scholarly journals Efficacy of Induction Thearapy with Lenalidomide, Bortezomib, and Dexamethasone (RVD) in 1000 Newly Diagnosed Multiple Myeloma (MM) Patients

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3294-3294 ◽  
Author(s):  
Nisha Joseph ◽  
Vikas A. Gupta ◽  
Craig C Hofmeister ◽  
Charise Gleason ◽  
Leonard Heffner ◽  
...  

Abstract Background : Lenalidomide, bortezomib and dexamethasone (RVD) has been shown to be a well-tolerated and efficacious induction regimen in newly diagnosed myeloma patients. Two large randomized phase III trials show an overall response rate (ORR) >95% (Durie et al, Attal et al) supporting this combination regimen. We have conducted a retrospective analysis utilizing our institutional data of 1000 patients treated with RVD induction therapy at the Winship Cancer Institute of Emory University. Methods: 1000 newly diagnosed MM patients were treated with RVD induction therapy [R - 25 mg/day (days 1-14), V - 1.3 mg/m2 (days 1, 4 8, 11) and D - 40 mg once/twice weekly as tolerated every 21 days] from January 1st 2005 until August 31st 2016. Dose-adjustments were made based on the treating physician's discretion and patient tolerability. Demographic and outcomes data for the patients were obtained from our IRB approved myeloma database and responses were evaluated per IMWG Uniform Response Criteria. Results: The median age of this cohort was 61 years (range 16-83). Other notable patient characteristics include: M/F 54.3%/45.6%; W/AA 56.4%/34%; ISS I and II/III 54%/17%; Isotype IgG/IgA/FLC 59.1%/19%/15.8%; standard risk/high risk 72%/28%. High risk disease was defined as the presence of t(4;14), t(14;16), del(17p), and/or complex karyotype. A total of 835 patients (83.5%) underwent autologous stem cell transplant (ASCT) upfront after attaining at least a partial response with induction therapy, and 165 patients (16.5%) were offered deferred transplant. Among the patients that opted for deferred transplant, 56 of these patients (33.9%) underwent ASCT at first relapse with a median time to transplant of 30 months (3-96). 755 (75.5%) of patients received risk-stratified maintenance therapy following transplant. Evaluation of responses to induction therapy for the entire cohort show an ORR 97.3% with ≥VGPR of 68% post-induction therapy. Response rates 100 days post-transplant show an ORR 98% with 30.7% of patients achieving a sCR. Response rates are summarized in table 1. Median PFS was 63 months for the entire cohort, and 72 months for standard risk patients (61.75-82.25) versus 37 months for the high-risk patients (30.84-43.16), p<0.001. Median OS has not been reached at median of 38 months follow up (Figure 1). Conclusions: This is the largest reported cohort of myeloma patients treated with RVD induction. These results illustrate both the activity of this induction regimen with impressive response rates and long-term outcomes in both standard and high risk patients. Disclosures Hofmeister: Adaptive biotechnologies: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees. Heffner:ADC Therapeutics: Research Funding; Kite Pharma: Research Funding; Genentech: Research Funding; Pharmacyclics: Research Funding. Boise:AstraZeneca: Honoraria; Abbvie: Consultancy. Kaufman:BMS: Consultancy; Karyopharm: Other: data monitoring committee; Abbvie: Consultancy; Janssen: Consultancy; Roche: Consultancy. Lonial:Amgen: Research Funding. Nooka:GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Adaptive technologies: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Spectrum Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3851-3851
Author(s):  
Jorge Cortes ◽  
Hagop M. Kantarjian ◽  
Tapan M. Kadia ◽  
Guillermo Garcia-Manero ◽  
Elias Jabbour ◽  
...  

Background: The combination of all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) is superior to ATRA plus chemotherapy in the treatment of standard risk patients (pts) with newly diagnosed APL. MRD monitoring has been successfully utilized for the early identification of relapse. Qualitative PCR has been superseded with the more accurate real-time quantitative PCR (RQ-PCR) for MRD detection in APL. Methods: We reviewed pts with newly diagnosed APL treated at our institution on 3 consecutive prospective clinical trials, using the combination of ATRA and ATO, with or without gemtuzumab ozogamicin (GO). GO was given to High risk pts (WBC >10 × 109/L) and pts with rising WBC. Real-time quantitative RT-PCR (RQ-PCR) was used to measure PML-RARα in bone marrow (BM) and peripheral blood (PB) specimens. We sought to determine the value of MRD monitoring in patients with APL treated with this regimen. Results: A total of 223 pts with APL have been followed from July 2002 to March 2019 with a total of 2007 samples (1622 BM, 385 PB) analyzed with a median number of samples of 8 per pt (range, 1-43). Median follow up is 55.6 months (range, 1-198). MRD positivity decreased over time on therapy; 218 pts (98%) were MRD positive after induction, while only 2 pts (1%) were positive after the first cycle of consolidation. Eight pts (3.5%) had positive MRD (all ≤0.1) during consolidation or after completing treatment but became negative after repeated MRD testing and none of them relapsed. Overall, seven pts relapsed (5 with high risk disease and 2 with low risk) and The median time to relapse after achieving CR was 9.4 months (range, 7.9-79.5).The time to the first relapse was between 7.9-12.4 months except for the pt who relapsed after 79.5 months (low risk pt), Among the high risk pts, molecular relapse preceded hematological relapse by 3.7 weeks (range, 2.1-4.1). There was a correlation between quantitative PCR values on PB and BM samples obtained concomitantly (r2=0.67, p=0.048). Conclusions: MRD monitoring may be useful for early detection of relapse in pts with high risk APL within first year after completion of therapy. Late molecular relapse is very rare and does not justify universal monitoring especially in standard risk patients. These data support the lack of need for MRD monitoring after completion of consolidation in pts with standard risk APL treated with ATRA plus ATO. Table Disclosures Kantarjian: Novartis: Research Funding; Takeda: Honoraria; Agios: Honoraria, Research Funding; Ariad: Research Funding; Daiichi-Sankyo: Research Funding; Cyclacel: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Research Funding; Immunogen: Research Funding; BMS: Research Funding; Astex: Research Funding; AbbVie: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Jazz Pharma: Research Funding. Kadia:Celgene: Research Funding; Jazz: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Bioline RX: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Membership on an entity's