scholarly journals PRAME Expression Is Correlated with Treatment Outcome and Specific Features of the Tumor Microenvironment in Classical Hodgkin Lymphoma

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1509-1509
Author(s):  
Katsuyoshi Takata ◽  
Lauren C. Chong ◽  
Avinash Thakur ◽  
Tomohiro Aoki ◽  
Anja Mottok ◽  
...  

Background: The tumor-associated antigen PRAME is over-expressed in several types of cancer and is currently investigated as a therapeutic target for T-cell immunotherapy. Our previous integrative genomic study in diffuse large B-cell lymphoma (DLBCL) identified PRAME deletion to be correlated with patient outcome and an immunologically "cold" tumor microenvironment. However, it remains an open question whether PRAME expression significantly contributes to differential treatment outcomes and tumor microenvironment crosstalk across various B-cell lymphoma subtypes. Material and Methods: We performed an immunohistochemical (IHC) screen in a large cohort of B-cell lymphomas (de novo DLBCL; N=347, follicular lymphoma (FL); N= 166, mantle cell lymphoma (MCL); N= 180), and classical Hodgkin lymphoma (HL); N= 166) to assess PRAME expression as a prognostic biomarker. Moreover, to investigate PRAME-expression associated tumor microenvironment composition and function, we correlated PRAME IHC results with single cell RNA sequencing data of more than 127,000 cells from 22 HL tissue specimens. Results: PRAME IHC analysis revealed frequent PRAME over-expression in HL (115/166, 69%), followed by DLBCL (104/319, 33%), FL (13/166, 8%), and MCL (14/180, 8%). Interestingly, only HL showed a significant treatment outcome correlation, whereas other B-cell lymphoma subtypes did not. Specifically, using a previously published HL cohort (Steidl et al, NEJM 2010) PRAME-negative Hodgkin Reed Sternberg (HRS) cells indicated significantly shorter overall survival (P = 0.008) and disease-specific survival (P = 0.042 ). To characterize PRAME-specific microenvironment composition and function in HL, we analyzed T-, B-, NK-cell, and macrophage subsets in PRAME-positive (17 of 22 cases) vs -negative (5 of 22 cases) tumor samples using single cell RNA sequencing data. From 22 expression-based microenvironment cell clusters that were annotated and assigned to a cell type based on gene expression, all three CD4 helper T-cell clusters were de-enriched in PRAME-negative samples, and the CD4 non-Treg proportion was significantly lower in PRAME-negative samples (P = 0.049). Strikingly, when focusing on phenotypic features of cells within the CD4 non-Treg T-cell cluster, CXCL13 was identified as the most up-regulated gene in PRAME-negative samples. When interrogating published HRS cell transcriptome data (Steidl et al, Blood 2012), immune response pathways including chemokine receptors and chemokine ligands were up-regulated in PRAME-negative HRS cell samples. Of specific interest, CXCR5, the cognate receptor for CXCL13, was significantly upregulated as a member of the chemokine pathway (P = 0.0086) in PRAME-negative HRS cell samples. These results suggest that crosstalk between CXCL13 (produced in the microenvironment) and CXCR5 (expressed on HRS cells) contributes to tumor maintenance in PRAME-negative HL. Finally, to explore potential therapeutic approaches for PRAME-negative HL cells, we focused on 3 HL-derived cell lines (L540, L591, DEV) with low PRAME expression and exposed these lines to DNMT or HDAC inhibitors. DNMT inhibitor treatment showed clear restoration of PRAME expression in a dose dependent manner, but no restoration was found by HDAC inhibitor treatment. To investigate the effect of DNA methylation in transcriptional regulation of PRAME in HL cells, we performed bisulfite sequencing in the PRAME CpG promoter region in PRAME down-regulated (L540, L591, DEV) and up-regulated (HD-LM2, KMH-2, L1236) cell lines and found hypermethylation in PRAME low vs high cell lines. Moreover, the CpG promoter region was significantly demethylated by DNMT inhibitor treatment in cell lines with low PRAME expression. Conclusion: We discovered that PRAME protein expression was correlated with outcome in HL and identified specific T-cell subsets in PRAME-negative patients. PRAME restoration by DNMT inhibitors might represent a new therapeutic avenue in combination with modern immunotherapies, such as PRAME-specific T-cell therapy or PD1 inhibition. Disclosures Scott: Roche/Genentech: Research Funding; Janssen: Consultancy, Research Funding; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoSting [Institution], Research Funding; Celgene: Consultancy. Steidl:Nanostring: Patents & Royalties: Filed patent on behalf of BC Cancer; Bristol-Myers Squibb: Research Funding; Roche: Consultancy; Seattle Genetics: Consultancy; Bayer: Consultancy; Juno Therapeutics: Consultancy; Tioma: Research Funding.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4105-4105
Author(s):  
Keisuke Kataoka ◽  
Hiroaki Miyoshi ◽  
Yasunori Kogure ◽  
Yasuharu Sato ◽  
Kenji Nishida ◽  
...  

