scholarly journals Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells

Blood ◽  
2011 ◽  
Vol 118 (20) ◽  
pp. 5498-5505 ◽  
Author(s):  
Nataša Obermajer ◽  
Ravikumar Muthuswamy ◽  
Jamie Lesnock ◽  
Robert P. Edwards ◽  
Pawel Kalinski

Abstract Dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) show opposing roles in the immune system. In the present study, we report that the establishment of a positive feedback loop between prostaglandin E2 (PGE2) and cyclooxygenase 2 (COX2), the key regulator of PGE2 synthesis, represents the determining factor in redirecting the development of CD1a+ DCs to CD14+CD33+CD34+ monocytic MDSCs. Exogenous PGE2 and such diverse COX2 activators as lipopolysaccharide, IL-1β, and IFNγ all induce monocyte expression of COX2, blocking their differentiation into CD1a+ DCs and inducing endogenous PGE2, IDO1, IL-4Rα, NOS2, and IL-10, typical MDSC-associated suppressive factors. The addition of PGE2 to GM-CSF/IL-4–supplemented monocyte cultures is sufficient to induce the MDSC phenotype and cytotoxic T lymphocyte (CTL)–suppressive function. In accordance with the key role of PGE2 in the physiologic induction of human MDSCs, the frequencies of CD11b+CD33+ MDSCs in ovarian cancer are closely correlated with local PGE2 production, whereas the cancer-promoted induction of MDSCs is strictly COX2 dependent. The disruption of COX2-PGE2 feedback using COX2 inhibitors or EP2 and EP4 antagonists suppresses the production of MDSC-associated suppressive factors and the CTL-inhibitory function of fully developed MDSCs from cancer patients. The central role of COX2-PGE2 feedback in the induction and persistence of MDSCs highlights the potential for its manipulation to enhance or suppress immune responses in cancer, autoimmunity, or transplantation.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4907-4907
Author(s):  
Melinda Y. Hardy ◽  
Andrew J. Kassianos ◽  
Ray Wilkinson ◽  
Annelie Vulink ◽  
Derek N.J. Hart ◽  
...  

Abstract We investigated the capacity of IL-15 to differentiate human dendritic cells (DC) from monocytes in the presence of GM-CSF (IL-15 MoDC) and compared them with MoDC differentiated in IL-4 and GM-CSF (IL-4 MoDC) as used in many immunotherapy protocols. IL-15 MoDC expressed higher levels of CD40 and HLA-DR and importantly, induced MART-1 specific cytotoxic T lymphocyte (CTL) responses with superior lytic capacity, when compared to IL-4 MoDC. In response to activation, IL-15 MoDC secreted high levels of IFN-γbut low or no IL-12, whereas IL-4 MoDC secreted high IL-12 but low or no IFN-γ. Using an IFN-γ blocking antibody, we demonstrated that IFN-γ production by the IL-15 MoDC did not account for the superior CTL responses induced. Despite immunoselecting monocytes to greater than 97% purity prior to DC differentiation, we noticed a small population (1–2%) of CD56+ and CD3+ lymphocytes in the IL-15 MoDC preparations that were less prominent in IL-4 MoDC differentiated from the same monocytes. Removal of the residual lymphocytes from monocytes prior to differentiation into IL-15 MoDC diminished their capacity to induce CTL but did not affect the expression of HLA-DR or CD40. These data suggest that IL-15-dependent cross-talk between the small lymphoid populations present and DC, during DC differentiation from monocytes results in superior CTL priming that is independent of IL-12 and IFN-γ. Based on these results, appropriately manufactured IL-15 MoDC preparations containing defined numbers of lymphoid cells should be considered for immunotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ina N. Eckert ◽  
Eliana Ribechini ◽  
Katja J. Jarick ◽  
Sandra Strozniak ◽  
Sarah J. Potter ◽  
...  