Board of Directors or advisory committees. Garcia-Manero:Merck: Research Funding; Amphivena: Consultancy, Research Funding; Helsinn: Research Funding; Novartis: Research Funding; AbbVie: Research Funding; Celgene: Consultancy, Research Funding; Astex: Consultancy, Research Funding; Onconova: Research Funding; H3 Biomedicine: Research Funding. Jabbour:BMS: Consultancy, Research Funding; Adaptive: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; AbbVie: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Cyclacel LTD: Research Funding; Takeda: Consultancy, Research Funding. Borthakur:Incyte: Research Funding; Merck: Research Funding; Strategia Therapeutics: Research Funding; Janssen: Research Funding; GSK: Research Funding; Agensys: Research Funding; Oncoceutics, Inc.: Research Funding; Argenx: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding; BioTheryX: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Eli Lilly and Co.: Research Funding; BMS: Research Funding; Polaris: Research Funding; NKarta: Consultancy; FTC Therapeutics: Membership on an entity's Board of Directors or advisory committees; Xbiotech USA: Research Funding; Arvinas: Research Funding; PTC Therapeutics: Consultancy; Cantargia AB: Research Funding; Tetralogic Pharmaceuticals: Research Funding; Eisai: Research Funding; AstraZeneca: Research Funding; Cyclacel: Research Funding; BioLine Rx: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer Healthcare AG: Research Funding; Oncoceutics: Research Funding. Short:Takeda Oncology: Consultancy, Research Funding; AstraZeneca: Consultancy; Amgen: Honoraria. Alvarado:Jazz Pharmaceuticals: Research Funding; Abbott: Honoraria. Daver:Karyopharm: Consultancy, Research Funding; Abbvie: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Servier: Research Funding; Daiichi Sankyo: Consultancy, Research Funding; Astellas: Consultancy; BMS: Consultancy, Research Funding; Immunogen: Consultancy, Research Funding; Forty-Seven: Consultancy; Agios: Consultancy; Hanmi Pharm Co., Ltd.: Research Funding; Celgene: Consultancy; Glycomimetics: Research Funding; Otsuka: Consultancy; NOHLA: Research Funding; Sunesis: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Jazz: Consultancy; Novartis: Consultancy, Research Funding. Cortes:Novartis: Consultancy, Honoraria, Research Funding; Merus: Consultancy, Honoraria, Research Funding; Forma Therapeutics: Consultancy, Honoraria, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding; BiolineRx: Consultancy; Immunogen: Consultancy, Honoraria, Research Funding; Daiichi Sankyo: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; Sun Pharma: Research Funding; Biopath Holdings: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Astellas Pharma: Consultancy, Honoraria, Research Funding. Ravandi:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Selvita: Research Funding; Xencor: Consultancy, Research Funding; Macrogenix: Consultancy, Research Funding; Menarini Ricerche: Research Funding; Cyclacel LTD: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1000-1000 ◽  
Author(s):  
Robert James Hayashi ◽  
Stuart S. Winter ◽  
Kimberly P. Dunsmore ◽  
Meenakshi Devidas ◽  
Brent Wood ◽  
...  

Abstract Background: COG AALL0434 evaluated the safety and efficacy of a multi agent chemotherapy backbone containing Capizzi based methotrexate/pegaspargase in newly diagnosed T-LL patients. High-risk patients were randomized to receive the COG augmented BFM (ABFM) regimen with or without Nelarabine. This was part of a larger trial including T-Lymphoblastic Leukemia (T-ALL) patients featuring a 2 x 2 pseudo-factorial randomization at the end of induction using the COG ABFM regimen with a randomization of Capizzi MTX/pegaspargase (C-MTX) verses high dose MTX and a randomization with or without Nelarabine (Nel). Methods: AALL0434 enrolled 277 patients with T-LL (2010-2014). Patients were assigned to two risk categories based upon the degree of bone marrow involvement at diagnosis: (≥1%, High Risk, <1% Standard Risk), and the ability to achieve at least a partial response at the end of induction. Patients with prior steroid treatment were assigned to the high risk group. Both groups were treated using the ABFM C-MTX regimen. High-risk patients were randomized to receive or not receive six, 5-day courses of Nel 650 mg/m2/day. No patients received prophylactic cranial radiation and CNS3 patients were ineligible. Response criteria included, Complete Response (CR): disappearance, Complete Response unconfirmed (CRu): >75% reduction, Partial Response (PR): >50% reduction, of all measurable disease, all without new lesions. Results: At the end of induction, 98.9% of the evaluable patients achieved at least a partial response (30.7% CR, 34.7% CRu, 33.5% PR). For all T-LL patients, the 4-year event free survival (EFS) and overall survival (OS) were 87.0 +/- 2.1% and 90.0+/-1.8%. The 4-year Disease Free Survival (DFS) from end of induction was 90.0+/- 2.1%. There was no difference in DFS observed between the high risk and standard risk groups, (p=0.25) or by treatment regimen (p=0.31). Nel did not show an advantage for high-risk T-LL patients, with 4-year DFS 85.0 +/- 5.6% with Nel (N=60) vs 89.0 +/- 4.7% without Nel (N=58) (p=0.28). Neither stage nor tumor response at the end of four weeks of induction therapy resulted in differences in EFS (p= 0.34 and p= 0.22, respectively). Minimal detectable disease (MDD) of the bone marrow at diagnosis (<0.1%, 0.1-0.99%, >1.0%), used to establish the risk assignment for this trial, failed to demonstrate thresholds at diagnosis that resulted in differences in EFS (p=0.27). Relapse involving the CNS only occurred in 4 patients (1.4%). Overall toxicity and neurotoxicity was acceptable and not significantly different than that experienced from the ALL cohort. There was one observed second malignancy and 5 deaths not from progressive disease. Conclusion: COG AALL0434 produced excellent outcomes in one of the largest trials ever conducted for patients with newly diagnosed T-LL. The COG ABFM regimen with C-MTX provides excellent disease control regardless of stage, or the degree of disease involvement of the bone marrow at diagnosis. Nelarabine did not show an improvement in the outcome, although the trial was underpowered to address this specific question. Disclosures Teachey: Amgen: Consultancy; La Roche: Consultancy. Bollard:Torque: Honoraria, Membership on an entity's Board of Directors or advisory committees; Cellectis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Neximmune: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4569-4569 ◽  
Author(s):  
Frits van Rhee ◽  
Sharmilan Thanendrarajan ◽  
Carolina D. Schinke ◽  
Jeffery R. Sawyer ◽  
Adam Rosenthal ◽  
...  