Abstract Immune checkpoint blockade using anti-PD-1 or anti-PD-L1 antibodies is a highly promising therapy that can induce a durable anti-tumor response and a long-term remission in many patients with multiple cancer types. In particular, the excellent efficacy of anti-PD-1 antibody has been reported in advanced cases with classical Hodgkin lymphoma (cHL), of which high frequency of genetic lesions involving PD-L1 and/or PD-L2 somatic alterations is a defining feature, suggesting a close link between the relevant genetic lesions and the efficacy of anti-PD-1/PD-L1 therapy. In addition to cHL, several subtypes of B-cell lymphomas are shown to have structural variations (SVs) involving PD-1 ligands, such as gene amplification and chromosomal translocation causing promoter replacement. Moreover, recently we reported unique SVs disrupting the 3′-untranslated region (UTR) of PD-L1 in a diversity of cancers, including adult T-cell leukemia/lymphoma (ATL) and diffuse large B-cell lymphoma (DLBCL). However, the comprehensive landscape of PD-L1 and PD-L2 alterations in non-Hodgkin lymphomas has not been fully elucidated. Therefore, in this study, we interrogated PD-L1 and PD-L2 genetic aberrations and characterized their features in a variety of non-Hodgkin lymphomas. To do this, lymphoma-derived DNA was captured for the entire region of PD-L1 and PD-L2 genes including their exons, introns, and 3′- and 5′-untranslated regions (UTRs) and subjected to high-throughput DNA sequencing. More than 300 samples from different lymphoma subtypes were analyzed, including DLBCL, follicular lymphoma, mantle cell lymphoma, MALT lymphoma, primary mediastinal B-cell lymphoma, peripheral T-cell lymphoma-not otherwise specified, and cutaneous T-cell lymphoma. We also analyzed publicly available sequencing data as well as our own data for lymphomas, which included Burkitt and angioimmunoblastic T-cell lymphomas as well. PD-L1/PD-L2-involving SVs were most frequently observed in PMBCL, accounting for 26.3% of the cases, but widely observed in various B- and T-cell lymphomas at varying but generally low frequencies. However, in contrast to PD-L1-involving SVs, which were found in both B- and T-cell lymphomas, PD-L2-involving SVs were exclusively seen in B-cell lymphomas. Depending on samples, different SV types were observed, including deletion, inversion, tandem duplication, and translocation, but most of SVs resulted in a truncation of the 3'-UTR of the PD-L1 or PD-L2 genes. Unlike previous reports, we rarely found those SVs that translocate PD-L1/PD-L2 to an ectopic regulatory element. Of particular interest were those cases in which multiple, independent SVs that converged to PD-L1 and PD-L2, were observed in a single tumor sample, underscoring the importance of PD-L1 and PD-L2 SVs in clonal selection and expansion of these tumors Given that PD-L1-involving SVs are detected not only in aggressive lymphomas but also in a variety of solid cancers, we hypothesized that PD-L2 genetic alterations are also present in other human cancers. However, no PD-L2-involving SVs were identified among > 10,000 cancer samples from 32 tumor panels, for which RNA sequencing data were available from the Cancer Genome Atlas (TCGA). These results suggest that PD-L1 is affected in a broad spectrum of human malignancies, whereas PD-L2 SVs are a characteristic alteration of B-cell lymphomas, which is consistent with their expression patterns. Based on these findings, we assessed whether disruption of PD-L2 3'-UTR also induces PD-L2 overexpression as seen for that of PD-L1 3'-UTR. When introduced in T2 human B and T lymphoblast hybrid cell line using the CRISPR/Cas9 system, SVs involving an almost entire PD-L2 3'-UTR sequence actually induced a significant elevation of PD-L2 expression, confirming the relevance of 3'-UTR in the regulation of PD-L2 expression. Taken together, our findings clarified the entire picture of PD-L1/PD-L2-involving SVs ligands in B- and T-cell lymphomas. Detection of these SVs might help the identification of patients with non-Hodgkin lymphomas who potentially benefit from PD-1/PD-L1 blockade therapy. Disclosures Kataoka: Kyowa Hakko Kirin: Honoraria; Boehringer Ingelheim: Honoraria; Yakult: Honoraria. Izutsu:Abbvie: Research Funding; Gilead: Research Funding; Celgene: Research Funding; Janssen Pharmaceutical K.K.: Honoraria; Eisai: Honoraria; Kyowa Hakko Kirin: Honoraria; Chugai Pharmaceutical: Honoraria, Research Funding; Takeda Pharmaceutical: Honoraria; Mundipharma KK: Research Funding. Ohshima:Kyowa Hakko Kirin Co., Ltd.: Research Funding, Speakers Bureau; CHUGAI PHARMACEUTICAL CO.,LTD.: Research Funding, Speakers Bureau. Ogawa:Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-5
Author(s):  
Özcan Çinar ◽  
Peter Michael Kloetzel ◽  
Caroline Anna Peuker ◽  
Ulrich Keller ◽  
Antonio Pezzutto ◽  
...  

