scholarly journals Endothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis

Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1787-1794 ◽  
Author(s):  
Thomas A. White ◽  
Tucker Johnson ◽  
Natalia Zarzhevsky ◽  
Cindy Tom ◽  
Sinny Delacroix ◽  
...  

AbstractThe antithrombotic surface of endothelium is regulated in a coordinated manner. Tissue factor pathway inhibitor (TFPI) localized at the endothelial cell surface regulates the production of FXa by inhibiting the TF/VIIa complex. Systemic homozygotic deletion of the first Kunitz (K1) domain of TFPI results in intrauterine lethality in mice. Here we define the cellular sources of TFPI and their role in development, hemostasis, and thrombosis using TFPI conditional knockout mice. We used a Cre-lox strategy and generated mice with a floxed exon 4 (TFPIFlox) which encodes for the TFPI-K1 domain. Mice bred into Tie2-Cre and LysM-Cre lines to delete TFPI-K1 in endothelial (TFPITie2) and myelomonocytic (TFPILysM) cells resulted in viable and fertile offspring. Plasma TFPI activity was reduced in the TFPITie2 (71% ± 0.9%, P < .001) and TFPILysM (19% ± 0.6%, P < .001) compared with TFPIFlox littermate controls. Tail and cuticle bleeding were unaffected. However, TFPITie2 mice but not TFPILysM mice had increased ferric chloride–induced arterial thrombosis. Taken together, the data reveal distinct roles for endothelial- and myelomonocytic-derived TFPI.

2021 ◽  
Vol 47 (03) ◽  
pp. 254-260
Author(s):  
Yona Nadir

AbstractHeparanase, the only mammalian enzyme known to degrade heparan sulfate chains, affects the hemostatic system through several mechanisms. Along with the degrading effect, heparanase engenders release of syndecan-1 from the cell surface and directly enhances the activity of the blood coagulation initiator, tissue factor, in the coagulation system. Upregulation of tissue factor and release of tissue factor pathway inhibitor from the cell surface contribute to the prothrombotic effect. Tissue factor pathway inhibitor and the strongest physiological anticoagulant antithrombin are attached to the endothelial cell surface by heparan sulfate. Hence, degradation of heparan sulfate induces further release of these two natural anticoagulants from endothelial cells. Elevated heparanase procoagulant activity and heparan sulfate chain levels in plasma, demonstrated in cancer, pregnancy, oral contraceptive use, and aging, could suggest a potential mechanism for increased risk of thrombosis in these clinical settings. In contrast to the blood circulation, accumulation of heparan sulfate chains in transudate and exudate pleural effusions induces a local anticoagulant milieu. The anticoagulant effect of heparan sulfate chains in other closed spaces such as peritoneal or subdural cavities should be further investigated.


2008 ◽  
Vol 99 (01) ◽  
pp. 133-141 ◽  
Author(s):  
Yona Nadir ◽  
Benjamin Brenner ◽  
Sveta Gingis-Velitski ◽  
Flonia Levy-Adam ◽  
Neta Ilan ◽  
...  

SummaryHeparanase activity is implicated in cell invasion, tumor metastasis and angiogenesis. Recently, we have reported that heparanase stimulates tissue factor (TF) expression in endothelial and cancer cells, resulting in elevation of coagulation activity. We hypothesized that heparanase regulates other coagulation modulators, and examined the expression and localization of tissue factor pathway inhibitor (TFPI) following heparanase over-expression or exogenous addition. Primary human umbilical vein endothelial cells (HUVEC) and human tumor-derived cell lines were incubated with heparanase, or were stably transfected with heparanase gene-constructs, and TFPI expression and secretion were examined. Heparanase over-expression or exogenous addition stimulated TFPI expression by 2–3 folds. TFPI accumulation in the cell culture medium exceeded in magnitude the observed induction ofTFPI gene transcription reaching 5– to 6-fold increase. Extracellular accumulation of TFPI was evident already 60 min following heparanase addition, prior toTFPI protein induction, and correlated with increased coagulation activity. This effect was found to be independent of heparanase enzymatic activity and interaction with heparan-sulfate, and correlated with reduced TFPI levels on the cell surface. Data were verified in heparanase transgenic mice tissues and plasma. Interaction between heparanase and TFPI was evident by co-immunoprecipitation. Interaction of heparanase with TFPI resulted in its displacement from the surface of the vascular endothelium and in increased pro-coagulant activity. Thus, heparanase facilitates blood coagulation on the cell surface by two independent mechanisms:dissociation ofTFPI from the vascular surface short after local elevation of heparanase levels, and subsequent induction of TF expression.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3568-3578 ◽  
Author(s):  
John-Bjarne Hansen ◽  
Randi Olsen ◽  
Paul Webster