Background. The TT approach has significantly improved the outcome of multiple myeloma (MM) by combining new drugs with a regimen that comprises induction, tandem autologous stem cell transplantation (ASCT), consolidation and maintenance. However, a group of 15% of patients with high risk multiple myeloma (HRMM) have derived little benefit despite similar response rates to induction chemotherapy and ASCT when compared to low risk MM. The poor outcome of HRMM is explained by early relapse post ASCT resulting in a short progression free survival (PFS) with only 15-20% of patients surviving long-term. Daratumumab (Dara) is a human IgG1k anti-CD38 monoclonal antibody that has shown favorable results in early single-arm studies and more recently in phase III studies for relapsed/refractory and newly diagnosed MM. In TT7, we introduced Dara during all phases of therapy, including immune consolidation early post ASCT, to improve responses rate and PFS in HRMM. Methods. Patients had newly diagnosed HRMM as defined by high risk cytogenetic abnormalities, presence of extramedullary disease, >3 focal lesions on CT-PET, elevated LDH due to MM, or ISS II/III with cytogenetic abnormality. Dara (16mg/kgx1) was added to induction with KTD-PACE (carfilzomib, thalidomide, dexamethasone; and four-day continuous infusions of cisplatin, doxorubicin, cyclophosphamide, etoposide). Conditioning for tandem autologous stem cell transplantation (ASCT) was with fractionated melphalan (50mg/m2x4) (fMEL) based on prior observations that patients with adverse cytogenetics fare better with fMEL rather than single high dose MEL200mg/m2.In the inter tandem ASCT period immunological consolidation with Dara (16mg/kg) alone for 2 doses was followed by Dara (16mg/kg) on day 1 combined with K (36mg/m2) and D (20mg) weekly for 2 cycles. DaraKD was administered to avoid treatment free periods allowing for myeloma regrowth. The 2nd ASCT was followed by further immunological consolidation with Dara (16mg/k) for 2 doses, and maintenance therapy for 3 yrs with 3-months block of alternating Dara-KD (dara 16mg/kg day 1; K 36mg/m2 and dex 20mg weekly) and Dara-lenalidomide (R)D (dara 16mg/kg day 1; R 15mg day 1-21 q28 and D 20mg weekly). Results. TT7 enrolled 43 patients thus far. The median follow-up was 11 months (range: 1-22). The median age was 61 yrs (range 44-73). Sixteen patients were ≥65 yrs (37.2%). A mean of 29.4x106 CD34+ cells/kg (range: 4.6-86.4) were collected. 36 patients completed ASCT #1 (83.7%) and 18 (41.9%) ASCT #2, whilst 14 patients have proceeded to the maintenance phase. R-ISS II/III or metaphase cytogenetic abnormalities were present in 85.1 and 58.1% of patients, respectively. Elevated LDH or >3FL on CT-PET were noted in 30 and 41.8%. The 1-yr cumulative incidence estimates for reaching VGPR and PR were 87 and 83%, respectively. A CR or sCR was achieved in 68 and 46%. The 1-yr estimates of PFS and OS were 91.6 and 87.2%. 40 subjects are alive, whilst 5 progressed on study therapy and 3 subsequently died. 38 patients are progression free at the time of reporting. Dara was well-tolerated and no subjects discontinued therapy due to dara-related side effects. The CR and sCR rates compared favorably to the predecessor HRMM TT5 protocol where CR and sCR rates were 59 and 27%. Conclusion. The early results of TT7 point to increased response rates of HRMM to a dara-based TT regimen with especially higher rates of CR and sCR. Longer follow-up is required to determine if these early results translate into superior PFS and OS. Figure Disclosures van Rhee: Karyopharm Therapeutics: Consultancy; Kite Pharma: Consultancy; Adicet Bio: Consultancy; Takeda: Consultancy; Sanofi Genzyme: Consultancy; Castleman Disease Collaborative Network: Consultancy; EUSA: Consultancy. Walker:Celgene: Research Funding. Morgan:Amgen, Roche, Abbvie, Takeda, Celgene, Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Other: research grant, Research Funding. Davies:Amgen, Celgene, Janssen, Oncopeptides, Roche, Takeda: Membership on an entity's Board of Directors or advisory committees, Other: Consultant/Advisor; Janssen, Celgene: Other: Research Grant, Research Funding.


2020 ◽  
Vol 38 (17) ◽  
pp. 1928-1937 ◽  
Author(s):  
Nisha S. Joseph ◽  
Jonathan L. Kaufman ◽  
Madhav V. Dhodapkar ◽  
Craig C. Hofmeister ◽  
Dhwani K. Almaula ◽  
...  

