Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification

Blood ◽  
2013 ◽  
Vol 122 (24) ◽  
pp. 3884-3891 ◽  
Author(s):  
German Ott ◽  
Andreas Rosenwald ◽  
Elias Campo

Abstract MYC is a potent oncogene initially identified as the target of the t(8;14)(q24;q32) chromosome translocation in Burkitt lymphoma. MYC gene alterations have been identified in other mature B-cell neoplasms that are usually associated with an aggressive clinical behavior. Most of these tumors originate in cells that do not normally express MYC protein. The oncogenic events leading to MYC up-regulation seem to overcome the inhibitory effect of physiological repressors such as BCL6 or BLIMP1. Aggressive lymphomas frequently carry additional oncogenic alterations that cooperate with MYC dysregulation, likely counteracting its proapoptotic function. The development of FISH probes and new reliable antibodies have facilitated the study of MYC gene alterations and protein expression in large series of patients, providing new clinical and biological perspectives regarding MYC dysregulation in aggressive lymphomas. MYC gene alterations in large B-cell lymphomas are frequently associated with BCL2 or BCL6 translocations conferring a very aggressive behavior. Conversely, MYC protein up-regulation may occur in tumors without apparent gene alterations, and its association with BCL2 overexpression also confers a poor prognosis. In this review, we integrate all of this new information and discuss perspectives, challenges, and open questions for the diagnosis and management of patients with MYC-driven aggressive B-cell lymphomas.

Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 575-583 ◽  
Author(s):  
German Ott ◽  
Andreas Rosenwald ◽  
Elias Campo

Abstract MYC is a potent oncogene initially identified as the target of the t(8;14)(q24;q32) chromosome translocation in Burkitt lymphoma. MYC gene alterations have been identified in other mature B-cell neoplasms that are usually associated with an aggressive clinical behavior. Most of these tumors originate in cells that do not normally express MYC protein. The oncogenic events leading to MYC up-regulation seem to overcome the inhibitory effect of physiological repressors such as BCL6 or BLIMP1. Aggressive lymphomas frequently carry additional oncogenic alterations that cooperate with MYC dysregulation, likely counteracting its proapoptotic function. The development of FISH probes and new reliable antibodies have facilitated the study of MYC gene alterations and protein expression in large series of patients, providing new clinical and biological perspectives regarding MYC dysregulation in aggressive lymphomas. MYC gene alterations in large B-cell lymphomas are frequently associated with BCL2 or BCL6 translocations conferring a very aggressive behavior. Conversely, MYC protein up-regulation may occur in tumors without apparent gene alterations, and its association with BCL2 overexpression also confers a poor prognosis. In this review, we integrate all of this new information and discuss perspectives, challenges, and open questions for the diagnosis and management of patients with MYC-driven aggressive B-cell lymphomas.


Hematology ◽  
2014 ◽  
Vol 2014 (1) ◽  
pp. 100-106 ◽  
Author(s):  
German Ott

Abstract MYC, a member of the helix-loop-helix leucine zipper family of nuclear transcription factors, is a potent proto-oncogene primarily identified as the target of the t(8;14)(q24;q32) chromosome translocation in Burkitt lymphoma. Activation of the MYC gene in normal cells both results in enhanced cellular proliferation and up-regulation of pro-apoptotic pathways, reflecting the tight regulation of the molecule in the normal cellular system. In the process of transformation, these secondary inhibitory functions of the MYC molecule have to be overcome through secondary mutations of the MYC gene itself and/or by abrogating the inhibitory effects of physiological regulators and/or repressors of proliferation such as BCL2, BCL6, BLIMP1, or others. Most aggressive lymphomas, therefore, harbor additional oncogenic alterations that cooperate with MYC deregulation, with different alterations identified in human solid or hematological tumors. These alterations are likely to counteract the pro-apoptotic function of MYC. MYC gene alterations in diffuse large B-cell lymphomas and in B-cell lymphomas, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma are frequently associated with BCL2 or/and BCL6 translocations conferring a very aggressive behavior. This review summarizes inherent factors of the biology and function of MYC important in the process of transformation, especially taking account the interdependence of MYC on various cellular networks that have to be co-deregulated to achieve the full malignant phenotype.


