scholarly journals Title: 12 Versus 8 Prophylactic Intrathecal (IT) Chemotherapy Administration Decrease Incidence of Central Nervous System (CNS) Relapse in Patients (pts) with Newly Diagnosed Philadelphia (Ph)-Positive Acute Lymphocytic Leukemia (ALL)

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3810-3810 ◽  
Author(s):  
Shilpa Paul ◽  
Koji Sasaki ◽  
J Michael Savoy ◽  
Adam Dipippo ◽  
Nadya Jammal ◽  
...  

Introduction: The addition of tyrosine kinase inhibitors to hyperfractionated cyclophosphamide, dexamethasone, vincristine, and doxorubicin alternating with high-dose methotrexate and cytarabine (HCVAD) for the treatment of Ph-positive ALL has significantly improved outcomes. However, with the increased median survival, an increased incidence of CNS relapses were documented over time, thus suggesting an increased risk among pts with Ph-positive disease (Ravandi et al, Cancer 2015).In order to reduce this incidence, treatment protocols for Ph-positive ALL were amended in 2012 to increase prophylactic IT chemotherapy from 8 to 12 at our institution. The aim of this study is to compare the incidence of CNS relapses in pts with Ph-positive ALL treated with 8 versus 12 ITs. Methods: We conducted a retrospective chart review of 156 pts with newly diagnosed Ph-positive ALL treated with Rituximab (R)± HCVAD plus imatinib (n=35), dasatinib (n=68), or ponatinib (n=53) between July 2001 and January 2019. Pts with CNS disease at initial diagnosis were excluded. Complete molecular response (CMR) at 3 months was defined as absence of a quantifiable BCR-ABL1 transcript. CNS relapse was identified by detection of blasts or rare atypical cells in the cerebrospinal fluid (CSF) in at least 2 successive evaluations and/or findings of leptomeningeal disease on imaging. Landmark analysis was performed at 6 months at the approximate time of completion of both systemic and IT therapy. Poor risk cytogenetic abnormality was defined as the presence of +der(22)t(9;22) and/or −9/9p in the absence of high hyperdiploidy (51‐65 chromosomes). CNS relapse-free survival (RFS) was defined from the start of therapy to the time of CNS relapse. Patients who died or relapsed in bone marrow were censored at the time of death and systemic relapse, respectively. Survival was assessed with and without the censoring of allogeneic stem cell transplantation (ASCT). Results: Pt characteristics are summarized in Figure A. One hundred and twelve pts (72%) received a median of 8 ITs (range, 2-8) and 44 pts (28%) received a median of 12 (range, 9-15). There were no statistically significant differences between groups in regards to baseline characteristics with the exception that more patients in the > 8 ITs cohort received ponatinib (66% vs 21%) and thus achieved a higher rate of 3-month CMR (70% vs 52%; p=0.04). CNS relapses were identified in 11 pts overall (7%, 4 treated with imatinib and 7 with dasatinib) and all of them received 8 or less prophylactic ITs (IT ≤8, 10% vs IT >8, 0%; p=0.023). The median follow-up of the entire population was 81 months, and 97 and 43 months for pts who received ≤8 and >8 ITs, respectively. The 3 and 6-year CNS RFS was 89% and 88% in pts with ≤8 ITs and 100% in pts with >8 Its, respectively (overall P=0.041; 3-yr CNS RFS P=0.049; 6-yr CNS RFS P=0.045) (Figure B). The outcomes remained statistically significant even after censoring for ASCT (P=0.048) (Figure C). In a multivariate analysis and after adjusting for the follow-up time, a median of 12 prophylactic IT chemotherapies was a prognostic factor significantly associated with a decrease rate of CNS relapses (P=0.03; HR=0.64 95%, CI: 0.43-0.96) (Figure D). Conclusion: In pts with newly diagnosed Ph-positive ALL, incorporation of 12 prophylactic IT chemotherapy in addition to systemic therapy is a very effective strategy to reduce the long-term incidence of CNS relapses. Figure Disclosures Paul: Pfizer: Consultancy; Agios: Consultancy. Sasaki:Otsuka: Honoraria; Pfizer: Consultancy. Kadia:BMS: Research Funding; Jazz: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bioline RX: Research Funding; Celgene: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Research Funding. Garcia-Manero:Helsinn: Research Funding; Novartis: Research Funding; AbbVie: Research Funding; Amphivena: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Astex: Consultancy, Research Funding; Onconova: Research Funding; H3 Biomedicine: Research Funding; Merck: Research Funding. Ravandi:Macrogenix: Consultancy, Research Funding; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Xencor: Consultancy, Research Funding; Menarini Ricerche: Research Funding; Selvita: Research Funding; Cyclacel LTD: Research Funding. Kantarjian:BMS: Research Funding; Novartis: Research Funding; AbbVie: Honoraria, Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Research Funding; Daiichi-Sankyo: Research Funding; Takeda: Honoraria; Pfizer: Honoraria, Research Funding; Agios: Honoraria, Research Funding; Astex: Research Funding; Jazz Pharma: Research Funding; Cyclacel: Research Funding; Immunogen: Research Funding; Amgen: Honoraria, Research Funding. Jabbour:AbbVie: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Cyclacel LTD: Research Funding; Pfizer: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Adaptive: Consultancy, Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1835-1835 ◽  
Author(s):  
Katrina M Piedra ◽  
Hani Hassoun ◽  
Larry W. Buie ◽  
Sean M. Devlin ◽  
Jessica Flynn ◽  
...  

