scholarly journals Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1

Blood ◽  
2011 ◽  
Vol 117 (5) ◽  
pp. 1751-1760 ◽  
Author(s):  
Mien V. Hoang ◽  
Janice A. Nagy ◽  
Donald R. Senger

Abstract Architecturally defective, leaky blood vessels typify pathologic angiogenesis induced by vascular endothelial growth factor-A (VEGF-A). Such neovascular defects aggravate disease pathology and seriously compromise the therapeutic utility of VEGF. Endothelial cell (EC) transduction with active L61Rac1 strongly improved VEGF-driven angiogenesis in vivo as measured by increased neovascular density, enhanced lumen formation, and reduced vessel leakiness. Conversely, transduction with dominant-negative N17Rac1 strongly inhibited neovascularization. In vitro, active L61Rac1 promoted organization of cortical actin filaments and vascular cords and improved EC-EC junctions, indicating that improved cytoskeletal dynamics are important to the mechanism by which active L61Rac1 rectifies VEGF-driven angiogenesis. SEW2871, a sphingosine 1-phosphate receptor-1 agonist that activates Rac1 in ECs, improved cord formation and EC-EC junctions in vitro similarly to active L61Rac. Moreover, SEW2871 administration in vivo markedly improved VEGF neovessel architecture and reduced neovascular leak. Angiopoietin-1, a cytokine that “normalizes” VEGF neovessels in vivo, activated Rac1 and improved cord formation and EC-EC junctions in vitro comparably to active L61Rac1, and a specific Rac1 inhibitor blocked these effects. These studies distinguish augmentation of Rac1 activity as a means to rectify the pathologic angioarchitecture and dysfunctionality of VEGF neovessels, and they identify a rational pharmacologic strategy for improving VEGF angiogenesis.

Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 638-645 ◽  
Author(s):  
Nicola Giuliani ◽  
Simona Colla ◽  
Mirca Lazzaretti ◽  
Roberto Sala ◽  
Giovanni Roti ◽  
...  

AbstractPatients with multiple myeloma (MM) have increased bone marrow (BM) angiogenesis; however, the proangiogenic properties of myeloma cells and the mechanisms of MM-induced angiogenesis are not completely clarified. The angiopoietin system has been identified as critical in the regulation of vessel formation. In this study we have demonstrated that myeloma cells express several proangiogenic factors, and, in particular, we found that angiopoietin-1 (Ang-1), but not its antagonist Ang-2, was expressed by several human myeloma cell lines (HMCLs) at the mRNA and the protein levels. In a transwell coculture system, we observed that myeloma cells up-regulated the Ang-1 receptor Tie2 in human BM endothelial cells. Moreover, in an experimental model of angiogenesis, the conditioned medium of HMCLs significantly stimulated vessel formation compared with control or vascular endothelial growth factor (VEGF) treatment. The presence of anti-Tie2 blocking antibody completely blunted the proangiogenic effect of XG-6. Finally, our in vitro results were supported by the in vivo finding of Ang-1, but not Ang-2, mRNA and protein expression in purified MM cells obtained from approximately 47% of patients and by high BM angiogenesis in patients with MM positive for Ang-1, suggesting that the angiopoietin system could be involved, at least in part, in MM-induced angiogenesis.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3489-3497 ◽  
Author(s):  
Xiaochun Li ◽  
Milena Stankovic ◽  
Claudine S. Bonder ◽  
Christopher N. Hahn ◽  
Michelle Parsons ◽  
...  

Abstract Endothelial cells (ECs) regulate the barrier function of blood vessels. Here we show that basal and angiopoietin-1 (Ang-1)–regulated control of EC permeability is mediated by 2 different functional states of sphingosine kinase-1 (SK-1). Mice depleted of SK-1 have increased vascular leakiness, whereas mice transgenic for SK-1 in ECs show attenuation of leakiness. Furthermore, Ang-1 rapidly and transiently stimulates SK-1 activity and phosphorylation, and induces an increase in intracellular sphingosine-1-phosphate (S1P) concentration. Overexpression of SK-1 resulted in inhibition of permeability similar to that seen for Ang-1, whereas knockdown of SK-1 by small interfering RNA blocked Ang-1-mediated inhibition of permeability. Transfection with SKS225A, a nonphosphorylatable mutant of SK-1, inhibited basal leakiness, and both SKS225A and a dominant-negative SK-1 mutant removed the capacity of Ang-1 to inhibit permeability. These effects were independent of extracellular S1P as knockdown or inhibition of S1P1, S1P2, or S1P3, did not affect the Ang-1 response. Thus, SK-1 levels in ECs powerfully regulate basal permeability in vitro and in vivo. In addition, the Ang-1–induced inhibition of leakiness is mediated through activation of SK-1, defining a new signaling pathway in the Ang-1 regulation of permeability.


2014 ◽  
Vol 881-883 ◽  
pp. 394-399
Author(s):  
Cai Li Ma ◽  
Lin Lin Lv ◽  
Wei Chao Yang ◽  
Xiu Fang Li ◽  
Yu Liu ◽  
...  

Poly (ethyleneimine) (PEI) is utilized as the delivery vector for vascular endothelial growth factor (VEGF) 165-angiopoietin-1 (Ang-1) dual gene simultaneous expression plasmid. The influences of PEI/pDNA ratios on the packing effect, cytotoxicity and transfection efficiency are investigated. The result of agarose gel electrophoresis suggesst that pDNA are entrapped into PEI completely when N/P ratio exceeds 3/1. MTT assay demonstrates that the cell viability is over 90% when the PEI/pDNA (w/w) ratios is respectively 1/2, 2/2, 3/3, 4/2 or 5/2. The L929 cells are transfected with PEI/pDNA in vitro, the results show that the fluorescence intensity and transfection efficiency could reach their highest levels when the PEI/pDNA ratio is 3/2. In general, this study provides a novel method for future in vivo transfection investigations.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4127
Author(s):  
Aline de Cristo Soares Alves ◽  
Franciele Aline Bruinsmann ◽  
Silvia Stanisçuaski Guterres ◽  
Adriana Raffin Pohlmann

Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.


2003 ◽  
Vol 55 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Michael D. Mueller ◽  
Elizabeth A. Pritts ◽  
Charles J. Zaloudek ◽  
Ekkehard Dreher ◽  
Robert N. Taylor

1983 ◽  
Vol 60 (1) ◽  
pp. 89-102
Author(s):  
D de Bono ◽  
C. Green

The interactions between human or bovine vascular endothelial cells and fibroblast-like vascular intimal spindle-shaped cells have been studied in vitro, using species-specific antibodies to identify the different components in mixed cultures. Pure cultures of endothelial cells grow as uniform, nonoverlapping monolayers, but this growth pattern is lost after the addition of spindle cells, probably because the extracellular matrix secreted by the latter causes the endothelial cells to modify the way they are attached to the substrate. The result is a network of tubular aggregates of endothelial cells in a three-dimensional ‘polylayer’ of spindle-shaped cells. On the other hand, endothelial cells added to growth-inhibited cultures of spindle-shaped cells will grow in sheets over the surface of the culture. Human endothelial cells grown in contact with spindle-shaped cells have a reduced requirement for a brain-derived endothelial growth factor. The interactions of endothelial cells and other connective tissue cells in vitro may be relevant to the mechanisms of endothelial growth and blood vessel formation in vivo, and emphasize the potential importance of extracellular matrix in controlling endothelial cell behaviour.


Sign in / Sign up

Export Citation Format

Share Document