scholarly journals The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation

Blood ◽  
2013 ◽  
Vol 122 (3) ◽  
pp. 376-385 ◽  
Author(s):  
Brenden W. Smith ◽  
Sarah S. Rozelle ◽  
Amy Leung ◽  
Jessalyn Ubellacker ◽  
Ashley Parks ◽  
...  

Key Points This breakthrough involves the role of the aryl hydrocarbon receptor in the expansion and specification of hematopoietic progenitor cells. This work sets a precedent for the use of an in vitro platform for the clinically relevant production of blood products.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 766-766
Author(s):  
Brenden W Smith ◽  
Sarah S Rozelle ◽  
Paul Gadue ◽  
Deborah L. French ◽  
David H.K. Chui ◽  
...  

Abstract Abstract 766 The evolutionarily conserved aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix Per-ARNT-Sim family, has been studied for its role in environmental chemical-induced toxicity. Recent studies now demonstrate that the AhR may regulate the hematopoietic and immune systems during development in a cell-specific manner. To better understand the possible role of the AhR in hematopoiesis, we developed a novel, human, induced pluripotent stem cell (iPSC) platform based on the step-wise directed differentiation of hematopoietic progenitor cells. Our in silico analysis of transcriptional profiles of 71 primary human hematopoietic cell isolates indicated AhR-upregulation at both the hematopoietic stem cell and bi-potential megakaryocyte-erythroid progenitor (MEP) stages. This result, together with the absence of an in vitro model system enabling production of large numbers of primary human MEPs capable of differentiating into megakaryocytes (Mks) and erythroid lineage cells, motivated us to determine if AhR modulation could facilitate both MEP expansion and Mk and erythroid cell differentiation. Our results indicate that AhR has a physiological and functional role in normal hematopoietic development, and that modulation of the receptor in bi-potential hematopoietic progenitors can direct cell fate. We demonstrate a novel methodology for the directed differentiation of pluripotent stem cells in chemically defined, serum and feeder-free culture conditions into MEPs capable of final specification into Mks and/or erythroid-lineage cells. The use of a non-toxic aryl hydrocarbon receptor agonist in our directed differentiation scheme significantly increases the number of MEPs and resultant cells. Following the addition of potent AhR ligands to our cultures, we observed exponential expansion of MEPs from fifteen thousand to one billion cells in two weeks, with the role of AhR in the MEP population confirmed using a specific AhR inhibitor. This logarithmic expansion of cells appears to be a function of decreased cell death and is consistent with previous studies which suggest that the AhR can control apoptosis. In addition to allowing for the exponential expansion of MEPs, our results demonstrate that modulation of AhR can direct cell fate, with AhR agonism permissive to erythroid differentiation and antagonism favoring Mk specification. Although erythropoietin (EPO) and thrombopoietin (TPO) stimulate RBC and Mk production respectively, AhR may play a cytokine-independent role in the specification of these lineages and warrants further study. These results demonstrate a new platform for studying human red blood cell and Mk development that allows for exponentially greater production of RBCs and Mks in comparison to existing methodologies. This strategy relies on the first of its kind definition of the role of the AhR receptor in normal hematopoietic development using specialized ligands in hematopoietic progenitor cells. A useful outcome for this work will be the utilization of this in vitro platform for the clinically relevant production of blood products. An iPSC-based system, such as the one described here in which sufficient numbers of cells can be produced, should facilitate future clinical adaptation involving the transfusion of iPSC-derived red blood cells and platelets without problems related to immunogenicity, contamination, or supply. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1014-1019 ◽  
Author(s):  
C Carlo-Stella ◽  
M Cazzola ◽  
A Gasner ◽  
G Barosi ◽  
L Dezza ◽  
...  

Myelofibrosis with myeloid metaplasia (MMM) is a chronic myeloproliferative disorder due to clonal expansion of a pluripotent hematopoietic progenitor cell with secondary marrow fibrosis. No definitive treatment has as yet been devised for this condition, which shows a marked variability in clinical course. To evaluate whether excessive hematopoietic progenitor cell proliferation could be controlled by recombinant human interferon alpha (rIFN-alpha) and gamma (rIFN-gamma), we studied the effects of these agents on the in vitro growth of pluripotent and lineage-restricted circulating hematopoietic progenitor cells in 18 patients with MMM. A significant increase in the growth (mean +/- 1 SEM) per milliliter of peripheral blood of CFU-GEMM (594 +/- 253), CFU-Mk (1,033 +/- 410), BFU-E (4,799 +/- 2,020) and CFU- GM (5,438 +/- 2,505) was found in patients as compared with normal controls. Both rIFN-alpha and rIFN-gamma (10 to 10(4) U/mL) produced a significant dose-dependent suppression of CFU-GEMM, CFU-Mk, BFU-E, and CFU-GM growth. Concentrations of rIFN-alpha and rIFN-gamma causing 50% inhibition of colony formation were 37 and 163 U/mL for CFU-GEMM, 16 and 69 U/mL for CFU-Mk, 53 and 146 U/mL for BFU-E, and 36 and 187 U/mL for CFU-GM, respectively. A marked synergistic effect was found between rIFN-alpha and rIFN-gamma: combination of the two agents produced inhibitory effects greater than or equivalent to those of 10- to 100- fold higher concentrations of single agents. These studies (a) confirm that circulating hematopoietic progenitors are markedly increased in MMM, (b) indicate that these presumably abnormal progenitors are normally responsive to rIFNs in vitro, and (c) show that IFNs act in a synergistic manner when used in combination. Because rIFN-gamma can downregulate collagen synthesis in vivo, this lymphokine could be particularly useful in the treatment of patients with MMM.