Adoptive transfer of engineered T cells has shown remarkable success in hematopoietic malignancies. However, the current most common strategy of targeting lineage-specific antigens often leads to undesirable side effects and a high relapse rate. Therefore, novel treatment approaches are still needed. Oncogenic somatic mutations represent ideal targets because of tumor specificity: such (neo)antigens can be recognized by T cell receptors (TCR) in the context of MHC-peptide presentation. Here we have generated T cell lines from multiple healthy donors targeting one of the most common driver mutations found in B-cell lymphomas; a missense mutation on adaptor protein MyD88 changing leucine at position 265 to proline (L265P). T cell lines generated by autologous in vitro priming were reactive selectively against the predicted mutant epitope restricted to HLA-B7, but not against the corresponding wild-type peptide. Cloned TCRs from these lines led to mutation-specific and HLA-restricted reactivity with varying functional avidity. T cells engineered with mutation-specific TCR (TCR-T cells) recognized and killed cell lines of diffuse large B-cell lymphoma characterized by intrinsic MyD88 L265P. Furthermore, TCR-T cells showed promising therapeutic efficacy in xenograft mouse models, while initial safety screening did not indicate any sign of cross- or allo-reactivity risk. Taken together, our data suggest that mutation-specific TCRs can be used to target MyD88 L265P mutation, and hold promise for precision therapy for a significant subgroup of B-cell malignancies. Disclosures Keller: Bristol Myers Squibb: Honoraria, Other: Travel support, Speakers Bureau. Busse:Daiichi Sankyo: Other: Travel Support; Hexal: Honoraria, Research Funding; Roche: Honoraria; BMS: Honoraria; Novartis: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2859-2859
Author(s):  
Paulina Horvei ◽  
Reona Sakemura ◽  
Michelle J. Cox ◽  
Michael W. Ruff ◽  
Mehrdad Hefazi ◽  
...  

CD19 directed chimeric antigen receptor T cell (CART) therapy has shown remarkable activity in B cell lymphoma and acute lymphoblastic leukemia leading to the approval of two CART therapies. With the emergence of therapeutic anti-CD19 antibodies for the treatment of B cell malignancies, it remains to be elucidated whether such antibodies would interfere with the ability of CD19 targeting CARTs to exert their anti-tumor effect in a subsequent therapy. To address a part of this question, we investigated the potential for functional interference between the monoclonal anti-CD19 antibody tafasitamab (MOR208) and CD19 directed CART cells (CART19). CART19 cells were generated through lentiviral transduction of healthy donor T cells with a second generation CD19 CAR construct (FMC63-CD8h-CD8TM-41BBζ) which is similar to the construct used for the FDA-approved CART tisagenlecleucel. Tafasitamab, is an Fc-enhanced humanized monoclonal antibody which mediates antibody-dependent cellular toxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and direct cytotoxicity. It is currently being studied in phase 2 and 3 clinical trials in diffuse large B-cell lymphoma (DLBCL) in combination with the immunomodulatory agent lenalidomide (L-MIND) and the chemotherapeutic drug bendamustine (B-MIND). As a first step we confirmed the relevance of the tested CD19-positive target cell lines, JEKO (mantel cell lymphoma), Ly7 (DLBCL) and NALM-6 (ALL) based on functional activity of tafasitamab and CART19. In a 24 hours ADCC (tafasitamab titration plus natural killer (NK) cells; Figure 1A) and T cell cytotoxicity assays (CART19, E:T titrations; data not shown) distinct activity was observed for both therapies on all tested cell lines. Secondly, we studied whether the observed CART19 activity may be influenced by tafasitamab in case of a direct CD19 binding competition between tafasitamab and the CAR. To test for such binding competition we incubated the CD19+ cell lines NALM6 or JEKO with up to 100 µg/ml tafasitamab, to saturate the receptors. Subsequent flow cytometry analysis using the FMC63 antibody (carrying the same CD19 binding domain as contained in CART19) failed to detect CD19 expression, indicating a direct binding competition between FMC63 and tafasitamab (Figure 1B). Next, to investigate the potential impact of such binding competition on CART19 cell effector functions, we co-cultured tafasitamab CD19+ JEKO cell line at increasing concentrations of up to 100µg/ml, and then added CART19 cells at different effector to target ratios to the cell culture. The presence of tafasitamab, binding to the CD19 antigen, did not affect important CART cell effector functions such as antigen specific killing (Figure 1C), degranulation (Figure 1D), cytokine production or proliferation of CART19 (Figure 1E). In summary, our studies indicate that CART19 continue to exhibit potent antigen specific effector functions despite presence of tafasitamab and the related competition for CD19 binding. Besides the presented in vitro work the questions of therapeutic sequencing of tafasitamab and CART19 is being studied in xenograft models and will be presented at the meeting. Disclosures Sakemura: Humanigen: Patents & Royalties. Cox:Humanigen: Patents & Royalties. Schanzer:MorphoSys AG: Employment. Endell:MorphoSys AG: Employment, Patents & Royalties. Nowakowski:Selvita: Membership on an entity's Board of Directors or advisory committees; NanoString: Research Funding; MorphoSys: Consultancy, Research Funding; Genentech, Inc.: Research Funding; F. Hoffmann-La Roche Ltd: Research Funding; Curis: Research Funding; Bayer: Consultancy, Research Funding; Celgene: Consultancy, Research Funding. Kay:MorphoSys: Other: Data Safety Monitoring Board; Infinity Pharmaceuticals: Other: DSMB; Celgene: Other: Data Safety Monitoring Board; Agios: Other: DSMB. Kenderian:Novartis: Patents & Royalties, Research Funding; Tolero: Research Funding; Humanigen: Other: Scientific advisory board , Patents & Royalties, Research Funding; Lentigen: Research Funding; Morphosys: Research Funding; Kite/Gilead: Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4637-4637