Introduction Immunomodulatory agents (IMiD's) are associated with an increased risk of venous thromboembolism (VTE), particularly when combined with high dose steroids. Studies evaluating the use of lenalidomide-bortezomib-dexamethasone (RVD) and carfilzomib-lenalidomide-dexamethasone (KRD) in the frontline setting for multiple myeloma (MM) have reported a 6% and 24% incidence of thrombosis, respectively, despite primary thrombotic prophylaxis with aspirin (ASA) (Richardson, et al. Blood. 2010; Korde, et al. JAMA Oncol 2015). Recent data, including the Hokusai VTE Cancer Trial, have suggested that safety and efficacy of direct oral anticoagulants (DOACs) are preserved in the setting of treatment of solid malignancy-associated thrombosis (Raskob, et al. N Engl J Med. 2018; Mantha, et al. J Thromb Thrombolysis. 2017). Despite this data, there is limited experience and use of DOACs in prevention of thromboses in the setting of hematologic malignancies, specifically MM. After careful review of literature, since early 2018, we changed our clinical practice and routinely placed newly diagnosed MM (NDMM) patients receiving KRD at Memorial Sloan Kettering Cancer Center (MSKCC) on concomitant rivaroxaban 10 mg once daily, regardless of VTE risk stratification. In the following abstract, we present VTE rates and safety data for newly diagnosed MM patients receiving RVD with ASA vs. KRD with ASA vs. KRD with rivaroxaban prophylaxis. Methods This was an IRB-approved, single-center, retrospective chart review study. All untreated patients with newly diagnosed MM, receiving at least one cycle of RVD or KRD between January 2015 and October 2018 were included. The period of observation included the time between the first day of therapy until 90 days after completion of induction therapy. Patients were identified by querying the pharmacy database for carfilzomib or bortezomib administration and outpatient medication review of thromboprophylaxis with rivaroxaban or ASA. VTE diagnoses were confirmed by ICD-10 codes and appropriate imaging studies (computed tomography and ultrasound). Descriptive statistics were performed. Results During the observation period, 241 patients were identified to have received RVD or KRD in the frontline (99 RVD with ASA; 97 KRD with ASA; 45 KRD with rivaroxaban). Baseline characteristics were well distributed among the three arms, with a median age of 60 (30-94) in the RVD ASA arm, 62 (33-77) in the KRD ASA arm, and 60 (24-79) in the KRD rivaroxaban arm. Patients had International Staging System (ISS) stage 3 disease in 13% (N=13), 9.3% (N=9), and 11% (N=5) of the RVD ASA, KRD ASA, and KRD rivaroxaban arms, respectively. Median weekly doses of dexamethasone were higher in both KRD arms, 40 mg (20-40) vs. 20 mg (10-40) in the RVD ASA arm. The average initial doses of lenalidomide were 22 mg in the RVD ASA arm compared to 25 mg in both the KRD ASA and KRD rivaroxaban arms. After querying the pharmacy database, no patients were identified to have a history or concomitant use of erythropoietin stimulating agent (ESA) use. Treatment-related VTE's occurred in 4 patients (4.0%) in the RVD ASA arm, 16 patients (16.5%) in the KRD ASA arm, and in 1 patient (2.2%) in the KRD rivaroxaban arm. Average time to VTE was 6.15 months (Range 5.42, 9.73) after treatment initiation in the RVD ASA group, while it was 2.61 months (Range 0.43, 5.06) in the KRD ASA group and 1.35 months in the KRD rivaroxaban group. Minor, grade 1 bleeding events per the Common Terminology Criteria for Adverse Events (CTCAE) were identified in 1 (1.1%) patient in the RVD ASA arm, 5 (5.2%) patients in the KRD ASA arm, and 1 (2.2%) patient in the KRD rivaroxaban arm. Conclusion More efficacious MM combination therapies have been found to increase the risk of VTE when using ASA prophylaxis, indicating better thromboprophylaxis is needed. We found patients receiving ASA prophylaxis with KRD were more likely to experience a VTE and these events occurred earlier compared to patients receiving ASA prophylaxis with RVD. Importantly, the rate of VTE was reduced to the same level as ASA prophylaxis with RVD when low-dose rivaroxaban 10 mg daily was used with KRD, and without necessarily increasing bleeding risk. Our retrospective data support the development of prospective clinical trials further investigating DOAC use in thromboprophylaxis for NDMM patients receiving carfilzomib-based treatments. Figure Disclosures Hassoun: Novartis: Consultancy; Janssen: Research Funding; Celgene: Research Funding. Lesokhin:BMS: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding; GenMab: Consultancy, Honoraria; Serametrix Inc.: Patents & Royalties; Genentech: Research Funding; Juno: Consultancy, Honoraria. Mailankody:Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Takeda Oncology: Research Funding; CME activity by Physician Education Resource: Honoraria. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy. Landgren:Theradex: Other: IDMC; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Other: IDMC; Sanofi: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: Off-label use of rivaroxaban for outpatient prophylaxis of venous thromboembolism (VTE) will be explicitly disclosed to the audience.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 207-207 ◽  
Author(s):  
Timothy P. Hughes ◽  
Andreas Hochhaus ◽  
Giuseppe Saglio ◽  
Dong-Wook Kim ◽  
Saengsuree Jootar ◽  
...  