2007 ◽  
Vol 506 (6) ◽  
pp. 930-942 ◽  
Author(s):  
Eisuke Sato ◽  
H. Elizabeth Shick ◽  
Richard M. Ransohoff ◽  
Keiko Hirose

2010 ◽  
Vol 130 (1-2) ◽  
pp. 32-35 ◽  
Author(s):  
Patricia Vegh ◽  
Jana Winckler ◽  
Fritz Melchers

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1259-1259
Author(s):  
Abraham Avigdor ◽  
Yaron Vagima ◽  
Polina Goichberg ◽  
Shoham Shivtiel ◽  
Melania Tesio ◽  
...  

Abstract Hematopoietic progenitor cell release to the circulation is the outcome of signals provided by cytokines, chemokines, adhesion molecules, and proteolytic enzymes. Clinical recruitment of immature CD34+ cells to the peripheral blood (PB) is achieved by repeated G-CSF stimulations. Yet, the mechanisms governing progenitor cell egress during steady state homeostasis and clinical mobilization are not fully understood. Membrane type-1 metalloproteinase (MT1-MMP) and its endogenous inhibitor, RECK, are established key regulators of tumor and endothelial cell motility. We detected higher MT1-MMP and lower RECK expression on circulating human CD34+ progenitors and maturing leukocytes as compared to immature bone-marrow (BM) cells. MT1-MMP expression was even more prominent on CD34+ cells obtained from PB of G-CSF-treated healthy donors whereas RECK labeling was barely detected. In addition, five daily injections of G-CSF to NOD/SCID mice, previously engrafted with human cells, increased MT1-MMP and decreased RECK expression on human CD45+ leukocytes, immature CD34+ and primitive CD34+/CD38−/low cells, in a PI3K/Akt1-dependent manner, resulting in elevated MT1-MMP activity. Inverse regulation of MT1-MMP and RECK by G-CSF mobilization was confirmed by in situ immuno-labeling of BM sections, as well as by human MT1-MMP and RECK mRNA expression analysis of leukocytes repopulating the BM of chimeric mice. Blocking MT1-MMP function impaired mobilization, while RECK neutralization promoted egress of human CD34+ progenitors in the functional pre-clinical model of NOD/SCID chimeric mice. Targeting MT1-MMP expression by SiRNA or blocking its function reduced the in-vitro chemotactic response to SDF-1 of human CD34+ progenitors via matrigel and impaired to a similar extent the BM homing capacity of transplanted human CD34+ cells in NOD/SCID mice. In accordance, neutralization of RECK function, thus abrogating RECK-mediated inhibition of MT1-MMP, facilitated SDF-1-induced migration of steady state human BM CD34+ cells in vitro. Furthermore, following G-CSF mobilization, we also observed a reduction in CD44 expression on human leukocytes and, specifically, on immature CD34+ progenitor cells in the BM of chimeric mice. This was accompanied by accumulation of CD44 cleaved products of molecular weights, expected for MT1-MMP activity, in the BM supernatants. In chimeric mice co-injected with MT1-MMP-neutralizing Ab, less cleavage of CD44 was detected upon G-CSF mobilization, whereas in the absence of a mobilizing signal, increasing MT1-MMP activity by anti RECK Ab injection facilitated CD44 proteolysis on the BM cells. Finally, MT1-MMP expression correlated with the number of CD34+ cells, collected on the first apheresis day in 29 consecutive patients with lymphoid malignancies and in 21 healthy donors treated with G-CSF. In conclusion, our results indicate that G-CSF inversely regulates MT1-MMP and RECK expression on CD34+ progenitors, resulting in net increase in MT1-MMP activity. MT1-MMP proteolysis of CD44 diminishes progenitor adhesion to BM components, leading to cell egress. These cell autonomous changes provide a previously undefined mechanism for G-CSF recruitment of CD34+ progenitors and might serve as target for new approaches to improve clinical stem cell mobilization.


Sign in / Sign up

Export Citation Format

Share Document