PURPOSE The combination of lenalidomide, bortezomib, and dexamethasone (RVD) is a highly effective and convenient induction regimen for both transplantation-eligible and -ineligible patients with myeloma. Here, we present the largest cohort of patients consecutively treated with RVD induction therapy followed by risk-adapted maintenance therapy with the longest follow-up and important information on long-term outcomes. PATIENTS AND METHODS We describe 1,000 consecutive patients with newly diagnosed myeloma treated with RVD induction therapy from January 2007 until August 2016. Demographic and clinical characteristics and outcomes data were obtained from our institutional review board–approved myeloma database. Responses and progression were evaluated per International Myeloma Working Group Uniform Response Criteria. RESULTS The overall response rate was 97.1% after induction therapy and 98.5% after transplantation, with 89.9% of patients achieving a very good partial response (VGPR) or better and 33.3% achieving stringent complete response after transplantation at a median follow-up time of 67 months. The estimated median progression-free survival time was 65 months (95% CI, 58.7 to 71.3 months) for the entire cohort, 40.3 months (95% CI, 33.5 to 47 months) for high-risk patients, and 76.5 months (95% CI, 66.9 to 86.2 months) for standard-risk patients. The median overall survival (OS) time for the entire cohort was 126.6 months (95% CI, 113.3 to 139.8 months). The median OS for high-risk patients was 78.2 months (95% CI, 62.2 to 94.2 months), whereas it has not been reached for standard-risk patients. Five-year OS rates for high-risk and standard-risk patients were 57% and 81%, respectively, and the 10-year OS rates were 29% and 58%, respectively. CONCLUSION RVD is an induction regimen that delivers high response rates (VGPR or better) in close to 90% of patients after transplantation, and risk-adapted maintenance can deliver unprecedented long-term outcomes. This study includes the largest cohort of patients treated with RVD reported to date with long follow-up and demonstrates the ability of 3-drug induction regimens in patients with newly diagnosed multiple myeloma to result in a substantial survival benefit.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 187-187 ◽  
Author(s):  
Jatin J. Shah ◽  
Lei Feng ◽  
Elisabet E. Manasanch ◽  
Donna Weber ◽  
Sheeba K Thomas ◽  
...  

Abstract Background: Induction therapy prior to autologous stem cell transplantation (ASCT) continues to improve with the use of multi-drug combination regimens. Panobinostat (pano), a deacetylase inhibitor, was recently approved in combination with bortezomib/dexamethasone for relapsed myeloma based on the phase III PANORMA I trial for RRMM. The addition of pano in PANORAMA demonstrated a near doubling in CR rate from 15 to 27%. We previously reported phase I trial data of RVD + pano in newly diagnosed myeloma (NDMM) and demonstrated the pano can be safely combined with RVD. Based on the encouraging preliminary data we pursued a phase II dose expansion to further explore the potential improvement in depth of response with RVD + pano in NDMM. Methods: The primary objective was to determine the safety/tolerability of pano and RVD in NDMM. Secondary objectives were to determine efficacy as measured by the CR/nCR rate after 4 cycles, ORR, tolerability/toxicity, and progression free survival. Patients had to have NDMM with indication for therapy and be eligible for ASCT with adequate organ function. Panobinostat 10 mg was administered on days 1, 3, 5, 8, 10, 12; bortezomib 1.3 mg/m2 was administered subcutaneously on days 1, 4, 8, 11; lenalidomide 25 mg on days 1-14; dexamethasone 20 mg on days 1, 2, 4, 5, 8, 9, 11, and 12 on a 21 day cycle. Adverse events (AEs) were graded by NCI-CTCAE v4 and responses were assessed by the modified International Uniform Response Criteria. Results: 42 patients (pts) were enrolled; 12 in the dose escalation and 30 in the dose expansion. The median age was 60 (range 44-79); male (n=30); ISS stage I (n=28); ISS stage II (n=10); ISS stage III (n=4); 14/42 pts had high risk myeloma (1 pt with t(4:14) and del17p; 1 pt with del 17p and 1q21; and 12 pts with only 1q21 amplification). Among 42 pts, 2 completed only 1-2 cycles and 1 pt was inevaluable for response. Among the 39 pts who completed 4 cycles and were evaluable for efficacy the ORR (≥PR) after 4 cycles was 93% (36/39) including nCR/CR in 17/39 (44%), VGPR in 10/39 (26%), PR in 9/39 (23%), and SD in 3/39 (8%) pts. In 12 of 14 pts with high risk disease, who were evaluable for response, the ORR was 100% (12/12); the nCR/CR in 6/12 pts; VGPR in 4/12 pts; and 2/12 pts achieved a PR. 25/42 (59%) pts completed induction therapy and underwent consolidation with ASCT; 5 pts completed induction therapy, came off study and did not proceed to ASCT. 8 pts choose a delayed transplant approach, completed induction therapy and stem cell collection. 6 of those 8 pts remain on trial with maintenance therapy (len/dex/pano) per protocol. 2 pts, neither with high risk disease, progressed after cycles 10 and 11 with extramedullary disease and plasma cell leukemia/central nervous system involvement, respectively. 4 additional patients have completed 2, 3, and 5 cycles of therapy and are pending ASCT. Grade 3-4 hematologic adverse events included anemia (5); neutropenia (10); thrombocytopenia (16). Grade 3-4 nonhematologic toxicities included ALT elevation (1); AST elevation (1); constipation (2); diarrhea (4); dyspnea (2); fatigue/muscle weakness (5); syncope (2); MI (1); nausea (3); peripheral neuropathy (2); rash (1); DVT/VTE (3). Infectious complications included grade 2 (G2) urinary tract infection (2); G2 upper respiratory tract infection (5); pneumonia (5); osteomyelitis/musculoskeletal (3); infection (3). Treatment emergent serious adverse events related to therapy observed were: G3 pneumonia (9); G2 fever (5), G3-4 venous thromboembolic events (2); G3 diarrhea (2); atrial fibrillation (2). Other events included 1 pt each with G3 cellulitis, G3 myocardial infarction (MI), G3 febrile neutropenia, G2 diarrhea, G2 seizure, G3 hypotension and G3 sinusitis. 1 pt had a second primary malignancy - a newly diagnosed breast cancer during cycle 9 of therapy. Conclusions: Panobinostat 10 mg can be safely combined with full dose RVD in NDMM. The side effect profile with use of subcutaneous bortezomib demonstrated minimal gastrointestinal toxicity/diarrhea and was a well-tolerated combination. The combination of RVD+ pano lead to rapid disease control with high response rate after 4 cycles of therapy and ORR of 93% and significant depth of response with a 4 cycle nCR/CR rate of 44%. Enrollment in dose expansion is near completion and full data will be presented at ASH and supports the study of panobinostat in a randomized trial for NDMM. Disclosures Shah: Celgene: Consultancy, Research Funding. Thomas:Celgene: Research Funding; Novartis: Research Funding; Idera Pharmaceuticals: Research Funding. Orlowski:Genentech: Consultancy; Acetylon: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Consultancy, Research Funding; Spectrum Pharmaceuticals: Research Funding; Celgene: Consultancy, Research Funding; Array BioPharma: Consultancy, Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Onyx Pharmaceuticals: Consultancy, Research Funding; BioTheryX, Inc.: Membership on an entity's Board of Directors or advisory committees; Millennium Pharmaceuticals: Consultancy, Research Funding; Forma Therapeutics: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1368-1368 ◽  
Author(s):  
Yumeng Zhang ◽  
Hannah H Asghari ◽  
Onyee Chan ◽  
Dasom Lee ◽  
Martine Extermann ◽  
...  