Author(s):  
Gerald G. Wulf ◽  
Anita Boehnke ◽  
Bertram Glass ◽  
Lorenz Truemper

Abstract Anti-CD45 mediated cytoreduction is an effective means for T-cell depletion in rodents and humans. In man, the CD45-specific rat monoclonal antibodies YTH24 and YTH54 are IgG2b subclass, exert a predominantly complement-dependent cytolytic activity against normal T-lymphocytes, and have been safely given to patients as part of conditioning therapies for allogeneic stem cell transplantation. The efficacy of such antibodies against human lymphoma is unknown. Therefore, we evaluated the cytolytic activity of YTH24 and YTH54 by complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), as well as by direct apoptotic and antiproliferative effects, against a panel of Hodgkin disease (HD) and non-Hodgkin lymphoma (NHL) cell lines, and against primary specimens. Significant CDC activity (>50% cytolysis) of the antibodies YTH54 and YTH24 was observed against three of five T-cell lymphoma lines, but against only one of nine B-cell lymphoma lines and none of four HD cell lines. The combination of YTH54 and YTH24 induced ADCC in all T-cell lymphoma cell lines and three primary leukemic T-cell lymphoma specimens, but were ineffective in B-cell lymphoma and HD cell lines.There were only minor effects of either antibody or the combination on lymphoma cell apoptosis or cell cycle arrest. In summary, anti-CD45 mediated CDC and ADCC via the antibodies YTH24 and YTH54 are primarily effective against lymphoma cells with T-cell phenotype, and may be an immunotherapeutic tool for the treatment of human T-cell lymphoma.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 623-623
Author(s):  
Bradley M. Haverkos ◽  
Onder Alpdogan ◽  
Robert Baiocchi ◽  
Jonathan E Brammer ◽  
Tatyana A. Feldman ◽  
...  

Abstract Introduction: EBV can be associated with several types of lymphomas, with reported frequencies of up to 8-10% in diffuse large B cell lymphoma (DLBCL), 30-100% in peripheral T cell lymphoma (PTCL) subtypes, 80% in post-transplant lymphoproliferative disease (PTLD), and 15-30% in classical Hodgkin lymphoma (HL), with adverse impact on outcomes. Nanatinostat (Nstat) is a Class-I selective oral HDAC inhibitor that induces the expression of the lytic BGLF4 EBV protein kinase in EBV + tumor cells, activating ganciclovir (GCV) via phosphorylation. This results in GCV-induced inhibition of viral and cellular DNA synthesis and apoptosis. Herein we report the final results from this exploratory study for patients with R/R EBV + lymphomas (NCT03397706). Methods: Patients aged ≥18 with histologically confirmed EBV + lymphomas (defined as any degree of EBER-ISH positivity), R/R to ≥1 prior systemic therapies with an absolute neutrophil count ≥1.0×10 9/L, platelet count ≥50×10 9/L, and no curative treatment options per investigator were enrolled into 5 dose escalation cohorts to determine the recommended phase 2 doses (RP2D) of Nstat + VGCV for phase 2 expansion. Phase 2 patients received the RP2D (Nstat 20 mg daily, 4 days per week + VGCV 900 mg orally daily) in 28-day cycles until disease progression or withdrawal. Primary endpoints were safety/RP2D (phase 1b) and overall response rate (ORR) (phase 2); secondary endpoints were pharmacokinetics, duration of response (DoR), time to response, progression free survival and overall survival. Responses were assessed using Lugano 2014 response criteria beginning at week 8. Results: As of 18 June 2021, 55 patients were enrolled (phase 1b: 25; phase 2: 30). Lymphoma subtypes were DLBCL (n=7), extranodal NK/T-cell (ENKTL) (n=9), PTCL, not otherwise specified (PTCL-NOS) (n=5), angioimmunoblastic T cell lymphoma (n=6), cutaneous T cell (n=1), HL (n=11), other B cell (n=3), and immunodeficiency-associated lymphoproliferative disorders (IA-LPD) (n=13), including PTLD (n=4), HIV-associated (n=5), and other [n=4: systemic lupus erythematosus (SLE) (n=2), common variable/primary immunodeficiency (n=2)]. Median age was 60 years (range 19-84), M/F 35/20, median number of prior therapies was 2 (range 1-11), 76% had ≥2 prior therapies, 78% were refractory to their most recent prior therapy, and 84% had exhausted standard therapies. EBER positivity ranged from <1 to 90% in 42 tumor biopsies with central lab review. The most common treatment-emergent adverse events (TEAEs) of all grades were nausea (38%), neutropenia (34%), thrombocytopenia (34%), and constipation (31%). Grade 3/4 TEAEs in >10% of patients included neutropenia (27%), thrombocytopenia (20%), anemia (20%), and lymphopenia (14%). Dose reductions and