2001 ◽  
Author(s):  
E Baecklund ◽  
C Sundström ◽  
A Ekbom ◽  
N Feltelius ◽  
L Klareskog

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1013-1020 ◽  
Author(s):  
Marcello Arsura ◽  
Claudia S. Hofmann ◽  
Josee Golay ◽  
Martino Introna ◽  
Gail E. Sonenshein

Abstract A-myb is a member of the myb family of transcription factors, which regulates proliferation, differentiation, and apoptosis of hematopoietic cells. A-Myb expression is normally restricted to the proliferating B-cell centroblasts and transgenic mice overexpressing A-myb displayed enhanced hyperplasia of the lymph nodes. Because A-Myb is highly expressed in several subtypes of human B-cell neoplasias, we sought to determine whether the A-myb gene promoted proliferation and survival of B lymphocytes, using the WEHI 231 and CH33 murine B-cell lymphomas as models. Here, we show that ectopic expression of A-mybrescues WEHI 231 and CH33 cells from growth arrest and apoptosis induced by anti-IgM treatment. Previously, we demonstrated an essential role of the c-myc gene in promoting cell survival of WEHI 231 cells in response to a variety of apoptotic stimuli. Furthermore, we and others have shown that the c-myc gene is potently transactivated by A-Myb in several cell types. Thus, we sought to determine whether c-Myc would mediate the A-Myb antiapoptotic effect in B cells. Here we show that ectopic expression of A-myb leads to maintenance of c-myc expression, and that expression of antisense c-myc RNA ablates A-Myb–mediated survival signals. Thus, these findings strongly implicate the A-myb gene in the regulation of B-cell survival and confirm the c-myc gene as one of the downstream targets of A-myb in these cells. Overall, our observation suggests that A-mybexpression may be relevant to the pathology of human B-cell neoplasias.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1013-1020 ◽  
Author(s):  
Marcello Arsura ◽  
Claudia S. Hofmann ◽  
Josee Golay ◽  
Martino Introna ◽  
Gail E. Sonenshein

A-myb is a member of the myb family of transcription factors, which regulates proliferation, differentiation, and apoptosis of hematopoietic cells. A-Myb expression is normally restricted to the proliferating B-cell centroblasts and transgenic mice overexpressing A-myb displayed enhanced hyperplasia of the lymph nodes. Because A-Myb is highly expressed in several subtypes of human B-cell neoplasias, we sought to determine whether the A-myb gene promoted proliferation and survival of B lymphocytes, using the WEHI 231 and CH33 murine B-cell lymphomas as models. Here, we show that ectopic expression of A-mybrescues WEHI 231 and CH33 cells from growth arrest and apoptosis induced by anti-IgM treatment. Previously, we demonstrated an essential role of the c-myc gene in promoting cell survival of WEHI 231 cells in response to a variety of apoptotic stimuli. Furthermore, we and others have shown that the c-myc gene is potently transactivated by A-Myb in several cell types. Thus, we sought to determine whether c-Myc would mediate the A-Myb antiapoptotic effect in B cells. Here we show that ectopic expression of A-myb leads to maintenance of c-myc expression, and that expression of antisense c-myc RNA ablates A-Myb–mediated survival signals. Thus, these findings strongly implicate the A-myb gene in the regulation of B-cell survival and confirm the c-myc gene as one of the downstream targets of A-myb in these cells. Overall, our observation suggests that A-mybexpression may be relevant to the pathology of human B-cell neoplasias.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 969-972 ◽  
Author(s):  
AC Aisenberg ◽  
BM Wilkes ◽  
JO Jacobson

