scholarly journals Procoagulant activity induced by vascular injury determines contribution of elevated factor VIII to thrombosis and thrombus stability in mice

Blood ◽  
2011 ◽  
Vol 118 (14) ◽  
pp. 3960-3968 ◽  
Author(s):  
Kellie R. Machlus ◽  
Feng-Chang Lin ◽  
Alisa S. Wolberg

Abstract Studies have correlated elevated plasma factor VIII (FVIII) with thrombosis; however, it is unclear whether elevated FVIII is a proinflammatory biomarker, causative agent, or both. We raised FVIII levels in mice and measured the time to vessel occlusion (TTO) after ferric chloride–induced injury. Compared with control (saline-infused) mice, elevated FVIII had no effect after longer (3-minute) carotid artery injury, but it shortened the TTO after shorter (2-minute) injury (P < .008). After injury, circulating thrombin-antithrombin (TAT) complexes were lower after short versus long injury (P < .04), suggesting short treatment produced less coagulation activation. TAT levels in FVIII-infused mice were higher than in controls after short, but not longer, injury. Accordingly, elevated FVIII had no effect on in vitro thrombin generation or platelet aggregation triggered by high tissue factor, but it increased thrombin generation rate and peak (2.4- and 1.5-fold, respectively), and it accelerated platelet aggregation (up to 1.6-fold) when initiated by low tissue factor. Compared with control mice, elevated FVIII stabilized thrombi (fewer emboli) after short injury, but it had no effect after longer injury. TTO and emboli correlated with TATs. These results demonstrate dependence of FVIII activity on extent of vascular injury. We propose elevated plasma FVIII is an etiologic, prothrombotic agent after moderate but not extensive vascular damage.

Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3067-3072 ◽  
Author(s):  
Cornelis van ‘t Veer ◽  
Neal J. Golden ◽  
Michael Kalafatis ◽  
Paolo Simioni ◽  
Rogier M. Bertina ◽  
...  

Abstract The classification of factor VIII deficiency, generally used based on plasma levels of factor VIII, consists of severe (<1% normal factor VIII activity), moderate (1% to 4% factor VIII activity), or mild (5% to 25% factor VIII activity). A recent communication described four individuals bearing identical factor VIII mutations. This resulted in a severe bleeding disorder in two patients who carried a normal factor V gene, whereas the two patients who did not display severe hemophilia were heterozygous for the factor VLEIDEN mutation, which leads to the substitution of Arg506 → Gln mutation in the factor V molecule. Based on the factor VIII level measured using factor VIII–deficient plasma, these two patients were classified as mild/moderate hemophiliacs. We studied the condition of moderate to severe hemophilia A combined with the factor VLEIDEN mutation in vitro in a reconstituted model of the tissue factor pathway to thrombin. In the model, thrombin generation was initiated by relipidated tissue factor and factor VIIa in the presence of the coagulation factors X, IX, II, V, and VIII and the inhibitors tissue factor pathway inhibitor, antithrombin-III, and protein C. At 5 pmol/L initiating factor VIIa⋅tissue factor, a 10-fold higher peak level of thrombin formation (350 nmol/L), was observed in the system in the presence of plasma levels of factor VIII compared with reactions without factor VIII. Significant increase in thrombin formation was observed at factor VIII concentrations less than 42 pmol/L (∼6% of the normal factor VIII plasma concentration). In reactions without factor VIII, in which thrombin generation was downregulated by the addition of protein C and thrombomodulin, an increase of thrombin formation was observed with the factor VLEIDEN mutation. The level of increase in thrombin generation in the hemophilia A situation was found to be dependent on the factor VLEIDEN concentration. When the factor VLEIDEN concentration was varied from 50% to 150% of the normal plasma concentration, the increase in thrombin generation ranged from threefold to sevenfold. The data suggested that the analysis of the factor V genotype should be accompanied by a quantitative analysis of the plasma factor VLEIDEN level to understand the effect of factor VLEIDEN in hemophilia A patients. The presented data support the hypothesis that the factor VLEIDEN mutation can increase thrombin formation in severe hemophilia A.