interruptions due to treatment-related AEs were reported in 14 (25%) and 16 (29%) patients, respectively. Only 1 patient had to discontinue therapy. There were no cases of CMV reactivation. For 43 evaluable patients (EBER-ISH + with ≥ 1 post-treatment response assessment) across all histologies, the investigator-assessed ORR and complete response (CR) rates were 40% (17/43) and 19% (8/43) respectively. Patients with T/NK-NHL (n=15; all refractory to their last therapy) had an ORR of 60% (n=9) with 27% (n=4) CRs. Two patients (ENKTL and PTCL-NOS) in PR and CR respectively were withdrawn at 6.7 and 6.6 months (m) respectively for autologous stem cell transplantation. For DLBCL (n=6), ORR/CR was 67%/33% (both CRs were in patients refractory to first-line R-CHOP). For IA-LPD (n=13), ORR/CR was 30%/20% (PTLD: 1 CR, other: 1 CR, 1 PR). For HL (n=10), there was 1 PR (4 SD). The median DoR for all responders was 10.4 m, with a median follow-up from response of 5.7 m (range 1.9-34.1 m). For the 17 responders, 8 lasted ≥ 6 months. Conclusions: The combination of Nstat and VGCV was well-tolerated with a manageable toxicity profile and shows promising efficacy in patients with R/R EBV + lymphomas, particularly in refractory T/NK-NHL, a heterogeneous group of aggressive lymphomas with dismal outcomes, with multiple durable responses. Further evaluation of this novel combination therapy for the treatment of recurrent EBV + lymphomas is ongoing in the phase 2 VT3996-202 trial. Disclosures Haverkos: Viracta Therapeutics, Inc.: Honoraria, Research Funding. Baiocchi: Prelude Therapeutics: Consultancy; viracta: Consultancy, Current holder of stock options in a privately-held company; Codiak Biosciences: Research Funding; Atara Biotherapeutics: Consultancy. Brammer: Seattle Genetics: Speakers Bureau; Celgene: Research Funding; Kymera Therapeutics: Consultancy. Feldman: Alexion, AstraZeneca Rare Disease: Honoraria, Other: Study investigator. Brem: Karyopharm: Membership on an entity's Board of Directors or advisory committees; SeaGen: Speakers Bureau; BeiGene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Bayer: Membership on an entity's Board of Directors or advisory committees; KiTE Pharma: Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Consultancy; ADC Therapeutics: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics/Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Morphosys/Incyte: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Scheinberg: Roche: Consultancy; Abbvie: Consultancy; BioCryst Pharmaceuticals: Consultancy; Alexion pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Speakers Bureau. Joffe: AstraZeneca: Consultancy; Epizyme: Consultancy. Katkov: Viracta Therapeutics, Inc.: Current Employment. McRae: Viracta Therapeutics, Inc.: Current Employment. Royston: Viracta Therapeutics, Inc.: Current Employment. Rojkjaer: Viracta Therapeutics, Inc.: Current Employment. Porcu: Viracta: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Innate Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BeiGene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Research Funding; Daiichi: Honoraria, Research Funding; Kiowa: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Spectrum: Consultancy; DrenBio: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4187-4187 ◽  
Author(s):  
Eugenio Gaudio ◽  
Chiara Tarantelli ◽  
Alberto Arribas ◽  
Luciano Cascione ◽  
Ivo Kwee ◽  
...  

Abstract Background IMGN529 is an antibody drug conjugate (ADC) consisting of an anti-CD37 antibody with direct anti-tumor activity conjugated via a thioether linker to the cytotoxic maytansinoid antimicrotubule agent DM1. IMGN529 has shown pre-clinical (Deckert et al, Blood 2013) and clinical activity in lymphoma (Stathis et al, ASH 2014; NCT01534715). Here, we assessed the anti-tumor activity of IMGN529 on a large panel of B cell and T cell human lymphomas to identify potential biomarkers of response. Methods Fifty-four lymphoma cell lines [diffuse large B cell lymphoma (DLBCL), n.=27; mantle cell lymphoma (MCL), n.=10; anaplastic large T-cell lymphoma, n.=5; marginal zone lymphomas, n=6, others, n=6] were exposed to increasing doses of IMGN529 or to the unconjugated DM1 for 72h. Cell proliferation was measured using the MTT. Apoptosis induction was defined by at least 1.5-fold increase in caspase 3/7 signal activation with respect to controls using the Promega ApoTox-Glo Triplex Assay. CD37 surface expression was assessed by cytofluorimetry. Gene expression profiling (GEP) was done with the Illumina HumanHT-12 Expression BeadChips on untreated cell lines followed by GSEA (NES > |2|, P<0.05, FDR<0.25) and limma t-test (FC> |1.2|; P< 0.05; top 200 up and top 200 down). Results. The IMGN529 median IC50 in the 54 cell lines was 780pM (95%C.I., 263pm-11.45nM). Activity was stronger (P<0.001) in B cell lymphoma cell lines (n= 46; median IC50=450pM; 95%C.I., 150-800pM) than in T cell lymphoma cell lines (n=8; median IC50=22.5nM; 95%C.I., 14-40nM). The median IC50 for DM1 was 30pM (C.I.95%, 20-40pM) with no differences between B and T cell lymphoma origin. IMGN529 induced apoptosis in 33/54 (61%) lymphoma cell lines. Surface CD37 expression was higher in cell lines derived from B than from T cells (P< 0.0001): IMGN529 IC50 values, but not of DM1, were negatively correlated with surface CD37 expression