Abstract Abstract 207 Background: Results from the phase 3, international, randomized ENESTnd trial have demonstrated the superior efficacy of nilotinib over imatinib with significantly higher rates of major molecular response (MMR), complete cytogenetic response (CCyR), and with significantly lower rates of progression to AP/BC on treatment. Here, we present data with a median follow-up of 18 months. Methods: 846 CML-CP patients were randomized to nilotinib 300 mg twice daily (bid) (n=282), nilotinib 400 mg bid (n=281), and imatinib 400 mg once daily (n=283). Primary endpoint was MMR (≤ 0.1% BCR-ABLIS) rate “at” 12 months, as previously presented. Key secondary endpoint was durable MMR at 24 months. Other endpoints assessed at 24 months include progression to AP/BC (with and without clonal evolution), event-free survival, progression-free survival, and overall survival (OS). Results: With a median follow-up of 18 months, the overall best MMR rate was superior for nilotinib 300 mg bid (66%, P < .0001) and nilotinib 400 mg bid (62%, P < .0001) compared with imatinib (40%). Superior rates of MMR were observed in both nilotinib arms compared with the imatinib arm across all Sokal risk groups (Table). The overall best rate of BCR-ABLIS ≤ 0.0032% (equivalent to complete molecular response, CMR) was superior for nilotinib 300 mg bid (21%, P < .0001) and nilotinib 400 mg bid (17%, P < .0001) compared with imatinib (6%). The overall best CCyR rate was superior for nilotinib 300 mg bid (85%, P < .001) and nilotinib 400 mg bid (82%, P=.017) compared with imatinib (74%). The superior efficacy of nilotinib was further demonstrated using the 2009 European LeukemiaNet (ELN) 12-month milestone in which fewer patients had suboptimal response or treatment failure on nilotinib 300 mg bid (2%, 3%) and nilotinib 400 mg bid (2%, 2%) vs imatinib (11%, 8%). Rates of progression to AP/BC on treatment were significantly lower for nilotinib 300 mg bid (0.7%, P=.006) and nilotinib 400 mg bid (0.4%, P=.003) compared with imatinib (4.2%). The rate of progression on treatment was also significantly lower for nilotinib when including clonal evolution as a criteria for progression (Table). There were fewer CML-related deaths on nilotinib 300 mg bid (n=2), and 400 mg bid (n=1) vs imatinib (n=8). Estimated OS rate (including data from follow-up after discontinuation) at 18 months was higher for nilotinib 300 mg bid (98.5%, P=.28) and nilotinib 400 mg bid (99.3%, P=.03) vs imatinib (96.9%). Both drugs were well-tolerated. Discontinuations due to adverse events or laboratory abnormalities were lowest for nilotinib 300 mg bid (7%) compared with nilotinib 400 mg bid (12%) and imatinib (9%). With longer follow up there has been minimal change in the occurrence of AEs. Minimum 24-month follow-up data for all patients will be presented. Conclusions: With longer follow-up, nilotinib was associated with a significantly lower rate of progression to AP/BC on treatment and lower rates of suboptimal response or treatment failure vs imatinib. Nilotinib resulted in fewer CML-related deaths and a higher OS rate vs imatinib. Nilotinib induced superior rates of MMR, CMR, and CCyR vs imatinib in patients with newly diagnosed CML-CP. Taken together, these data support nilotinib as a new standard of care for patients with newly diagnosed CML. Disclosures: Hughes: Novartis: Honoraria, Research Funding, Speakers Bureau; Bristol-Meyers Squibb: Honoraria, Research Funding; Ariad: Honoraria. Hochhaus:Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Saglio:Novartis: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria. Kim:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. le Coutre:Novartis: Research Funding, Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau. Reiffers:Novartis: Research Funding. Pasquini:Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria. Clark:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Honoraria, Research Funding. Gallagher:Novartis Pharma AG: Employment, Equity Ownership. Hoenekopp:Novartis Pharma AG: Employment. Haque:Novartis: Employment. Larson:Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding. Kantarjian:Novartis: Consultancy, Research Funding; Bristol Myers Squibb: Research Funding; Pfizer: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1518-1518
Author(s):  
Hun Ju Lee ◽  
Susan O'Brien ◽  
Hagop M. Kantarjian ◽  
Farhad Ravandi ◽  
Stefan Faderl ◽  
...  

Abstract Abstract 1518 Background: Treatment with TKIs has greatly improved the outcome of patients with Ph+ ALL. However, many patients treated with TKI-based therapy eventually have a relapse. The response to salvage therapy and long-term outcomes of these patients are unknown. Aims: Describe the outcomes of patients with Ph+ ALL with resistance to or relapse after frontline TKI-based chemotherapy. Methods: We analyzed the outcome of patients who were treated in clinical trials at our institution between February 2001 and July 2008 with TKI-based chemotherapy for newly diagnosed Ph+ ALL who had refractory or relapsed disease. Results: One hundred thirteen patients were treated with frontline hyperfractionated cyclophosphamide, doxorubicin, vincristine, and dexamethasone (HCVAD) plus imatinib (HCVAD+I; n=54) or HCVAD plus dasatinib (HCVAD+D; n=59). Of these, 35 (31%) experienced primary resistance (n=1) or relapse (n=34). The median age was 51 years [range (r): 20–85]; 12 patients (34%) were older than 60 years. Median follow-up was 21.1 mo (r: 4.2–56.7). Median white blood cell and platelet counts at diagnosis were 14.4 × 109/L (r: 1.2–292.9) and 48 × 109/L (r: 4–425), respectively. White blood cell count was >30 × 109/L in 13 patients (37%). Median peripheral and bone marrow blast percentages were 53% (r: 0–97%) and 80% (r: 1–98%), respectively. Twenty-two patients (63%) had received HCVAD+I and 13 (37%) HCVAD+D. Twenty-three patients (66%) had experienced first complete remission (CR1) with 1 cycle of induction. Median CR1 duration was 12 mo (r: 1.9–42). Four patients underwent allogeneic stem cell transplantation (ASCT) in CR1. ABL kinase domain mutations were investigated in 28 patients (80%) at relapse; 16 (57%) had mutations, including 5 (14%) with T315I (all had received HCVAD+D). Upon relapse, 31 patients received first salvage therapy (S1), 24 with chemotherapy [HCVAD+D, n=8; HCVAD+I, n=3; HCVAD+nilotinib (N), n=1; HCVAD+asparaginase (Asp), n=1; methotrexate, vincristine, Asp, and dexamethasone (MOAD), n=2; others, n=9]; 6 with a TKI only (I, n=2; D, n=1; N, n=1; others, n=2); and 1 with ASCT. Three patients were unfit for treatment. Median cycles of S1 were 2 (r: 1–8). Thirteen patients (42%) had second complete remission (CR2) (HCVAD+D, n=6; HCVAD+I, n=2; HCVAD+N, n=1; HCVAD+Asp, n=1; others, n=3). Median time to CR2 was 1.5 mo (r: 0.7–8.8). Five patients underwent ASCT in CR2. Median CR2 duration was 7.3 mo (r: 1.4–36.2). Complete cytogenetic response was seen in 11 patients (35%); major molecular response (BCR-ABL/ABL ratio <0.05%) in 9 (29%); and complete molecular response in 7 (22%); and complete hematologic response in 15 (48%). Times to complete cytogenetic response and complete molecular response were 1.3 mo (r: 0.7–10.6) and 3 mo (r: 1.5–8.7), respectively. Seven patients had second relapse. Fifteen patients (7 relapse, 8 refractory) received second salvage therapy (S2) with systemic chemotherapy (MOAD, n=2; phase I/single-agent TKI, n=8; others, n=5); 1 patient had solitary central nervous system (CNS) relapse treated with intrathecal cytarabine and methotrexate. CR3 was obtained in 1 patient, the patient with sole CNS relapse. Median disease-free survival (DFS) and overall survival (OS) after S1 were 6.5 mo (r: 0.5–45) and 7.3 mo (r: 1.4–36.2), respectively. At last follow-up, 2 patients (6%) were alive and 33 had died, 11 (33%) of infectious complications, 5 (15%) of organ failure, 3 (9%) of bleeding complications, 2 (6%) of graft-versus-host disease complications, 2 (6%) of CNS relapse, and 10 (30%) of other or unknown causes. Median OS after S2 was 2.1 mo (r: 1.4–2.6). In univariate analysis, age >60 years was associated with worse OS after S1 [4.2 vs. 12.7 mo; 95% confidence interval (CI) 1.8 to 6.7 vs. 7.5 to 17.9 (P=0.006)]. Complete hematologic response was associated with improved OS after S1 [15.4 vs. 4.3 mo; 95% CI 9.1 to 21.8 vs. 2.5 to 6.0 (P<0.001)]. Major molecular response was associated with improved OS after S1 [18.1 vs. 5.7 mo; 95% CI 9.3 to 26.8 vs. 3.6 to 7.8 (P=0.003)]. Choice of prior TKI (HCVAD+I vs. HCVAD+D) did not significantly influence CR and OS after relapse. Conclusion: Patients with refractory or relapsed Ph+ ALL after TKI-based therapy have poor outcome, particularly those who are older or have persistent BCR/ABL transcripts. New agents are needed to improve the outcome in this population. Disclosures: Kantarjian: BMS: Research Funding. Ravandi:Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria. Cortes:Chemgenex: Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3896-3896
Author(s):  
Yehuda E. Deutsch ◽  
Robert Wilkinson ◽  
Amanda Brahim ◽  
Stephanie Boisclair ◽  
Jose Sandoval-Sus ◽  
...  