Background: Older patients with acute myeloid leukemia (AML) have inferior outcomes when compared to younger patients. Hypomethylating agents (HMA) were established as the standard of care for patients who are unfit for intensive induction chemotherapy until HMA and venetoclax (HMA+ven) combination approval by the FDA in December 2018. Approval of HMA+ven was based on an early phase study which produced high response rates; however, the combination was not compared head-to-head with HMA alone. A randomized phase 3 study is currently underway. There is no data available comparing HMA+ven to HMA monotherapy in older patients (age ≥70 years), thus we aimed to characterize responses in older patients when treated with these two regimens. Methods: We retrospectively reviewed clinical and molecular data on 225 patients at Moffitt Cancer Center and Memorial Health System with newly diagnosed AML who were ≥ 70 years old and were treated with HMA monotherapy or HMA+ven combination. Clinical data was abstracted in accordance with institutional review board approved protocol. Patients were then divided in two subgroups: Cohort A) HMA monotherapy and B) HMA+ven combination. We calculated overall response rates (ORR) defined as patients achieving complete remission (CR), CR with incomplete hematologic recovery (CRi) or morphologic leukemia free state (MLFS). Fisher's Exact method was utilized to determine significance for categorical variables. All reported p-values are two sided. Next generation sequencing (NGS) results were analyzed using the TruSight Myeloid-54 gene panel with a sensitivity of 5%, and were characterized in patients treated in cohort B. Results: Among the 225 patients, 87% (n=196) were in cohort A and 13% (n=29) in cohort B. In cohort A, 36.7% were females compared to 27.6% in cohort B. Median age in both cohorts was 76 years (range: 70-90 years in cohort A) (range: 72-86 years in cohort B). Overall, 26% of the patients had adverse risk disease as defined by European Leukemia Net (ELN) classification in cohort A and 51.7% in cohort B. Baseline characteristics are described in Table 1. Overall response rate (ORR) of the entire cohort was 43.6% (n=92) (Table 2). ORR in cohort A was 25.5% (n=47) compared to 66.7% (n=18) in cohort B (p&lt;0.001). The median time to response in cohort A was 3.8 mos and was 1.9 mos in cohort B. Looking only at the 66 patients with ELN-defined adverse risk, response data were available in 62 patients, and the ORR in both cohorts was 25.8% (n=16), and was significantly lower in cohort A compared to B (14.9% vs. 60%, respectively, p=0.001) (Figure 1). Among the 136 patients with favorable or intermediate risk disease, response data were available in 127 patients, and the ORR was 35.4% (n=45). In cohort A the ORR in favorable/intermediate patients was 28.9% (n=37), and in cohort B it was significantly higher at 100% (n=8) (p&lt;0.001). Ten responding patients in cohort B had NGS data available at diagnosis and at the time of best response. Mutations cleared from the bone marrow in 60% (n=6) of these patients. With a median follow up of 11.7 months, the median overall survival (mOS) of the entire cohort was 15.03 months. The median follow-up time in cohort A is 46 months and in cohort B is 5.4 months, making assessment of relapse free survival or overall survival in cohort B premature. Early mortality rate was not different between the two cohorts (1.5% vs 3.4%, p=0.42). Conclusion: Our data provides convincing support that HMA+ven combination yields significantly higher response rates when compared to HMA monotherapy in newly diagnosed AML patients ≥70 years of age; an observation that is further strengthened by the short duration of follow-up in the HMA+Ven cohort. Responses are particularly striking in favorable and intermediate risk patients when treated with HMA+Ven. Overall our data supports the use of HMA+ven in the upfront setting for older patients with newly diagnosed AML. Additional follow-up in HMA+ven arm is needed to evaluate survival outcomes. Disclosures Kuykendall: Incyte: Honoraria, Speakers Bureau; Abbvie: Honoraria; Janssen: Consultancy; Celgene: Honoraria. List:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Lancet:Agios, Biopath, Biosight, Boehringer Inglheim, Celator, Celgene, Janssen, Jazz Pharmaceuticals, Karyopharm, Novartis: Consultancy; Pfizer: Consultancy, Research Funding; Daiichi Sankyo: Consultancy, Other: fees for non-CME/CE services . Komrokji:JAZZ: Speakers Bureau; Novartis: Speakers Bureau; JAZZ: Consultancy; Agios: Consultancy; Incyte: Consultancy; DSI: Consultancy; pfizer: Consultancy; celgene: Consultancy. Sallman:Celyad: Membership on an entity's Board of Directors or advisory committees. Talati:Celgene: Honoraria; Agios: Honoraria; Jazz Pharmaceuticals: Honoraria, Speakers Bureau; Daiichi-Sankyo: Honoraria; Astellas: Honoraria, Speakers Bureau; Pfizer: Honoraria. Sweet:Pfizer: Consultancy; Incyte: Research Funding; Jazz: Speakers Bureau; Stemline: Consultancy; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Speakers Bureau; Agios: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Astellas: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1981-1981
Author(s):  
Jacob Laubach ◽  
Andrew J Yee ◽  
Jacalyn Rosenblatt ◽  
Jeffrey V Matous ◽  
Charles M. Farber ◽  
...  