AbstractTissue factor pathway inhibitor (TFPI) is a serine protease inhibitor of the extrinsic coagulation system, synthesized in endothelial cells, which has recently been shown to play an important role in the regulation of activated coagulation factors at the endothelial cell surface. In the present study we investigated the subcellular localization and metabolism of TFPI in human umbilical vein endothelial cells (HUVEC). Immunocytochemical labeling of HUVEC with anti-TFPI showed specific labeling associated with the cell surface and with many intracellular organelles including the Golgi complex. Further characterization of these organelles was performed by colocalizing the anti-TFPI with 3-(2,4-dinitroanilino)′-amino-N-methyldipropylamine (DAMP; to demonstrate low pH), mannose phosphate receptor (endosomes), and LAMP 1 (late endocytic compartments). TFPI also colocalized with antibodies to the human transferrin receptor, a marker for early endocytic, recycling compartment. Endogenous TFPI colocalized with biotin in intracellular vesicles during endocytosis after biotinylation of the cell surface, which indicated that TFPI was being co-internalized with the surface biotin. The binding of exogenously added 125I-TFPI increased linearly to HUVEC over the concentration range of 0 to 32 nmol/L without saturation, the binding was not affected by up to a thousand-fold molar excess of unlabeled TFPI, and heparin inhibited the binding dose dependently. An intact C-terminal domain was important for the interaction between TFPI and the cell surface of HUVEC, because less than 10% of a C-terminal truncated form of TFPI (TFPI1-161 ) was bound after addition of equimolar concentrations of full-length TFPI. Exogenously added 125I-TFPI was not degraded in HUVEC during 4 hours at 37°C. The presence of TFPI in endocytic and recycling compartments support the hypothesis that endogenous, membrane-anchored TFPI could be internalized for subsequent recycling back to the cell surface.


2008 ◽  
Vol 99 (03) ◽  
pp. 576-585 ◽  
Author(s):  
Mathieu Provençal ◽  
Marisol Michaud ◽  
Édith Beaulieu ◽  
David Ratel ◽  
Georges-Étienne Rivard ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this effect was specific to endothelial cells. These results suggest that TFPI influences the angiogenic process via a non-haemostatic pathway, by downregulating the migratory mechanisms of endothelial cells.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3495-3495 ◽  
Author(s):  
Robert Pachlinger ◽  
Rudolf Hartmann ◽  
Andrea Kolm ◽  
Erwin Panholzer ◽  
Nadja Ullrich ◽  
...  

Abstract Background: Tissue factor pathway inhibitor (TFPI) is a key regulator of the extrinsic coagulation pathway. It inhibits FXa generation by forming a quaternary complex containing factor VIIa (FVIIa), tissue factor (TF), factor Xa (FXa), and TFPI. Two TFPI isoforms, TFPI alpha (TFPI a) and TFPI beta (TFPI b), have been identified, which differ in their C-terminal part due to alternative mRNA splicing events. TFPI a consists of three Kunitz domains (KD), while TFPI b contains two KDs and a C terminal GPI anchor linking the protein to endothelial cell surface. Deletion of the first Kunitz domain of TFPI, which is present in TFPI a and TFPI b in mice is known to be incompatible with viability due to intrauterine lethality (Huang et al., 1997). Aim: To generate transgenic humanized TFPI mice in which mouse (m)-TFPI is entirely replaced by human (hu)-TFPI, in order to facilitate analysis of specific anti hu-TFPI antagonists without interference from m-TFPI. Methods: Integration of the targeting vector, consisting of the m TFPI signal sequence, followed by the human TFPI cDNA and subsequent breeding analysis, was followed by genomic PCR. A sophisticated breeding strategy was used to entirely delete m-TFPI exon 4, which encodes KD1, in humanized transgenic mice. Expression of hu-/m-TFPI a and b mRNAs was analyzed by reverse transcription, cloning, and sequencing of the obtained DNA fragments. Protein levels of hu- and m-TFPI in plasma of transgenic and wild-type (wt) mice were analyzed using species specific ELISAs. Immunoprecipitation experiments in plasma and various mouse tissues are being performed to obtain more information on the presence and distribution of the hu-TFPI protein in transgenic mice. Results: Homozygous humanized TFPI mice were viable and exhibited no obvious abnormalities. Animals showed normal litter size with equal numbers of female and male pups. Genomic PCRs revealed proper integration of the targeting vector into the mouse chromosome and the homozygous status with the expected deletion of m-TFPI exon 4. Expression analyses of humanized TFPI mice on mRNA level demonstrated the absence of full length m-TFPI a and the presence of the humanized TFPI mRNA. Alternative spliced m-TFPI b messages lacking exons three and four were identified, likely leading to a nonfunctional protein. Full length hu-TFPI a mRNA was detected in various tissues in the humanized TFPI mice. The TFPI protein level in plasma from humanized mice was below the detection limit of the ELISA and at least ~300 fold below that for wt mice. Conclusion: Low levels of hu-TFPI may compensate the function of m-TFPI in vivo and circumvent embryonic lethality. Furthermore, we established a new mouse model which allows the regulation of physiologic and pathologic pathways to be assessed at TFPI plasma concentrations below the limit of detection. Disclosures Hoellriegl: Baxalta Innovations GmbH: Employment. Scheiflinger:Baxalta Innovations GmbH: Employment.


Blood Reviews ◽  
2013 ◽  
Vol 27 (3) ◽  
pp. 119-132 ◽  
Author(s):  
Kristien Winckers ◽  
Hugo ten Cate ◽  
Tilman M. Hackeng

Sign in / Sign up

Export Citation Format

Share Document