Introduction: Acute myeloid leukemia (AML) is a heterogeneous disease with varied outcomes dependent on patient cytogenetic and mutational status. Thirty percent of adults with newly diagnosed AML have a mutation in the fms-related tyrosine kinase 3 (FLT3) gene. Midostaurin is a small molecule inhibitor that acts on multiple receptor tyrosine kinases, including FLT3. The RATIFY trial showed improved overall survival (OS) and event-free survival in patients treated with daunorubicin and cytarabine (7+3) plus midostaurin (Stone et al, NEJM 2017). In this trial, a dose of daunorubicin 60 mg/m2 was administered. High dose (HD) 90 mg/m2 daunorubicin significantly improved the rate of complete remission and overall survival, including in patients with FLT3-ITD (Luskin et al, Blood 2016). HD daunorubicin has also been shown to be more effective than idarubicin in patients with FLT3-ITD AML (Lee et al, J Clin Oncol 2017). This data raises the question of whether the combination of midostaurin and HD daunorubicin would further improve outcomes of FLT3 mutated AML patients, while maintaining a tolerable safety profile. The objective of this study is to describe the safety and efficacy endpoints of FLT3 mutated AML patients treated with HD daunorubicin plus midostaurin as part of induction therapy. Methods: We retrospectively reviewed clinical and molecular data of patients at Memorial Healthcare System, Moffitt Cancer Center, and Sylvester Cancer Center with newly diagnosed FLT3 mutated AML treated from May 1st, 2017 to July 1st, 2019. Clinical data was abstracted in accordance with institutional review board approved protocol. All patients were induced with HD daunorubicin 90 mg/m2 on days 1-3, cytarabine 100 mg/m2 on days 1-7, and midostaurin 50 mg PO twice daily on days 8-21. Growth factor and antimicrobial support were used per institutional guidelines. Demographics were analyzed using descriptive statistics. OS was analyzed using Kaplan Meier method. Other efficacy outcomes were CR, CRi (assessed according to the European Leukemia Network Criteria for AML), proportion of patients needing re-induction, and proportion of patients who underwent hematopoietic stem cell transplant (HSCT). Safety outcomes were adverse events (AEs) and early (30- and 60-day) mortality. Results: Twenty-six patients were included in the final analysis. Patient characteristics are outlined in TABLE 1. All patients were FLT3 mutated, as confirmed with molecular studies. The FLT3 subtype was ITD (high) in 3 patients, ITD (low) in 16 patients, TKD in 5 patients, and both in 2 patients. Seventy-seven percent of patients achieved a CR/CRi after one induction cycle, and 96.2% attained CR after two induction cycles. Median time to ANC and platelet recovery was 28 and 26 days, respectively. One patient died during the first 60 days, due to Enterococcus sepsis. The most common non-hematological AEs were nausea (77%), diarrhea (62%), mucositis (58%), rash (54%), and increased ALT (54%). Cumulative incidence of relapse in the cohort was 28% (n=7). Four patients relapsed pre-transplant and achieved CR2 with additional therapy. All 7 of these patients had co-occurring mutations of various types. Of the 20 patients who were considered transplant eligible, 13 (65%) underwent HSCT and 4 (20%) are pending transplant. Of the 13 transplanted patients, 3 experienced relapse post-transplant. After a median follow up of 14.5 months, median OS has not been reached. Conclusion: In our multi-center experience, induction with HD daunorubicin, cytarabine, and midostaurin is clinically effective and seems to be well tolerated. Short term mortality was low and AEs were manageable, with no unexpected safety signals. Also, CR/CRi rates were higher than previously reported, suggesting that the combination of HD daunorubicin and midostaurin may improve the outcomes of patients with FLT3 mutated AML. Future analyses with larger patient samples and longer follow up are warranted to further evaluate long-term safety and efficacy for this regimen. Figure Disclosures Sandoval-Sus: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Bradley:AbbVie: Other: Advisory Board. Talati:Agios: Honoraria; Celgene: Honoraria; Pfizer: Honoraria; Astellas: Honoraria, Speakers Bureau; Daiichi-Sankyo: Honoraria; Jazz Pharmaceuticals: Honoraria, Speakers Bureau. Watts:Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees. Sallman:Abbvie: Speakers Bureau; Novartis: Speakers Bureau; Jazz: Research Funding; Incyte: Speakers Bureau; Celyad: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding, Speakers Bureau. Sweet:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Speakers Bureau; Jazz: Speakers Bureau; Incyte: Research Funding; Pfizer: Consultancy; Stemline: Consultancy; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Abbvie: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Lancet:Daiichi Sankyo: Consultancy, Other: fees for non-CME/CE services ; Agios, Biopath, Biosight, Boehringer Inglheim, Celator, Celgene, Janssen, Jazz Pharmaceuticals, Karyopharm, Novartis: Consultancy; Pfizer: Consultancy, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 452-452 ◽  
Author(s):  
Giuseppe Saglio ◽  
Philipp D. LeCoutre ◽  
Ricardo Pasquini ◽  
Saengsuree Jootar ◽  
Hirohisa Nakamae ◽  
...  