Abstract Introduction: Patients (pts) with newly diagnosed multiple myeloma (MM) are commonly treated with the standard of care combination of lenalidomide (Len), bortezomib (Bz), and dexamethasone (Dex), also known as RVD. A recent randomized phase 3 study found that the addition of Bz to Len and Dex significantly increased median overall and progression free survival as well as response rate (Durie et al. Lancet 2017). Mild to moderate peripheral neuropathy (PN) is commonly reported with Bz use, although lower rates of PN have been reported with subcutaneous (SC) administration of single agent Bz compared with IV Bz (Moreau et al. Lancet Oncol 2011). Here we present preliminary results of a multi-center, open-label, single arm phase II trial of Len, SC Bz, and Dex in pts with newly diagnosed MM. Maintenance was risk-stratified, with high risk patients (defined as those with high risk cytogenetics (del17p, t(4:14), t(14;16)) or ISS stage II or III) receiving Bz in addition to Len. Primary endpoints included 1) overall response rate (ORR) after 4 induction cycles, 2) best response to induction therapy, and 3) rate and severity of PN during induction therapy. Methods: Patients enrolled in this study were newly diagnosed with active MM as defined by the revised IMWG criteria (Rajkumar et al. Lancet Oncol 2014). Protocol specified induction treatment consisted of 21-day cycles with Len 25 mg on days 1-14, SQ Bz 1.3 mg/m2 days 1, 4, 8, and 11, and Dex 20 mg on days 1, 2, 4, 5, 8, 9, 11, and 12. Stem cell mobilization followed induction cycle 4 and patients subsequently proceeded to either high dose melphalan and autologous stem cell transplant (ASCT) or 4 additional cycles of induction therapy based on patient preference with provider input. Following ASCT or completion of the 8th induction cycle pts proceeded to risk-stratified maintenance therapy. Maintenance consisted of 28-day cycles of therapy with Len on days 1-21 for all patients, while those pts defined as high-risk also received SC bortezomib Bz on days 1 and 15. Patients remained on maintenance therapy until progression, unacceptable toxicity, or withdrawal from protocol-directed treatment. Response was based on the IMWG uniform criteria (Rajkumar et al. Lancet Oncol 2011) and toxicities were graded based on the NCI-CTCAE V4. Correlative samples of blood and bone marrow for genomics and proteomics were collected from baseline and then throughout the study, and are currently being analyzed. Results: Forty-five pts were enrolled across 8 US sites between December 2015 and June 2017. Median age at enrollment was 61 years (range: 43 to 79) and 60% of the patients were male, 40% female. FISH cytogenetics found del 17p in 8% of pts tested, t(14;16) in 9%, and t(4;14) in 14%. At baseline, 60% of pts were ISS II/III. High risk pts comprised 62% of the study population overall. 80% of pts (36/45) collected stem cells and 31% of pts (14/45) continued to ASCT. The median number of CD34+ stem cells collected was 9.67 x 10^6. The median number of induction cycles completed was 8 (1 to 8 cycles) and 43 of 45 pts were evaluable for the primary endpoint of response after 4 induction cycles, with preliminary results indicating an ORR of 91% (39/43). Three pts did not reach the end of cycle 4 and 1 patient had stable disease. ORR at any point up to the beginning of maintenance was 98% (42/43). Any grade PN was reported by 80% of patients, including 38% with grade 1 and 36% with grade 2 PN. There were two cases of Grade 3 PN and one case of Grade 4 PN. Among the three patients with Grade ≥ 3 PN, symptoms improved to Grade ≤ 2 with dose reduction, modification of treatment schedule, or discontinuation of Bz. Importantly, given the higher than expected rate of all and high-grade PN, hydration with IV normal saline 500-1000 ccs prior to Bz administration as part of supportive care in selected patients was instituted and a comprehensive evaluation of the impact of this intervention on PN is in process. Conclusions: The combination of RVD with SC Bz is a highly effective treatment regimen for patients with newly diagnosed MM, including high risk pts. However, rates of all- and high-grade PN were greater than expected despite the use of SC Bz. Prompt dose reduction and/or change in schedule of Bz administration to weekly administration is recommended, with careful attention to supportive care in order to further improve tolerability. Disclosures Rosenblatt: Bristol-Myers Squibb: Research Funding; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Merck: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding. Matous:Celgene: Consultancy, Honoraria, Speakers Bureau. Farber:Charles M. Farber, MD, PhD, LLC-Medical legal consulting: Consultancy; Gilead: Honoraria; Genentech: Honoraria, Research Funding, Speakers Bureau; Pharmacyclics: Research Funding; ummit Medical Group-MD Anderson Cancer Center: Employment; BeiGene: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Honoraria, Speakers Bureau; Acerta: Research Funding. Ghobrial:Celgene: Consultancy; BMS: Consultancy; Takeda: Consultancy; Janssen: Consultancy. Richardson:Karyopharm: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3069-3069 ◽  
Author(s):  
Antonio Palumbo ◽  
Federica Cavallo ◽  
Izhar Hardan ◽  
Barbara Lupo ◽  
Valter Redoglia ◽  
...  