across all cell lines (R=-0.39; P= 0.018), but not within the individual B or T cell subgroups. Among B cell lines, DLBCL cell of origin, TP53 status or the presence of BCL2 translocation did not affect the sensitivity to IMGN529, while IC50s were higher in the presence of MYC translocation (P= 0.043). No association was seen between IMGN529-induced apoptosis or the sensitivity to DM1 with DLBCL cell of origin, TP53 status or the presence of BCL2 or MYC translocations. We then compared the baseline gene expression profiling of DLBCL cell lines that were highly sensitive to IMGN529 (IC50< 800pM; "S") versus less sensitive/resistant DLBCL cell lines (IC50>10nM, "R"), separately for germinal center B cell type (GCB) (S, n=11; R, n=8) and for activated B cell like (ABC) (S, n=4; R, n=3). In both DLBCL groups, MYC targets, genes involved in unfolded protein response, glycolysis and DNA repair were enriched in transcripts more expressed in R than S cell lines. Transcripts associated with low sensitivity included CD44, VIM, ANXA2, BCL2, ANXA2P1, HSP90B1, NFKBIZ, CDK6, BIRC5 in GCB and HSPA1B, HSP90AA1, CADM1, CD86, TUBB2A, TUBG1, NOTCH1 in ABC cell lines. HEBP1, PHB, PSME3, RNU6-15, RPL13 were more expressed in both GCB and ABC R. Genes involved in PI3K/AKT/mTOR, hypoxia, INF-gamma, TNFA signaling via NFKB and in complement were more expressed in S than in R cell lines. Genes associated with sensitivity to IMGN529 comprised: CD37 (IMGN529 target), CD79A, CHI3L2, FAM117B, LPAR5, NFATC1, PTPN22, RBM38, SGPP1, SLC6A16 in both GCB and ABC cell lines; BASP1, CXCR5, BIK, LY86, TLR10, CD86, LCK, CD22, PTPN22, BCL6, PIK3IP1, CDKN2A in GCB; AFF3, PIM1, MGMT, PDE4B, NFKBIE, SYK, FOXO1in ABC. Conclusions. IMGN529 showed a very strong anti-tumoral activity in pre-clinical lymphoma models. High expression of CD37 and mostly genes involved in BCR signalling were associated with sensitivity to IMGN529. Conversely, the presence of MYC translocation, a high expression of MYC targets and of genes known to be involved in drug resistance (BCL2, BIRC5, CDK6, heat-shock proteins, annexins, proteasome and tubulin components) appeared to negatively affect the response to the ADC but also represent therapeutic targets for novel combinations to be explored. Disclosures Rossi: Gilead: Honoraria, Research Funding; Abbvie: Honoraria; Janseen: Honoraria. Sloss:Immunogen Inc: Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4435-4435
Author(s):  
Matko Kalac ◽  
Michael Mangone ◽  
Alison Rinderspacher ◽  
Shi-Xian Deng ◽  
Luigi Scotto ◽  
...  

Abstract The first two authors contributed equally to this work Identifying pharmacologic strategies to inhibit the activation of NF-κB and its target genes has been a major research pursuit. To date, no direct inhibitors of the NF-κB subunits have been explored in the clinic. Based on the constitutive activation of NF-κB in diffuse large B-cell lymphoma (DLBCL), we used this disease model to develop drugs targeting NF-κB. Using a fluorescence-based high throughput screening (HTC) approach, a unique N-quinoline-benzenesulfonamide (NQBS) scaffold was identified as potential small molecule inhibitor of the NF-κB pathway. A confocal microscopy based HTC assay performed in human umbilical vein endothelial cells (HUVEC) identified hit compounds that contained a unique NQBS core structure. The assay screened for compounds that inhibited nuclear translocation of NF-κB subunits in TNFα-induced HUVEC cells. To date over 100 NQBS analogs have been synthesized with varying potency and cytotoxicity in inhibiting growth of DLBCL lines (OCI-Ly10, RIVA, HBL-1 and OCI-Ly3). Cytotoxicity assays demonstrated that the most potent compounds exhibit IC50s in the 0.5 to 1.5 µM range. These most potent NQBS analogs identified as CU-O42 CU-O47 and CU-O75 were also able to induce apoptosis and caspase activation. Apoptosis was preceded by exclusion of the NF-κB proteins from the nucleus. To analyze the localization of NF-κB proteins within the cell compartments before and after the treatment with CU-O42, CU-O47 and CU-O75, we used confocal microscopy, electromobility shift (EMSA) and ELISA assays. Control cells tested positive for p50/p65 both within the cytoplasm and the nucleus. Following treatment with CU-O42 NF-κB was sequestered within the cytoplasm of the cell which occurred as early as 3h after exposure. In addition, all three analogs reduced the nuclear levels of NF-κB in a concentration-dependent manner when measured by EMSA and ELISA. Furthermore, CU-O47 and CU-O75 were able to inhibit TNFα induced luciferase expression in a HEK293T cell model where luciferase is controlled by an NF-κB promoter. A KINOMEscan platform (examining the activity of over 450 different kinases) showed that no NQBS analog screened (CU-O42 and CU-O75) inhibited any of the kinases in the assay. In addition, a proteasome inhibition assay tested negative for trypsin-like and chromotrypsin-like protease activity (CU-O42, CU-O47 and CU-O75). Stabilization of the inactive trimer of p50, p65 and IκBα was hypothesized as a potential mechanism of action of CU-O42 and CU-O75 through Internal Coordinate Mechanics (ICM) software. This binding hypothesis was further corroborated by cellular thermal shift assays (CETSA) with an increase of the IκBα melting temperatures (2.5-3°C) in whole cell lysates following rapid (30min) exposure to CU-O42 and CU-O75. Using a genome-wide regulatory network perturbation analysis (DeMAND) based on the RNA-Seq data collected from OCI-Ly10 cells treated with CU-O75, we identified IκBα as one of the potential targets of the compounds. Gene set enrichment analysis demonstrated NF-κB target gene downregulation using IC20 of CU-O75 at 24h (p=0.045). In vivo experiments were conducted in two models: (1) xenografts with human DLBCL cell lines of both ABC and GC subtype; and (2) myc cherry luciferase mouse model where mice spontaneously develop aggressive lymphomas. In both models, CU-O42 was able to inhibit tumor growth. Interestingly, in the xenograft model, malignant cell growth was inhibited in both ABC (HBL-1) and GC (OCI-Ly1) cells when compared to controls (p=0.01 and p=0.02). However, overall survival of mice with ABC xenografts treated with CU-042 significantly exceeded the survival of mice with GC xenografts (p<0.01) suggesting a more sustainable response in this subtype of disease, consistent with its dependency on NF-κB. Identification of a unique NQBS scaffold has led to the chemical synthesis of over 100 structural analogs with a potent inhibition on NF-κB nuclear translocation. They display potent activity across a panel of lymphoma cell lines, producing a survival benefit in mice implanted with an ABC-subtype of lymphoma. ICM, CETSA and DeMAND suggest that this is a direct effect mediated on the proteins within the p65/p50/IκBα complex. These findings point to a novel mechanism of action and warrant further research into potential clinical translation of this class of small molecules. Disclosures Califano: Thermo Fischer Scientific: Consultancy; Ipsen pharmaceuticals: Consultancy; Cancer Genetics Inc: Consultancy; Therasis Inc: Employment. O'Connor:Spectrum Pharmaceuticals: Consultancy, Honoraria, Research Funding; Takeda Millennium: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Research Funding; Bristol-Myers Squibb Company: Consultancy; Novartis: Consultancy, Honoraria; Seattle Genetics: Consultancy; Bayer: Consultancy, Honoraria; Mundipharma: Consultancy, Honoraria, Research Funding; Acetylon Pharmaceuticals, INC: Consultancy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4783-4783
Author(s):  
Juraj Bodo ◽  
Jan Sedlak ◽  
Jaroslaw P. Maciejewski ◽  
Eric D. Hsi

Abstract Abstract 4783 Introduction Histone deacetylase inhibitors (HDACis) are approved for use in the setting of cutaneous T-cell lymphoma with modest benefit. Enzastaurin is an investigational PKCβ inhibitor that has growth inhibitory and pro-apoptotic effects in both B and T-cell lymphoma. Specifically, enzastaurin-induced inhibition of PKC leads to rapid accumulation of β-catenin that triggers c-Jun dependent induction of p73, followed by apoptosis. We investigated the cytotoxicity and mechanisms of cell death of combination enzastaurin and low concentrations of HDACis in B-cell lymphoma and T-cell lymphoma cell lines and primary lymphoma/leukemia cells. Experimental design Apoptosis was measured by flow cytometry and PARP cleavage. Phospho-GSK3β (S9), pS6, phospho-c-jun (S73) and β-catenin were analyzed by Western blot or quantum-dot immunoflourescence as measures of PKCβ inhibition. Cytotoxicity was determined by WST-1 proliferation assay and colony forming cell (CFC) assays. Results As expected, enzastaurin induced dephosphorylation of GSK3β and S6RP associated with increased β-catenin expression followed by phosphorylation of c-jun (S73) and PARP cleavage in SU-DHL-6 (diffuse large B-cell lymphoma line) cells. Treatment with low concentrations of suberoylanilide hydroxamic acid (SAHA) showed slight or no changes in studied proteins. Combined enzastaurin/SAHA treatment resulted in strong synergistic apoptosis in two treated germinal center B-cell-like and two activated B-cell-like lymphoma cell lines, two T-cell lymphoma cell lines and four different primary lymphoma/leukemia samples. Similarly, combined enzastaurin/ valproic acid treatment induced synergistic apoptosis in SU-DHL-6 cell line, suggesting the synergy is generalizable to other HDACis. In comparison to the single agent treatment, combined enzastaurin/ SAHA treatment resulted in activation of proapoptotic MAPK, c-jun N-terminal kinase, further increase of phospho c-jun (S73) levels, increased FasL levels, and amplification of PARP cleavage. Quantitative immunofluorescence assay showed a more rapid increase of β-catenin levels with the combination than either agent alone. Furthermore, compared to the low dose SAHA treatment alone, hyperacetylation of histone H3 was detected in samples when enzastaurin was added in combination with low dose SAHA, likely the consequence of displacement of HDAC by β-catenin. In addition, no change in CFC output in normal bone marrow exposed to this combination was observed. Conclusion Enzastaurin/ HDACi therapy can synergistically inhibit growth and induce apoptosis in lymphoid malignancy through increased biochemical effects attributed to each agent. These data support further investigation of addition of PKCβ inhibitors to HDACi in order to increase their anti-lymphoma effects. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 580-580 ◽  
Author(s):  
Luke Paul Akard ◽  
Samantha Jaglowski ◽  
Steven M. Devine ◽  
Matthew S. McKinney ◽  
Michael Vasconcelles ◽  
...  