Abstract Abstract 452FN2 Background: In ENESTnd, pts treated with nilotinib demonstrated higher and faster rates of major molecular response (MMR, ≤ 0.1% BCR-ABLIS), deeper molecular response (MR4, ≤ 0.01%IS and MR4.5, ≤ 0.0032%IS), and complete cytogenetic responses (CCyR) along with significantly lower rates of progression to AP/BC and fewer CML-related deaths compared with imatinib by 12 and 24 mo. Here, we report data with a minimum follow-up of 24 mo; however, efficacy and safety data based on considerably longer follow-up of ≥ 36 mo will be presented. As demonstrated in IRIS and other imatinib trials, most pts who progress on imatinib do so within the first 3 years of therapy. Thus, this 36-mo update of ENESTnd will be important to further verify the benefits of nilotinib in newly-diagnosed pts. Methods: 846 adult pts with newly-diagnosed Ph+ CML-CP were randomized to nilotinib 300 mg twice daily (BID) (n = 282), nilotinib 400 mg BID (n = 281), or imatinib 400 mg once daily (QD) (n = 283). MMR, MR4, MR4.5, time to progression to AP/BC on treatment, progression-free survival (PFS) on treatment, and overall survival (OS) were evaluated. Results: By 24 mo, both doses of nilotinib demonstrated significantly higher rates of MMR, MR4, and MR4.5 vs imatinib (Table). Nilotinib-treated pts achieved median BCR-ABLIS levels of 0.09% (300 mg BID) and 0.10% (400 mg BID) by 12 mo, while this level of reduction was not observed before 24 mo on imatinib. More pts with CCyR achieved MMR at 12 and 24 mo with either dose of nilotinib vs imatinib (Table). Regardless of Sokal risk, rates of MMR and MR4.5 were higher for nilotinib at both doses vs imatinib (Table). Progression to AP/BC (excluding clonal evolution [CE]) on treatment was significantly lower for nilotinib vs imatinib (2 pts and 3 pts with nilotinib 300 mg BID [P = .0059] and 400 mg BID [P =.0196]), respectively vs 12 pts with imatinib). After achieving CCyR, 4 pts treated with imatinib progressed to AP/BC and 2 pts treated with nilotinib 400 mg BID progressed after achieving both CCyR and MMR (1 also achieved MR4). No pt who achieved MR4.5 progressed at any time. All but 1 pt who progressed to AP/BC on treatment were in the intermediate and high Sokal risk groups; 1 pt treated with nilotinib 400 mg BID progressed in the low Sokal risk group who had an E255V mutation at progression. When considering progression events of pts after discontinuation of treatment, an additional 7, 2, and 6 events (excluding CE) were observed with nilotinib 300 mg BID, nilotinib 400 mg BID and imatinib, respectively. Twice as many pts had emergent mutations on imatinib (n = 20) vs nilotinib (n = 10 on 300 mg BID; n = 8 on 400 mg BID). At 24 mo, OS remained similar in all groups, but there were fewer CML-related deaths in both nilotinib 300 mg BID (5 pts) and nilotinib 400 mg BID (3 pts) arms vs imatinib (10 pts). Both drugs were well tolerated and few new adverse events (AEs) and lab abnormalities were observed between 12- and 24-mo of follow-up. Nilotinib 300 mg BID had the fewest discontinuations due to AEs/lab abnormalities (9% vs 13% and 10% with nilotinib 400 mg BID and imatinib, respectively). Conclusions: With a minimum follow-up of 24 mo, nilotinib continued to demonstrate superiority vs imatinib with faster and deeper molecular responses and a significantly decreased risk of progression. These data support the use of nilotinib as a standard of care option in newly-diagnosed adult pts with Ph+ CML-CP. Disclosures: Saglio: Novartis Pharmaceutical: Consultancy, Speakers Bureau; Bristol-Myers Squibb: Consultancy, Speakers Bureau; Pfizer: Consultancy. Off Label Use: Nilotinib is a safe and effective treatment for patients with CML. LeCoutre:Novartis: Honoraria, Research Funding, Speakers Bureau; Bristol Myers Squibb: Honoraria. Pasquini:Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Bristol Myers Squibb: Speakers Bureau. Nakamae:Novartis: Consultancy, Research Funding, Speakers Bureau; BMS: Consultancy, Research Funding, Speakers Bureau. Flinn:nOVARTIS: Research Funding. Hochhaus:Novartis Pharmaceutical: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding. Hughes:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees. Larson:Novartis Pharmaceuticals: Consultancy, Honoraria, Research Funding. Hoenekopp:Novartis Pharmaceutical: Employment, Equity Ownership. Gallagher:Novartis: Employment. Yu:Novartis: Employment, Equity Ownership. Blakesley:Novartis Pharmaceutical: Employment. Kim:BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding. Kantarjian:Novartis: Consultancy; Novartis: Research Funding; Pfizer: Research Funding; BMS: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1676-1676 ◽  
Author(s):  
Hagop M. Kantarjian ◽  
Dong-Wook Kim ◽  
Surapol Issaragrisil ◽  
Richard E Clark ◽  
Josy Reiffers ◽  
...  