Abstract Abstract 3069FN2 Background: High-dose chemotherapy with haemopoietic stem-cell improves outcome in multiple myeloma (MM). The introduction of novel agents questions the role of autologous stem-cell transplantation (ASCT) in MM patients. Aims: In this prospective randomized study, we compared conventional melphalan-prednisone-lenalidomide (MPR) with tandem high-dose melphalan (MEL200) in newly diagnosed MM patients younger than 65 years. Methods: All patients (N=402) received four 28-day cycles of lenalidomide (25 mg, d1-21) and low-dose dexamethasone (40 mg, d1, 8, 15, 22) (Rd) as induction. As consolidation, patients were randomized to MPR (N=202) consisting of six 28-day cycles of melphalan (0.18 mg/kg d1-4), prednisone (2 mg/kg d1-4) and lenalidomide (10 mg d1-21); or tandem melphalan 200 mg/m2 MEL200 (N=200) with stem-cell support. All patients enrolled were stratified according to International Staging System (stages 1 and 2 vs. stage 3) and age (<60 vs. ≥60 years). Progression-free survival (PFS) was the primary end point. Data were analyzed in intention-to-treat. Results: Response rates were similar: at least very good partial response (≥VGPR) rate was 60% with MPR vs. 58% with MEL200 (p=.24); the complete response (CR) rate was 20% with MPR vs. 25% with MEL200 (p=.49). After a median follow-up of 26 months, the 2-year PFS was 54% in MPR and 73% in MEL200 (HR=0.51, p<.001). The 2-year overall survival (OS) was similar in the two groups: 87% with MPR and 90% with MEL200 (HR 0.68, p=.19). In a subgroup analysis, MEL200 significantly prolonged PFS in both standard-risk patients without t(4;14) or t(14;16) or del17p abnormalities (2-year PFS was 46% in the MPR group vs. 78% in the MEL200 group, HR=0.57, p=.007) and high-risk patients with t(4;14) or t(14;16) or del17p abnormalities (2-year PFS was 27% for MPR vs. 71% for MEL200, HR=0.32, p=.004). In patients who achieved CR, the 2-year PFS was 66% for MPR vs. 87% for MEL200 (HR 0.26; p<.001); in those who achieved a partial response (PR), the 2-year PFS was 56% for MPR vs. 77% for MEL200 (HR 0.45; p<.001). In the MPR and MEL200 groups, G3-4 neutropenia was 55% vs. 89% (p<.001); G3-4 infections were 0% vs. 17% (p<.001); G3-4 gastrointestinal toxicity was 0% vs. 21% (p<.001); the incidence of second tumors was 0.5% in MPR patients and 1.5% in MEL200 patients (p=.12). Deep vein thrombosis rate was 2.44% with MPR vs. 1.13% with MEL200 (p=.43). Conclusions: PFS was significantly prolonged in the MEL200 group compared to MPR. This benefit was maintained in the subgroup of patients with standard- or high-risk cytogenetic features. Toxicities were significantly higher in the MEL200 group. This is the first report showing a PFS advantage for ASCT in comparison with conventional therapies including novel agents. These data will be updated at the meeting. Disclosures: Palumbo: celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cavallo:Celgene: Honoraria; Janssen-Cilag: Honoraria. Cavo:celgene: Honoraria. Ria:celgene: Consultancy. Caravita Di Toritto:Celgene: Honoraria, Research Funding. Di Raimondo:celgene: Honoraria. Boccadoro:celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2155-2155 ◽  
Author(s):  
Maria-Victoria Mateos ◽  
Albert Oriol ◽  
Laura Rosiñol ◽  
Felipe de Arriba ◽  
Jesús Martín ◽  
...  

Abstract Background Bortezomib-based combinations, including alkylating agents (VMP or CyBorD) or immunomodulatory drugs (VTD or RVD) have been established as regimens widely used in newly diagnosed MM patients. Bendamustine is a bifunctional alkylating agent effective in relapsed and/or refractory MM patients, and approved in Europe in combination with prednisone for elderly newly diagnosed MM. Since bendamustine may be more efficient than other alkylators, an attractive possibility would be to explore it in combination with bortezomib and prednisone (BVP) in newly diagnosed MM patients both transplant and non transplant candidates. Patients and Methods 60 newly diagnosed MM patients were included in the trial. The first cycle consisted on bendamustine at 90 mg/m2 given IV on days 1 and 4, in combination with bortezomib at 1,3 mg/m2 given IV on days 1, 4, 8, 11, 22, 25, 29 and 32 and prednisone at 60 mg/m2 given PO on days 1 to 4. In the following cycles, bendamustine was given on days 1 and 8, and bortezomib on days 1, 8, 15 and 22 (weekly schedule), and prednisone as it was previously described. Patients younger than 65 years proceeded to peripheral blood stem cell collection (PBSC) using growth factors alone after 4 cycles; HDT-ASCT was performed after 6 cycles. Patients older than 65 years received up to nine 28-day cycles. Results Between May 2011 and July 2012 enrollment was completed (60 pts). Median age was 61 years (range 38-82; 18 pts ≥65), 67% had ISS stage II/III, and 67% had unfavorable cytogenetics: t(4;14), t(14;16), del 17p or 1q gains by FISH. After a median of 6 cycles (2-9), 75% of patients achieved at least PR, including 16% of sCR, 9% CR and 28% of VGPR. Although the differences were not statistically significant, there was a trend to higher CR rate in the group of patients <65 years (31%) compared with elderly patients (11%). No differences were observed in overall response rates and CR rates in patients with standard and high risk cytogenetic abnormalities. Forty patients proceeded to stem cell collection after a median of 4 cycles of BVP. Upon using G-CSF alone, 14 pts (35%) failed to collect a minimun of 2 x 106 CD34+ cells/Kg. An ammendment was done and plerixafor was recomended for poor mobilizers (peripheral CD34 cell count inferior to 10/μL on day 4); all patients but 2 achieved, with G-CSF plus plerixafor, the minimum of CD34+ cells required to proceed to ASCT. These 2 patients successfully collected CD34+ cells using chemotherapy plus G-CSF and plerixafor. Of the 31 patients who received HDT-ASCT, sCR and CR rate before transplant was 18% and 13%, respectively, upgrading up to 39% of sCR and 13% CR after transplant. 7 pts (22%) achieved immunophenotypic CR. After a median f/u of 12 months (5-25), 8 pts have progressed, resulting in a 15-m TTP of 85%. Concerning OS, 89% of patients remained alive at 15 months. None of patients achieving sCR and CR have progressed and all of them are alive at 15 months. Regarding cytogenetic abnormalities, although there were not significant differences, one patient progressed in standard risk group and five in the high risk subgroup resulting in a 15 m-TTP of 93% vs 85%. No significant differences have been observed in terms of 15 m-OS between standard and high risk cytogenetic subgroup (100% vs 92%, respectively). As far as toxicity is concerned, hematologic toxicities included: G3/4 anemia (11%), neutropenia (23%), and thrombocytopenia (14%). The most common G3/4 non-hematologic toxicities were: asthenia (10%), infections (9%), and peripheral neuropathy (4%). Conclusions In patients candidates to HDT-ASCT, response rates obtained before and after transplant are comparable to other three drug bortezomib-based combinations, such as VTD or CyBorD. However, growth factors alone for stem cell collection after four BVP cycles as induction resulted in a 35% of poor mobilizers who were rescued with plerixafor. In the elderly population, although the number of patients included was small, BVP seems not superior to VMP in response rates. Disclosures: Mateos: Janssen, Mundipharma: Honoraria. Off Label Use: bendamustine plus bortezomib and prednisone is not an approved combination for first line of therapy. Oriol:Celgene: Consultancy. Ocio:Onyx: Consultancy, Research Funding; Novartis: Consultancy; Array Biopharma: Consultancy, Research Funding; Bristol Myers Squibb: Consultancy; Celgene: Consultancy, Research Funding. Alegre:Celgene: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity’s Board of Directors or advisory committees, Research Funding. Bladé:Janssen, Mundipharma: Honoraria. San Miguel:Janssen, Mundipharma: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2982-2982
Author(s):  
Erming Tian ◽  
Joshua Epstein ◽  
Pingping Qu ◽  
Christoph Heuck ◽  
Frits van Rhee ◽  
...  