Myeloid-derived suppressor cells (MDSCs) represent a major population controlling T cell immune responses. However, little is known about their molecular requirements for homing and T cell interaction to mediate suppression. Here, we investigated the functional role of the homing and collagen IV receptor VLA-1 (α1β1-integrin) on in vitro GM-CSF generated murine MDSCs from wild-type (WT) and CD49a/α1-integrin (Itga1−/−) gene-deficient mice. Here, we found that effector (Teff) but not naive (Tn) CD4+ T cells express VLA-1 and monocytes further up-regulated their expression after culture in GM-CSF when they differentiated into the monocytic subset of resting MDSCs (R-MDSCs). Subsequent activation of R-MDSCs by LPS+IFN-γ (A-MDSCs) showed increased in vitro suppressor potential, which was independent of VLA-1. Surprisingly, VLA-1 deficiency did not influence A-MDSC motility or migration on collagen IV in vitro. However, interaction times of Itga1−/− A-MDSCs with Teff were shorter than with WT A-MDSCs on collagen IV but not on fibronectin substrate in vitro. After injection, A-MDSCs homed to the splenic red pulp where they co-localized with Teff and showed immediate suppression already after 6 h as shown by inhibition of T cell proliferation and induction of apoptosis. Injection of A-MDSCs from Itga1−/− mice showed equivalent homing into the spleen but a reduced suppressive effect. Interaction studies of A-MDSCs with Teff in the subcapsular red pulp with intravital two-photon microscopy revealed also here that MDSC motility and migration parameters were not altered by VLA-1 deficiency, but the interaction times with Teff were reduced. Together, our data point to a new role of VLA-1 adhesion to collagen IV as a prerequisite for extended contact times with Teff required for suppression.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e16614 ◽  
Author(s):  
Jianzhong Hu ◽  
German Nudelman ◽  
Yishai Shimoni ◽  
Madhu Kumar ◽  
Yaomei Ding ◽  
...  

Author(s):  
Manami Toriyama ◽  
Defri Rizaldy ◽  
Motoki Nakamura ◽  
Fumitaka Fujita ◽  
Fumihiro Okada ◽  
...  

AbstractPrimary cilia are a unique organelle, known to provide a signaling hub for variety of cell activities. Their potential role(s) in human immune homeostasis and diseases, however, have yet to be explored. Here, we show that human dendritic cells (DCs) express primary cilia-like structure. The primary cilia growth during DC proliferation by GM-CSF was shut off by DC maturation agents, suggesting the role of primary cilia to transduce proliferation signaling. PDGFRα pathway, one of proliferation signal in primary cilia, promoted DC proliferation in a dependent manner of intra-flagellar transport system. In epidermis with atopic dermatitis patients, aberrant ciliated langerhans cells and keratinocytes with showing immature state were observed that may play a potential role in inflammation and skin barrier disorder.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A504-A504
Author(s):  
Luis Carvajal ◽  
Luciana Gneo ◽  
Carmela De Santo ◽  
Matt Perez ◽  
Tracy Garron ◽  
...  

BackgroundMyeloid-derived suppressor cells (MDSCs) accumulate in the blood and tumor microenvironment (TME) and suppress anti-tumor immune responses.1 Cancer cells express the granulocyte-macrophage colony-stimulating factor (GM-CSF), which drives MDSC differentiation and function.2 3 4 It is upregulated in several cancers, including mesothelioma, pancreatic and colorectal, and it is linked to higher levels of intra-tumoral MDSCs and poorer overall survival.2 4 5 In animal models, knockdown of GM-CSF in pancreatic epithelium or pancreatic mesenchymal stem cells inhibits tumorigenesis, reduces intra-tumor MDSCs and enhances CD8+ T cell accumulation.6 7 8 Therefore, targeting the GM-CSF receptor alpha (GM-CSFRα) on MDSCs is an attractive strategy to restore anti-tumor immunity. Mavrilimumab is a clinical stage fully human monoclonal antibody that blocks GM-CSFRα. It has demonstrated efficacy and acceptable safety profile in patients with rheumatoid arthritis, and it’s currently undergoing investigation in phase II studies in giant cell arteritis and in patients with severe COVID-19 pneumonia and hyper-inflammation (NCT03827018, NCT04397497, respectively). The present study investigates its potential as a therapeutic strategy to target MDSCs in the TME as an adjuvant to immunotherapy.MethodsCancer cell supernatants were collected when cells reached confluency. Human GM-CSF was measured by ELISA. Healthy donor CD14+ monocytes were incubated (± mavrilimumab) with cancer cell supernatants for either 3 or 6 days followed by phenotypic analysis (CD14, CD33, HLA-DR, CD11b, CD206, CD80, PD-L1, Arginase-1) by flow cytometry. On day 3, autologous CD3+ T cells were stimulated with CD3/CD28 and IL-2 and co-cultured with putative MDSCs for 5 days. T-cell proliferation was evaluated by measuring carboxyfluorescein succinimidyl ester (CFSE) dilution in CD4+ and CD8+ T cells by flow cytometry.ResultsGM-CSF is expressed in the supernatant of cancer cell lines (HCT116, SW-480, Panc-1, Capan-1). Human monocytes cultured with conditioned medium from colorectal carcinoma (SW-480) or pancreatic adenocarcinoma (Capan-1) show downregulation of HLA-DR, increased expression of PD-L1, Arg-1, CD206, and can suppress T-cell proliferation in-vitro. Similarly, peripheral blood monocytes purified from pancreatic cancer patients suppress T-cell proliferation ex-vivo. Notably, Mavrilimumab inhibits the polarization of healthy donor monocytes to M-MDSCs and restores T-cell proliferation.ConclusionsTargeting of GM-CSFRα with mavrilimumab may alleviate the pro-tumorigenic and immunosuppressive functions of MDSCs in the TME. Future clinical studies should evaluate whether targeting of the GM-CSFRα in combination with immune checkpoint inhibitors is a viable therapeutic option to bolster their efficacy.Ethics ApprovalThe study was approved by the Institute of Immunology and Immunotherapy, University of Birmingham, UK Ethics Board. Healthy volunteer human material was obtained from commercial sources and approved by Stemexpress Institutional Review Board (IRB).ReferencesLaw AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020;9(3):561.Khanna S, Graef S, Mussai F, et al. Tumor-Derived GM-CSF Promotes Granulocyte Immunosuppression in Mesothelioma Patients. Clin Cancer Res 2018;24(12):2859–2872.Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 2010;40(1):22–35.Takeuchi S, Baghdadi M, Tsuchikawa T, et al. Chemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res 2015;75(13):2629–2640.Chen Y, Zhao Z, Chen Y, et al. An epithelial-to-mesenchymal transition-inducing potential of granulocyte macrophage colony-stimulating factor in colon cancer. Sci Rep 2017;7(1):8265.Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012;21(6):822–835.Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012;21(6):836–847.Waghray M, Yalamanchili M, Dziubinski M, et al. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov 2016;6(8):886–899.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A536-A536
Author(s):  
Juan Dong ◽  
Cassandra Gilmore ◽  
Hieu Ta ◽  
Keman Zhang ◽  
Sarah Stone ◽  
...  