Abstract Abstract 1676 Background: Pts treated with nilotinib in the ENESTnd phase 3 trial achieved higher and faster rates of major molecular response (MMR, ≤ 0.1% BCR-ABLIS), deeper molecular responses (MR4, ≤ 0.01%IS and MR4.5, ≤ 0.0032%IS), significantly lower rates of progression to accelerated phase/blast crisis (AP/BC), and fewer CML-related deaths compared with imatinib by 1, 2, and 3 y. Here, we report data with a minimum follow-up of 3 y; efficacy and safety data based on longer follow-up of 4 y will be presented to further assess the impact of nilotinib vs imatinib in pts with newly diagnosed Ph+ CML-CP. Methods: Adult pts (N = 846) with newly-diagnosed Ph+ CML-CP were randomized to nilotinib 300 mg twice daily (BID; n = 282), nilotinib 400 mg BID (n = 281), or imatinib 400 mg once daily (QD; n = 283). MMR, MR4, MR4.5, time to progression to AP/BC, progression-free survival (PFS), and overall survival (OS) were evaluated. Results: Significantly higher rates of MMR, MR4, and MR4.5 by 3 y were achieved in nilotinib- vs imatinib-treated pts (Table). Nilotinib led to the achievement of higher rates of molecular responses regardless of Sokal risk group or age. The difference in the rates of both MR4 and MR4.5 continued to be significantly higher for nilotinib, with the difference in favor of nilotinib increasing from 1 to 3 y (MR4: 9%-14% difference by 1 y, 18%-24% difference by 3 y; MR4.5: 6%-10% difference by 1 y, 13%-17% difference by 3 y). Among patients who achieved MMR, more pts achieved MR4 or MR4.5 on nilotinib 300 mg BID (68%) and nilotinib 400 mg BID (62%) compared with imatinib (49%). No pt in any arm progressed after achieving MR4.5. Significantly fewer pts progressed to AP/BC on nilotinib vs imatinib (Table). No new progressions occurred on core treatment between the 2-y and 3-y analyses. When events occurring after treatment discontinuation were included, the rates of progression to AP/BC were also significantly lower with nilotinib vs imatinib (Table). Nearly twice as many pts had emergent mutations on imatinib (n = 21) vs either nilotinib arm (n = 11 in each arm), with 5 pts overall developing mutations between 2 and 3 y. OS remained similar in all groups at 3 y, but fewer CML-related deaths occurred in both the nilotinib 300 mg BID (n = 5) and 400 mg BID (n = 4) arms vs imatinib (n = 14). Both drugs were well tolerated. Few new adverse events (AEs) and laboratory abnormalities were observed between 2 and 3 y. Rates of discontinuation due to AEs were 10%, 14%, and 11% in the nilotinib 300 mg BID, nilotinib 400 mg BID, and imatinib arms, respectively. Conclusions: Nilotinib continues to demonstrate superiority vs imatinib, yielding faster and deeper molecular responses and a significantly decreased risk of progression. Results of ENESTnd support the use of nilotinib as a standard of care option in newly diagnosed adult pts with Ph+ CML-CP and should be considered to replace imatinib as the standard-of-care frontline therapy for patients with Ph+ CML-CP. Disclosures: Kantarjian: Novartis: Consultancy, Research Funding; BMS: Research Funding; Pfizer: Research Funding. Kim:Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; ARIAD: Research Funding; II-Yang: Research Funding. Clark:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees. Reiffers:BMS: Expense reimbursement for travel expenses Other; Novartis: Expense reimbursement for travel expenses, Expense reimbursement for travel expenses Other. Nicolini:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BMS: Honoraria, Research Funding, Speakers Bureau; Ariad: Research Funding, Speakers Bureau; Pfizer: Consultancy, Honoraria. Hughes:Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria; CSL: Research Funding. Hochhaus:BMS: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding. Kemp:Novartis Pharmaceuticals Corp: Employment. Fan:Novartis Pharmaceuticals Corp: Employment. Waltzman:Novartis Pharmaceuticals Corp: Employment, Equity Ownership. Saglio:Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy. Larson:Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Research Funding; Pfizer: Consultancy; Ariad: Consultancy, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 242-242 ◽  
Author(s):  
Pieter Sonneveld ◽  
Meral Beksac ◽  
Bronno van der Holt ◽  
Meletios A. Dimopoulos ◽  
Angelo Michele Carella ◽  
...  

Abstract Background The role of up-front consolidation for newly diagnosed, transplant eligible MM (NDMM) patients (pts) has not yet been prospectively addressed in the novel agents era. Methods The EMN02/HO95 trial was designed to randomly (R) compare (R1) 4 cycles of bortezomib-melphalan-prednisone (VMP) vs high-dose melphalan (HDM) and autologous stem cell transplantation (ASCT), either single or double, as intensification therapy after induction with bortezomib-cyclophosphamide-dexamethasone (VCD) (M Cavo et al, ASCO 2016, abstract #8000). A second randomization to consolidation therapy with 2 cycles of VRD vs no consolidation (R2) was performed after intensification, to be followed by lenalidomide maintenance (lenalidomide 10 mg continuously) until progression or toxicity in both arms. (VRD: bortezomib 1.3 mg/m2 intravenously days 1, 4, 8, 11; lenalidomide 25 mg orally days 1 - 21; dexamethasone 20 mg orally days 1, 2, 4, 5, 8, 9, 11, 12 of a 28 days cycle). Primary study end points were progression-free survival (PFS) from R1 and PFS from R2. A first planned interim analysis for R2 was performed in July 2016 when at least 33% (= 172) of the required events for PFS had been observed. Results From February 2011 to April 2014, 1510 pts aged ≤ 65 years with symptomatic MM were enrolled, of whom 1499 were eligible. Of these, 1211 were randomized (stratification by ISS stage) to VMP (505 pts) or HDM (1 or 2 ASCT) (706 pts). For R2 903 eligible patients were randomized to consolidation (459 pts) or no consolidation (444 pts). Median follow up from R2 was 25 months (maximum 53). Response status at time of R2 was ≥ CR (23%), ≥ VGPR (67%), ≥ PR (93%), and will be updated for status at start of maintenance. At the time of analysis, 258 events for PFS after R2 had been reported. 