Abstract Introduction In multiple myeloma (MM), deletion of chromosome 17 p13 (del17p) is a poor prognostic feature. The percentage of cells carrying an abnormality has been reported to be important with thresholds of 20% being taken generally but thresholds as high as 60% being suggested more recently. We have reported previously in the Total Therapy (TT)-2 trial (NCT00083551) for newly diagnosed (ND) MM that del17p is an adverse prognostic factor (Blood 112: 4235). The TT3 trial (NCT00081939) incorporated Brtezomib into tandem Melphalan-based autotransplants with DT-PACE for induction/consolidation and Thalidomide and Dexamethasone for maintenance to treat patients with newly diagnosed MM. In more recent iterations of these trials following the introduction of novel agents in induction and during maintenance the impact of carrying del17p has not been studied. In particular we have stratified patients into low- or high-risk molecular subgroups based on the GEP-70 (TT4 protocol [NCT00734877] or TT5 protocol [NCT00869232], respectively). We have used interphase FISH (iFISH) to detect the presence of del17p in baseline bone marrow samples. Method The iFISH slides were prepared with bone marrow aspirates after removing erythrocytes. A specific TP53 probe at chromosome 17 arm p13 combined with a control probe for the ERBB3 locus (HER2, 17q12), in different colors, were hybridized to bone marrow cells. Myeloma PCs were identified by restricted Kappa or Lambda immunoglobulin light-chain staining. We investigated role of 20% cutoffs per ≥100 tumor cells for significant deletion of the TP53 probe. Kaplan-Meier analysis was used to estimate the distributions of overall survival (OS) and progression-free survival (PFS) during the follow-ups. OS was calculated from registration until the date of decease. PFS was similarly calculated, but also incorporated progressive disease as an event. Results We examined 709 baseline samples from TT3, 4, and 5 trials with the two probes at chromosome 17. Overall, 66 of 709 patients (9.3%) had deletion of TP53 locus, including 44 of the 591 (7.5%) of low-risk patients and 20 of the 118 (17.0%) high-risk patients (Table). The range of TP53-deleted cells among newly diagnosed patients is 20-99% (median=75%) overall; 35-100% (median=62%) in TT3-low-risk; 30-97% (median=80%) in TT3-high-risk; 21-99% (median=76%) in TT4; and 20-97% (median=81%) in TT5. Deletion of TP53 was associated with significant shorter OS and PFS in HR patients treated on TT3. The 3 year estimated OS of patients for TT3-HR with del17p was 33% compared with 56% for TT3-LR with del17p, and PFS of patients for TT3-HR with del17p was 25% compared with 51% for TT3-LR with del17p (Figure). The comparison of TT4 to TT5 continued showing short OS in HR patients treated on TT5. The 3 year estimated OS of patients for HRMM with del17p was 17% compared with 75% for TT5 patients without deletion (p=0.0008). But, del17p was neutral in LR patients treated on TT4 (Figure). Conclusion Since the introduction of novel agents during various stages of the disease and a focus on HRMM and LRMM defined by GEP70 we show that while TP53 deletion is an adverse prognostic factor for patients with HRMM it is no longer prognostically relevant in LRMM. Table 1. Patients with iFISH results GEP-70 riskLow ≤0.66 High >0.66 Deletion TP53 in 20-59% PCs (n/N [%]) Deletion TP53 in ≥60% PCs (n/N, [%]) Total TT3 (N=329) Low=256 9/329, [2.7%] 9/329, [2.7%] 18/329, [5.5%] High=73 3/329, [0.9%] 9/329, [2.7%] 12/329, [3.7%] TT4 (N=313) Low=313 5/313, [1.6%] 21/313, [6.7%] 26/313, [8.3%] High=0 0 0 0 TT5 (N=67) Low=22 2/67, [3.0%] 0 2/67, [3.0%] High=45 0 8/67, [11.9%] 8/67, [11.9%] Sum (N=709) Low=591 (83.4%) 14/709, [2.0%] 30/709, [4.2%] High=118 (16.6%) 3/709, [0.4%] 17/709, [2.4%] 66/709 (9.3%) Figure 1. Figure 1. Disclosures Tian: University of Arkansas for Medical Sciecnes: Employment. Epstein:University of Arkansas for Medical Sciences: Employment. Qu:Cancer Research and Biostatistics: Employment. Heuck:Millenium: Other: Advisory Board; Janssen: Other: Advisory Board; Celgene: Consultancy; Foundation Medicine: Honoraria; University of Arkansas for Medical Sciences: Employment. van Rhee:University of Arkansa for Medical Sciences: Employment. Zangari:University of Arkansas for Medical Sciences: Employment; Millennium: Research Funding; Onyx: Research Funding; Novartis: Research Funding. Hoering:Cancer Research and Biostatistics: Employment. Sawyer:University of Arkansas for Medical Sciences: Employment. Barlogie:University of Arkansas for Medical Sciences: Employment. Morgan:Weismann Institute: Honoraria; CancerNet: Honoraria; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; MMRF: Honoraria; University of Arkansas for Medical Sciences: Employment; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document