Abstract Southern blotting was used to detect rearrangement of the bcl-2 gene in 104 cases of non-Hodgkin's lymphoma subclassified by the Working Formulation, 24 cases of B cell chronic lymphocytic leukemia (B-CLL) and 14 cases of T cell malignancy. Earlier workers reported rearrangement of this gene (located on chromosome 18) in a major fraction of follicular lymphomas, lymphomas in which a 14;18 chromosome translocation is frequently observed. In the present study, bcl-2 was rearranged in 30% (11 of 37) of follicular lymphomas and 19% (11 of 58) of diffuse lymphomas of follicle center cell lineage. In 18 of 19 samples studied, the rearranged bcl-2 fragment also hybridized with a probe for the joining region of the immunoglobulin heavy chain gene located on chromosome 14, indicating a 14;18 translocation. In lymphomas not derived from follicle center cells, ie, diffuse lymphomas of small B lymphocytes, B-CLL and T cell neoplasms, the bcl-2 gene was always in germline configuration. The frequent rearrangement of bcl-2 in a variety of B cell lymphomas of diffuse morphology (small cleaved cell, large cell, small noncleaved cell and immunoblastic) is noteworthy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2968-2968
Author(s):  
Evelena Ontiveros ◽  
David Dae-Young Kim ◽  
Jeffrey M Calimlim ◽  
Matthew I. Schrage ◽  
Quang T Luong ◽  
...  

Abstract Abstract 2968 Poster Board II-944 Previously, we identified and validated PIM1 as a differentially expressed gene in mantle cell lymphoma (MCL) patient samples. Further, we have shown PIM1 to be a significant prognostic biomarker in MCL. PIM1 is a serine/threonine kinase that is transcriptionally regulated by cytokines, mitogens, and numerous growth factors. PIM1 cooperates with other oncogenes in tumorigenesis and has been implicated in the development of leukemias, lymphomas, late progression events, and most recently in prostate cancer. PIM1 is overexpressed in aggressive lymphomas, such as the blastoid variant of MCL, and the ABC-subtype of diffuse large B-cell lymphomas (DLBCL). Here, we tested the in vivo cooperation of PIM1 with TCL1 in murine lymphomagenesis by producing double transgenic murine strains. PIM1 transgenic mice overexpress murine PIM1 under the control of the immunoglobulin enhancer Eμ. TCL1 transgenic mice (pEμ-B29-TCL1) fail to down-regulate TCL1 expression in mature B and T cells and provide a unique model for mature B-cell malignancies. We hypothesized that PIM1 would either accelerate TCL1-driven lymphomagenesis, result in the development of immature lymphomas, or both. Lymphoid malignancies were examined by immunohistochemistry and classified by a hematopathologist according to “Mouse Models of Human Blood Cancers” (Li et al., 2008). A Kaplan-Meier plot demonstrated statistically significant acceleration of lymphomagenesis in the PIM1/TCL1 transgenic mice when compared with the single transgenic strains. The median lymphoma-free survival for TCL1 single transgenic mice, PIM1 single transgenic mice, or PIM1/TCL double transgenic mice were 10.0 months, 16.0 months, and 8.5 months, respectively. The results were statistically significant: TCL1 vs. PIM1/TCL1 (p=0.0008), PIM1 vs. PIM1/TCL1 (p<0.0001). PIM1 transgenic mice developed rare [1 of 31 (3.2%)] and early (< 7 months of age) T-cell lymphoblastic lymphomas and more commonly developed late (>12 months of age) B-cell lymphomas. The most common lymphomas in PIM1 single transgenic were low-grade B-cell lymphomas [12 of 31 (38.7%)], mainly follicular lymphomas. A minority of PIM1 single transgenic mice developed aggressive lymphomas [6 of 31 (19.4%)], including DLBCL and Burkitt's lymphoma. In contrast, the majority of TCL1 transgenic mice developed aggressive B-cell lymphomas [21 of 36 (58.3%)], mainly DLBCL, lymphohistiocytic subtype. The majority of PIM1/TCL1 double transgenic mice also developed aggressive B-cell lymphomas [20 of 34 (58.8%)], mainly DLBCL, lymphohistiocytic subtype. The low-grade lymphomas that developed in PIM1/TCL1 mice included 5 cases of lymphoplasmacytic lymphoma (LPL); one of these cases had transformed in addition to a DLBCL. Further, endogenous expression of PIM kinase family members was investigated in a human lymphoma cell line bank (n=40) by quantitative real-time PCR. PIM1, PIM2, and PIM3 were found to be overexpressed in cell lines derived from human lymphoid malignancies of multiple histologies. In summary, aberrant PIM1 overexpression in TCL1 transgenic mice accelerated the development of mature, aggressive B-cell lymphomas. The classification of lymphomas in PIM1/TCL1 mice revealed similar histologies as in TCL1 single transgenic mice, mainly DLBCL. Single transgenic PIM1 mice developed low-grade B-cell lymphomas after prolonged observation time. The expression of all 3 PIM kinase family members in human lymphomas implies that pan-PIM kinase inhibitors should be developed as a potential mechanism of drug resistance to more restricted PIM inhibitors could be compensatory overexpression of the non-targeted Pim family members. A clinical trial with a pan-PIM inhibitor is currently ongoing. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1552-1552
Author(s):  
Guoxian Sun ◽  
Lya Montella ◽  
Min Yang