2008 ◽  
Vol 34 (S 01) ◽  
pp. 087-090
Author(s):  
Meyer Samama ◽  
Léna Le Flem ◽  
Céline Guinet ◽  
François Depasse

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-17
Author(s):  
Dougald Monroe ◽  
Mirella Ezban ◽  
Maureane Hoffman

Background.Recently a novel bifunctional antibody (emicizumab) that binds both factor IXa (FIXa) and factor X (FX) has been used to treat hemophilia A. Emicizumab has proven remarkably effective as a prophylactic treatment for hemophilia A; however there are patients that still experience bleeding. An approach to safely and effectively treating this bleeding in hemophilia A patients with inhibitors is recombinant factor VIIa (rFVIIa). When given at therapeutic levels, rFVIIa can enhance tissue factor (TF) dependent activation of FX as well as activating FX independently of TF. At therapeutic levels rFVIIa can also activate FIX. The goal of this study was to assess the role of the FIXa activated by rFVIIa when emicizumab is added to hemophilia A plasma. Methods. Thrombin generation assays were done in plasma using 100 µM lipid and 420 µM Z-Gly-Gly-Arg-AMC with or without emicizumab at 55 µg/mL which is the clinical steady state level. The reactions were initiated with low (1 pM) tissue factor (TF). rFVIIa was added at concentrations of 25-100 nM with 25 nM corresponding to the plasma levels achieved by a single clinical dose of 90 µg/mL. To study to the role of factor IX in the absence of factor VIII, it was necessary to create a double deficient plasma (factors VIII and IX deficient). This was done by taking antigen negative hemophilia B plasma and adding a neutralizing antibody to factor VIII (Haematologic Technologies, Essex Junction, VT, USA). Now varying concentrations of factor IX could be reconstituted into the plasma to give hemophilia A plasma. Results. As expected, in the double deficient plasma with low TF there was essentially no thrombin generation. Also as expected from previous studies, addition of rFVIIa to double deficient plasma gave a dose dependent increase in thrombin generation through activation of FX. Interestingly addition of plasma levels of FIX to the rFVIIa did not increase thrombin generation. Starting from double deficient plasma, as expected emicizumab did not increase thrombin generation since no factor IX was present. Also, in double deficient plasma with rFVIIa, emicizumab did not increase thrombin generation. But in double deficient plasma with FIX and rFVIIa, emicizumab significantly increased thrombin generation. The levels of thrombin generation increased in a dose dependent fashion with higher concentrations of rFVIIa giving higher levels of thrombin generation. Conclusion. Since addition of FIX to the double deficient plasma with rFVIIa did not increase thrombin generation, it suggests that rFVIIa activation of FX is the only source of the FXa needed for thrombin generation. So in the absence of factor VIII (or emicizumab) FIX activation does not contribute to thrombin generation. However, in the presence of emicizumab, while rFVIIa can still activate FX, FIXa formed by rFVIIa can complex with emicizumab to provide an additional source of FX activation. Thus rFVIIa activation of FIX explains the synergistic effect in thrombin generation observed when combining rFVIIa with emicizumab. The generation of FIXa at a site of injury is consistent with the safety profile observed in clinical use. Disclosures Monroe: Novo Nordisk:Research Funding.Ezban:Novo Nordisk:Current Employment.Hoffman:Novo Nordisk:Research Funding.


Author(s):  
R. Castillo ◽  
S. Maragall ◽  
J. A. Guisasola ◽  
F. Casals ◽  
C. Ruiz ◽  
...  