3-year. PFS from R2 was 62% in all patients, i.e., 60% without consolidation and 65% in patients with consolidation, and median PFS had not yet been reached. PFS from R2 with adjustment for R1 was prolonged in pts randomized to VRD (HR=0.78; 95% CI=0.61-1.00; P=0.045), a benefit retained across predefined subgroups with revised ISS stage III (HR=0.67; P=0.26) and in patients randomized in R1 to VMP (HR=0.76; P=0.19) and to HDM (HR=0.79; P=0.13). The benefit of consolidation was observed in patients with low-risk cytogenetics (HR=0.68; P=0.03), but not in patients with high-risk cytogenetics (del(17p) and/or t(4;14) and/or t(14;16); HR=1.03; P=0.91). At 3 years OS from R2 was 86% and 87%, respectively. Toxicity from VRD was limited with 5% CTCAE grade 4, mainly hematological. Conclusions Consolidation treatment with VRD followed by Lenalidomide maintenance until progression or toxicity shows promising results as compared to maintenance alone for younger NDMM pts, but further study follow-up is needed. This trial was registered at www.trialregister.nl as NTR 2528, EudraCT 2009-017903-28 This trial was supported by unrestricted grants from Celgene and Janssen. Disclosures Sonneveld: Celgene: Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria. Dimopoulos:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria; Genesis: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Carella:Millenium: Speakers Bureau; Genentech: Speakers Bureau. Ludwig:Janssen: Speakers Bureau; BMS: Speakers Bureau; Amgen: Research Funding, Speakers Bureau; Takeda: Research Funding, Speakers Bureau. Driessen:janssen: Consultancy; celgene: Consultancy; Mundipharma-EDO: Honoraria, Membership on an entity's Board of Directors or advisory committees. Gay:Celgene: Honoraria; Mundipharma: Other: Advisory Board; Amgen: Honoraria; BMS: Honoraria; Janssen-Cilag: Other: Advisory Board; Takeda: Honoraria, Other: Advisory Board. Mellqvist:Mundipharma: Honoraria; Celgene: Honoraria; Novartis: Honoraria; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Zweegman:Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Takeda: Honoraria, Research Funding. Schjesvold:Janssen: Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Palumbo:Takeda: Employment, Honoraria; Janssen Cilag: Honoraria. Cavo:Celgene: Honoraria, Research Funding, Speakers Bureau; Janssen: Honoraria, Research Funding, Speakers Bureau; Amgen: Honoraria; Bristol-Myers Squibb: Honoraria; Takeda: Honoraria.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3431-3431 ◽  
Author(s):  
Andreas Hochhaus ◽  
Giuseppe Saglio ◽  
Richard A. Larson ◽  
Dong-Wook Kim ◽  
Ian W. Flinn ◽  
...  

Abstract Abstract 3431 Background: In the ENESTnd (Evaluating Nilotinib Efficacy and Safety in Clinical Trials–Newly Diagnosed Pts) trial, nilotinib demonstrated superior efficacy vs imatinib in newly diagnosed pts. Here, we examined the kinetics of molecular response and BCR-ABL mutation status in pts from ENESTnd. Methods: Pts with CML-CP were randomized to receive nilotinib 300 mg twice daily (bid) (n = 282), nilotinib 400 mg bid (n = 281), or imatinib 400 mg once daily (qd) (n = 283). BCR-ABL transcripts were quantified at baseline (BL) and every 3 months (mos); MMR was defined as ≤ 0.1% BCR-ABL on the International Scale (IS). Mutational testing of BCR-ABL was performed by direct sequencing at BL and at the occurrence of: (i) 5-fold increase in PCR levels, (ii) failure to achieve MMR at 12 mos, (iii) loss of MMR (≥ 0.1% BCR-ABLIS confirmed by a subsequent sample in association with a ≥ 5-fold rise in BCR-ABL from the lowest value achieved on study treatment), and (iv) end of treatment. Median follow-up was 18 mos. Results: During therapy, a more rapid decline in BCR-ABL levels was demonstrated in the nilotinib arms vs imatinib (Table). The median BCR-ABL levels for pts on nilotinib at 6 mos (both arms) were similar to those on imatinib at 18 mos. The median time to MMR among responders was also shorter on nilotinib (6, 8, and 10 mos in the nilotinib 300 mg bid, 400 mg bid, and imatinib arms, respectively). Loss of MMR occurred in 14 (2%) pts (6 [2%], 5 [2%], and 3 [1%] in the nilotinib 300 mg bid, 400 mg bid, and imatinib arms). Of the 14, none progressed to accelerated phase/blast crisis (AP/BC); only 1 of these pts showed a BCR-ABL mutation (M244V) in the imatinib arm, and 1 pt in the nilotinib 300 mg bid arm lost CCyR. Overall, 9 of 14 (64%) pts, including 8 of 11 on nilotinib, regained MMR within 6 mos on their assigned therapy. In 3 of these 9 pts who regained MMR, loss of MMR was concurrent with dose reduction, and MMR was regained at the time of dose re-escalation. Poor compliance may have contributed to fluctuations in BCR-ABL levels in some pts. At BL, no BCR-ABL mutations were found; 60 pts had polymorphisms which were equally distributed among the 3 arms. Mutational testing was triggered on therapy in 164, 171, and 199 pts in the nilotinib 300 mg bid, 400 mg bid, and imatinib arms, respectively, most commonly due to lack of MMR at 12 mos. Approximately twice as many BCR-ABL mutations (16 [6%]) developed in the imatinib arm vs nilotinib arms (8 [3%] and 5 [2%] for 300 mg bid and 400 mg bid), and most of these were detected within the first 12 mos. The majority of mutations in the nilotinib arms were less sensitive (Y253H, E255K, F359V) or resistant (T315I) to nilotinib, while both nilotinib-sensitive and insensitive mutations were detected in the imatinib arm (Table). The T315I mutation emerged in 5 pts: 2 on nilotinib 300 mg bid, 1 on nilotinib 400 mg bid, and 2 on imatinib; two of these 5 pts discontinued therapy. Overall, 6 of 16 pts with mutations on imatinib progressed to AP/BC vs only 1 of 13 pts on nilotinib (Table). Minimum 24 month follow-up data for all pts will be presented. Conclusions: Pts treated with nilotinib had faster and deeper molecular responses compared with imatinib. The incidence of new mutations was highest for imatinib, and most pts with mutations on nilotinib have not progressed with 18 mos of median follow-up. Loss of MMR was infrequent and was regained in the majority of cases without a change in therapy, and was not typically associated with subsequent treatment failure or the emergence of new mutations. Therefore, loss of MMR may not be an indicator for adjusting therapy, although close monitoring for further loss of response is warranted and mutation testing may be considered. Disclosures: Hochhaus: Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding. Saglio:Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria. Larson:Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding. Kim:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Flinn:Novartis: Research Funding. Goh:Novartis: Honoraria, Research Funding; Janssen Ciliag: Honoraria, Research Funding; Celgene: Honoraria; Bristol Myers Squibb: Honoraria. Dorlhiac-Llacer:Novartis: Honoraria, Research Funding; Bristol Myers Squibb: Research Funding; Wyeth: Research Funding. Porkka:Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding. Kurokawa:Novartis: Consultancy; Shionogi & Co., Ltd.: Consultancy. Shou:Novartis: Employment. Gallagher:Novartis Pharma AG: Employment, Equity Ownership. Haque:Novartis: Employment. Kantarjian:Novartis: Consultancy, Research Funding; Bristol Myers Squibb: Research Funding; Pfizer: Research Funding. Hughes:Novartis: Honoraria, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Research Funding; Ariad: Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 44-45
Author(s):  
Franck E Nicolini ◽  
Vincent Alcazer ◽  
Pascale Cony-Makhoul ◽  
Stephanie Dulucq ◽  
Sandrine Hayette ◽  
...  