Abstract Abstract 1552 Background: Multifunctional MYC oncogene overexpression resulting from genomic rearrangement plays a critical role in lymphomagenesis and lymphoma manifestation, particularly in aggressive B-cell lymphomas such as Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL) and B-cell lymphoma unclassifiable with features intermediate between DLBCL and BL including double hit or triple hit lymphomas (DHL/THL). Accurate detection of MYC gene rearrangement, its presence or absence, has become increasingly important with its diagnostic and consequent therapeutic implications. In practice, FISH is the best test for MYC alterations. However, this is technically challenging, requiring knowledgeable and skillful cytogeneticists to design probe panels, correctly analyze and interpret atypical as well as typical signal patterns. For instance, up to 10% of patients with otherwise typical BL can be MYC rearrangement negative by FISH and, gene amplification and miRNA deregulation have been reported as possible reasons in occasional cases, although some of the FISH negative patients could be detected by better application of probes and interpretation of FISH findings. Here we retrospectively analyze FISH results from 879 consecutive MYC positive cases and share our experience with other FISH labs and physicians who are involved in diagnosis, differential diagnosis and treatment of aggressive lymphomas. Results: A MYC/IGH dual fusion translocation probe and a MYC break apart (ba) probe (Vysis) were applied to paraffin embedded tissue, lymph node biopsy, bone marrow and peripheral blood specimens. Of the 879 cases, MYC ba was positive in 258, MYC ba and MYC-IGH both positive in 331, MYC ba positive/MYC-IGH negative in 276, and MYC-IGH positive/MYC ba negative in 14 cases. Two subsets of cases with significant atypical signal patterns were observed. Firstly, in 14 cases with both probes tested, MYC ba was negative but MYC/IGH positive, including 6 BLs, 3 DLBCLs, 1 MCL, 1 Burkitt leukemia transformed from BL, 1 subtype unknown lymphoma and 2 DHLs with history of Hodgkin lymphoma and Burkitt-like lymphoma respectively and with concomitant BCL6 gene rearrangement in both. Eleven of these cases showed a single fusion signal pattern suggesting an insertion of IGH sequences into MYC or vise versa. This single insertion fusion pattern can also be resulted from complex chromosome changes as seen cytogenetically in 2 of the 11 cases. Secondly, 26 cases with various diagnoses including 4 DHLs and 2 THLs showed MYC rearrangement with a concomitant partial deletion of the MYC ba probe with 17 cases for 3' and 9 for 5' deletion. Three of these cases were also positive for concomitant probe deletion and amplification, two with 3' deletion and 5' amplification and one with 5' deletion and 3' amplification. Conclusion and discussion: MYC gene rearrangement detection by FISH in aggressive B-cell lymphomas is widely used. However, FISH labs should realize the technical limitations of each probe/panel based on underlying mechanisms involving MYC rearrangement and minimize false negative results. From our experience and previous studies by other groups, it is recommended that MYC ba probe should not be tested alone but together with a MYC/IGH t(8;14) translocation probe to detect cryptic insertions and variant translocations which often present as MYC ba negative yet MYC/IGH positive with a single fusion signal pattern inserting IGH promoter/enhancer elements into MYC or part or all of the MYC probe into IGH locus. Another observation that can also be misinterpreted is that the MYC ba probe often shows a deletion of either 5' or 3' flanking sequence. This is not because of tissue sectioning but indicative of MYC rearrangement with a concomitant loss of the DNA sequences adjacent to the breakpoints. A flanking sequence deletion revealed at translocation breakpoints using a FISH ba probe is a common finding. As well documented, BCR/ABL translocation results in an ASS deletion upstream of ABL in ∼15% of CMLs, and a 5' probe deletion in ∼30% ALK rearrangement positive NSCLC cases. Three of 26 such cases in our study also showed simultaneous retained MYC probe amplification making FISH interpretation even more difficult. As a diagnostic, prognostic and predictive biomarker, MYC gene plays a pivotal role in aggressive B-cell lymphomas, and its accurate detection will help improve disease risk stratification and therapy selection. Disclosures: No relevant conflicts of interest to declare.