Abstract Background: Autologous T cells engineered to express the universal ACTR chimeric receptor kill tumors through interactions with tumor-targeting antibodies [Kudo, Cancer Res. 2014]. Preclinical findings with ACTR+ T cells, which bind immunoglobulin Fc via CD16V158 and signal via CD3ζ and 4-1BB (ACTR087), demonstrate markedly enhanced target- and antibody-specific tumor cell cytotoxicity, as evidenced by CD20+ B cell lymphoma killing in combination with rituximab, compared with rituximab alone. Preclinical data also demonstrate rituximab dose-dependent effects in combination with ACTR087, suggesting that the therapeutic index of ACTR087 in combination with rituximab may be affected by rituximab dose or schedule and present an advantage over chimeric antigen receptor (CAR) T cell therapies [Huet H, Blood 2016]. Study UT-201501 (ATTCK-20-2) is the first clinical trial of ACTR087 in combination with rituximab in patients with relapsed or refractory CD20+ B cell lymphoma previously treated with rituximab (NCT02776813). We report data from the 7 patients treated with ACTR087 in the first dose level of the ATTCK-20-2 study. Methods: This is a multicenter Phase 1 dose escalation study. The primary objective is to evaluate the safety of the combination of ACTR087 and rituximab, and the key secondary objective is to evaluate antitumor efficacy. Exploratory objectives include measurement of ACTR T cell persistence, cytokines, and rituximab pharmacokinetics. Eligible patients must have histologically confirmed relapsed/refractory aggressive CD20+ B cell lymphoma of DLBCL, MCL, PBMCL, Gr3b FL, or transformed FL subtype and have received prior anti-CD20 mAb in combination with anthracycline-containing chemotherapy. In the first dose level, patients received lymphodepleting chemotherapy (cyclophosphamide 500 mg/m2 and fludarabine 30 mg/m2) for 3 days, followed by rituximab (375 mg/m2) and ACTR087 (0.5x106 ACTR+ T cells/kg). Up to 7 additional doses of rituximab are then administered, one dose every 3 weeks in the absence of disease progression. Results: Seven patients received ACTR087 in combination with rituximab at the first dose level. Median age was 64 years (range: 36-71), 57.1% were male, all had ECOG PS 1, 86% were treated with ≥ 3 lines of prior therapy, and 86% were refractory to the immediate prior therapy. ACTR087 was successfully manufactured for all subjects. ACTR+ T cells were detectable in the peripheral blood and demonstrated expansion post-infusion. One patient had a dose-limiting toxicity of grade 4 thrombocytopenia for > 14 days that later resolved. At the first dose level, there were no SAEs or deaths related to ACTR087 and no AEs of special interest, including cytokine-release syndrome, neurotoxicity, or autoimmune events. Cytopenias were the most common ≥ grade 3 AEs (neutropenia n=7, leukopenia n=5). Rituximab pharmacokinetics were not affected by ACTR087 administration. Independently-confirmed objective responses were observed in patients evaluable for response (n=6), including 2 ongoing complete responses (CR) and 1 partial response (PR). One of the CRs continues 6+ months after a single dose of ACTR087. Conclusions:In the first dose level studied in patients with relapsed/refractory aggressive CD20+ B cell lymphoma, ACTR087 in combination with rituximab induced complete responses with no serious AEs, AEs leading to treatment discontinuation, cytokine-release syndrome, or neurotoxicity. ACTR+ T cells were detectable in all patients and ACTR+ T cells persisted in the presence of continued rituximab administration. These results support the continued dose escalation of ACTR087 in combination with rituximab; dose level 2 enrollment is ongoing and updated data, including correlative biomarkers, will be presented. Disclosures Jaglowski: Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Kite Pharma: Consultancy, Research Funding; Unum Therapeutics: Research Funding; Pharmacyclics Inc: Research Funding. McKinney: Kite Pharma: Other: advisory comittee. Vasconcelles: Unum Therapeutics Inc: Employment. Huet: Unum Therapeutics Inc: Employment. Ettenberg: Unum Therapeutics Inc.: Employment. Ranger: Unum Therapeutics Inc: Employment. Abramson: Seattle Genetics: Consultancy; Genentech: Consultancy; Gilead: Consultancy; Kite Pharma: Consultancy; Abbvie: Consultancy; Celgene: Consultancy; LAM Therapeutics: Research Funding; Novartis: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document