E9.5 yolk sac that contains the potential to form definitive erythroid cells, megakaryocytes, macrophages and all forms of granulocytes within days of in vitro culture. Furthermore, all definitive hematopoietic colony-forming cells (BFU-E, CFC-myeloid and HPP-CFC) in the E9.5 yolk sac have this immunophenotype. These erythro-myeloid progenitors (EMP) are lineage-negative and co-express ckit, CD41, CD16/32 and Endoglin. Interestingly, this is not an immunophenotype evident in the adult bone marrow. Other markers that have been associated with HSC formation (AA4.1, ScaI) or with lymphoid potential (IL7R, Flt3) are not present on these cells at E9.5. Consistent with the lack of lymphoid markers, we also do not observe short-term development of B-cells (CD19+B220+ expressing Rag2 RNA) in cultures of the E9.5 sorted EMP, while bone marrow Lin-/ckit+/ScaI- cells do form B-cells under the same conditions. Clonal analysis of sorted EMP cells revealed single cells with both erythroid and granulocyte potential, similar to the common myeloid progenitors in adult bone marrow. Though these EMP are enriched at E9.5 in the yolk sac, they are also found at low levels in the fetal blood, embryo proper and placenta, consistent with their entrance into the circulation. By E10.5, EMP were most highly enriched in the newly formed fetal liver. Additionally by E12.5, a time when the first few HSCs are detected in the fetal liver, we find active erythropoiesis and granulopoiesis in the liver and the first definitive red blood cells and neutrophils in the bloodstream. Therefore, we believe the yolk sac definitive progenitors' fate is to populate the fetal liver and thus provide the first definitive erythrocytes and granulocytes for the embryo. The differentiation of embryonic stem cells (ES) and induced pluripotent stem cells (iPS) cells into mature cells types offers the hope of cell-based therapies. Analysis of differentiating murine ES cells reveals overlapping waves of primitive and definitive hematopoietic colony forming potential. We demonstrate the appearance of an EMP-like (ckit+/CD41+/FcGR+) population coincident with the emergence of definitive hematopoietic progenitors during murine ES cell differentiation as embryoid bodies. We have confirmed with colony forming assays that definitive hematopoietic potential is associated with this immunophenotypic group. Our studies support the concept that blood cell emergence during ES cell differentiation closely mimics pre-HSC hematopoiesis in the yolk sac. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document