Science ◽  
1984 ◽  
Vol 224 (4656) ◽  
pp. 1403-1406 ◽  
Author(s):  
Y Tsujimoto ◽  
J Yunis ◽  
L Onorato-Showe ◽  
J Erikson ◽  
P. Nowell ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2950-2956 ◽  
Author(s):  
Megan S. Lim ◽  
Ann Adamson ◽  
Zhaosheng Lin ◽  
Bayardo Perez-Ordonez ◽  
Richard C. K. Jordan ◽  
...  

Reduced levels of p27Kip1 are frequent in human cancers and have been associated with poor prognosis. Skp2, a component of the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase complex, has been implicated in p27Kip1 degradation. Increased Skp2 levels are seen in some solid tumors and are associated with reduced p27Kip1. We examined the expression of these proteins using single and double immunolabeling in a large series of lymphomas to determine if alterations in their relative levels are associated with changes in cell proliferation and lymphoma subgroups. We studied the expression of Skp2 in low-grade and aggressive B-cell lymphomas (n = 86) and compared them with p27Kip1 and the proliferation index (PI). Fifteen hematopoietic cell lines and peripheral blood lymphocytes were studied by Western blot analysis. In reactive tonsils, Skp2 expression was limited to proliferating germinal center and interfollicular cells. Skp2 expression in small lymphocytic lymphomas (SLLs) and follicular lymphomas (FCLs) was low (mean percentage of positive tumor cells, less than 20%) and was inversely correlated (r = −0.67;P < .0001) with p27Kip1 and positively correlated with the PI (r = 0.82;P < .005). By contrast, whereas most mantle cell lymphomas (MCLs) demonstrated low expression of p27Kip1 and Skp2, a subset (n = 6) expressed high Skp2 (exceeding 20%) with a high PI (exceeding 50%). Skp2 expression was highest in diffuse large B-cell lymphomas (DLBCLs) (mean, 22%) and correlated with Ki-67 (r = 0.55;P < .005) but not with p27Kip1. Cytoplasmic Skp2 was seen in a subset of aggressive lymphomas. Our data provide evidence for p27Kip1 degradative function of Skp2 in low-grade lymphomas. The absence of this relationship in aggressive lymphomas suggests that other factors contribute to deregulation of p27Kip1 expression in these tumors.


Sign in / Sign up

Export Citation Format

Share Document