BackgroundV-domain immunoglobulin suppressor of T cell activation (VISTA) is a B7 family inhibitory immune checkpoint protein and is highly expressed on myeloid cells and T cells.1 VISTA acts as both an inhibitory ligand when expressed on antigen-presenting cells and a receptor when expressed on T cells. Our recent study has shown that VISTA is a myeloid cell-specific immune checkpoint and that blocking VISTA can reprogram suppressive myeloid cells and promote a T cell-stimulatory tumor microenvironment.2 In this study, we further demonstrate that VISTA blockade directly alters the differentiation and the suppressive function of myeloid-derived suppressor cells (MDSC).MethodsFlow cytometry was performed to examine VISTA expression on MDSCs in multiple murine tumor models including the B16BL6 melanoma model, MC38 colon cancer model, and the KPC pancreatic cancer models. To examine the role of VISTA in controlling the differentiation and suppressive function of MDSCs, we cultured wild type (WT) and VISTA.KO bone marrow progenitor cells with GM-CSF and IL-6 to induce BM -derived MDSCs.ResultsOur preliminary results show that VISTA is highly expressed on M-MDSCs in B16BL6, MC38 and KPC tumors. In BM-derived MDSCs, VISTA deletion significantly altered the signaling pathways and the differentiation of MDSCs. Multiple inflammatory signaling pathways were downregulated in VISTA KO MDSCs, resulting in decreased production of cytokines such as IL1 and chemokines such as CCL2/4/9, as well as significantly impaired their ability to suppress the activation of CD8+ T cells. The loss of suppressive function in VISTA KO MDSCs is correlated with significantly reduced expression of iNOS. To validate the results from BM-MDSCs, we sorted CD11b+CD11c-Ly6C+Ly6G- M-MDSCs and CD11b+CD11c-Ly6G+ G-MDSCs from B16BL6 tumor tissues and tested the ability of a VISTA-blocking mAb to reverse the suppressive effects of tumor-derived MDSCs. Our results show that blocking VISTA impaired the suppressive function of tumor-derived M-MDSC but not G-MDSCs.ConclusionsTaken together, these results demonstrate a crucial role of VISTA in regulating the differentiation and function of MDSCs, and that blocking VISTA abolishes MDSC-mediated T cell suppression, thereby boosting.Ethics ApprovalAll in vivo studies were reviewed and approved by Institutional Animal Care and Use Committee (Approval number 2019-2142).ReferencesXu W, Hire T, Malarkannan, S. et al. The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 2018;15:438–446.Xu W, Dong J, Zheng Y, et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol Res 2019;7:1497–510.


Vaccines ◽  
2016 ◽  
Vol 4 (4) ◽  
pp. 36 ◽  
Author(s):  
Viktor Umansky ◽  
Carolin Blattner ◽  
Christoffer Gebhardt ◽  
Jochen Utikal

Sign in / Sign up

Export Citation Format

Share Document