Defective ADP-induced platelet aggregation has been observed in patients treated with streptokinase. This same effect appears “in vitro” when adding SK to platelet rich plasma (PRP). Classic hemophilia and normal platelet poor plasmas (PPP) treated with SK inhibit the aggregation of washed platelets; plasmin-treated normal human serum also shows an inhibitory effect on platelet aggregation. However, von Willebrand SK-treated plasmas do not inhibit the aggregation of washed platelets. The same results appear when plasmas are previously treated with a rabbit antibody to human factor VIII.This confirms that the antiaggregating effect is mainly linked to the digested factor VIII related antigen.The inhibition of ADP-induced platelet aggregation has been proved in gel filtration-isolated and washed platelets from SK-treated PRP.Defective ristocetin-induced platelet aggregation has also been observed- This action does not appear in washed platelets from SK-treated PRP in presence of normal PPP, but it does in presence of SK-treated PPP, which suggests that the inhibition of the ristocetin-induced aggregation is due to the lack of factor VIII and not to the factor VIII-related products.Heparin, either “in vivo” or “in vitro”, has corrected the antiaggregating effect of SK.


2010 ◽  
Vol 104 (09) ◽  
pp. 514-522 ◽  
Author(s):  
Thomas Lecompte ◽  
Agnès Tournier ◽  
Lise Morlon ◽  
Monique Marchand-Arvier ◽  
Claude Vigneron ◽  
...  

SummaryCathepsin G (Cath G), a serine-protease found in neutrophils, has been reported to have effects that could either facilitate or impede coagulation. Thrombin generation (CAT method) was chosen to study its overall effect on the process, at a plasma concentration (240 nM) observed after neutrophil activation. Coagulation was triggered by tissue factor in the presence of platelets or phospholipid vesicles. To help identify potential targets of Cath G, plasma depleted of clotting factors or of inhibitors was used. Cath G induced a puzzling combination of two diverging effects of varying intensities depending on the phospholipid surface provided: accelerating the process under the three conditions (shortened clotting time by up to 30%), and impeding the process during the same thrombin generation time-course since thrombin peak and ETP (total thrombin potential) were decreased, up to 45% and 12%, respectively, suggestive of deficient prothrombinase. This is consistent with Cath G working on at least two targets in the coagulation cascade. Our data indicate that coagulation acceleration can be attributed neither to platelet activation and nor to activation of a clotting factor. When TFPI (tissue factor pathway inhibitor) was absent, no effect on lag time was observed and the anticoagulant activity of TFPI was decreased in the presence of Cath G. Consistent with the literature and the hypothesis of deficient prothrombinase, experiments using Russel’s Viper Venom indicate that the anticoagulant effect can be attributed to a deleterious effect on factor V. The clinical relevance of these findings deserves to be studied.


Blood ◽  
1973 ◽  
Vol 41 (5) ◽  
pp. 671-678 ◽  
Author(s):  
Leo R. Zacharski ◽  
Leon W. Hoyer ◽  
O. Ross McIntyre

Abstract Immunologic methods were employed in an attempt to identify a potent procoagulant present in homogenates of human skin fibroblasts cultured in vitro. The activity of this procoagulant was restricted to the early stages of coagulation and was heretofore considered to be due to tissue factor (tissue thromboplastin, factor III) either alone or in combination with one or more of the first-stage coagulation factors (VIII, IX, XI, XII). The present studies demonstrated that procoagulant activity was not diminished by incubation with anti-VIII or anti-IX antibodies of human origin or with anti-VIII antibody of rabbit origin. Furthermore, cell culture homogenates failed to bind antifactor VIII antibody and did not contain an inhibitor of the reaction between factor VIII and its antibody. By contrast, procoagulant activity was obliterated by an antibody to tissue factor protein regardless of whether plasmas deficient in factor VIII, IX, XI, or XII were used in the assay system. The antitissue factor antibody failed to block the procoagulant effect after tissue factor had complexed factor VII. The procoagulant, therefore, consisted entirely of tissue factor.


Sign in / Sign up

Export Citation Format

Share Document