Nilotinib (NIL) 600 mg daily has demonstrated its superiority over Imatinib 400 mg daily in terms of response and incidence of deep molecular response in the front-line chronic phase (CP) CML setting. In this observational study we have retrospectively analyzed the outcome of in- and out-study 202 patients (pts) treated in this setting with NIL 600 mg front-line, in "real-life" conditions. All pts with newly diagnosed adult CP-CML receiving NIL 300 mg BID alone front-line between 10/2007 and 06/2020, were eligible for this study. Data were retrospectively collected according to the current French regulations with pts' information. All pts were assessed and followed according to ELN recommendations 2003, 2006, and 2009 along treatment and to the recommendations from the French group of CML (D. Rea et al., Cancer 2018) in case of TFR. In this regard, a TKI was resumed if loss of MMR. All BCR-ABL1 assessments were performed in the 3 reference laboratories, standardised and expressed in % (IS) with ≥32,000 copies of ABL1 as control. The primary endpoints were the rate of molecular responses in the long-term and the (vascular) safety of Nilotinib. Secondary endpoints were the kinetics of molecular response, survival and safety of Nilotinib. Survival (OS, PFS & EFS) was defined according to ELN (J. Guilhot et al. Blood 2012). Two hundred and two patients were reported with 44% females and 56% males with a median age at diagnosis of 50.4 (17.5-83) years, and 26% of them had cardiovascular risk factors at onset (tobacco abuse 11%, hypercholesterolemia 9.3%, diabetes 1.45%, none with past history of cardiovascular events [CVE]). ELTS scores were high in 14%, intermediate in 31% and low in 55% of pts. Twenty-four (12%) pts harboured additional chromosomal abnormalities at diagnosis. The median follow-up after NIL initiation was 61.5 (1-147.5) months. At last follow-up 113 pts (55%) are not on NIL anymore for toxicities, TFR or resistance reasons. Twenty-eight (14%) pts present an arterial event on NIL (18% PAOD, 14% angina pectoralis, 7% myocardial infarction, 14% stroke, 47% others such as atrial fibrillation, cardiomyopathy...), that occurred after a median of 26 (0.6-98.5) months on NIL. Forty-six (22.5%) pts reached TFR criteria and stopped NIL after a median of 58.5 (27-126) months. The cumulative incidence (CI) rates of MMR at 1, 2 and 5 years were 64 (57-71)%, 79.4 (75.45-83.35)% and 95 (92-98.5)% respectively. For MR4, those were 35.5 (29-42)%, 60 (52-67)% and 82 (74.5-89)% respectively; and for MR4.5, were 14 (9-19)%, 31 (24-28)% and 62 (54-70.5)% respectively. The CI of sustained MR4.5 (i. e. patients eligible for TFR: MR4.5 ≥2 years) was observed in 30 (23-37)% at 3 years, 45.5 (36-55)% at 5 years and 52.5 (41.5-64)% at 6 years (Figure). The CI of patients entering TFR was 16.75 (10.5-23)% at 5 years and 51.94 (37.31-66.57)% at 10 years with a survival without MMR loss of 70.7 (58- 86)% at 1 year and 65.26 (50.6-84)% at 5 years. Nine (4.5%) pts progressed towards accelerated phase (4 pts) or BC (2 lymphoid, 3 myeloid) responsible for 5 deaths at latest follow-up. Among NIL resistant patients screened, 15 were harbouring ABL1 mutations (5 Y253H, 3 E255K, 3 T315I, 1 M244V, 1 G250E, 1 F359V, 1 V299L). Overall, 10 patients died (5 from CML, 5 from unrelated causes). The probability of OS was 95.75 [95%CI: 92.9-98.7]% at 2 years and 94.8 [91.5-98.3]% at 5 years, for PFS it was 94.92 [91.7-98.2]% at 2 years and 89.5 [84.7-94.6]% at 5 years, and EFS it was 78 [72.3-84]% at 2 years and 60.25 [53.3-68.1]% at 5 years. Regarding sustained MR4.5, univariate analysis showed that female gender (HR=2.46 [1.50-4.02], p&lt;0.001) and low ELTS (HR=0.41 [0.22-0.76], p&lt;0.004) had a significant impact, while multivariate analysis confirmed the role of these 2 factors (HR=2.31 [1.41- 3.79], p=0.001 and HR= 0.52 [0.30- 0.90], p=0.02) in addition to high ELTS (HR= 0.28 [0.14- 0.58], p&lt;0.001). Univariate and multivariate analyses demonstrated that only age impacted on the CI of CVE (HR= 1.07 [1.04-1.10], p&lt;0.001, and HR=1.07 [1.04-1.10], p&lt;0.001). NIL first-line efficiently limits progression of newly diagnosed CP-CML patients and provides high rates of sustained MR4.5, allowing TFR in a substantial proportion of pts. However, the onset of arterial occlusive events, especially in the elderly is a matter of concern in the choice of this compound at treatment initiation. Disclosures Nicolini: Incyte: Research Funding, Speakers Bureau; Novartis: Research Funding, Speakers Bureau; Sun Pharma Ltd: Consultancy. Cony-Makhoul:BMS: Speakers Bureau; Incyte Biosciences: Speakers Bureau; Pfizer: Consultancy; Novartis: Consultancy; BMS: Consultancy. Dulucq:Incyte: Speakers Bureau; Novartis: Speakers Bureau. Cayuela:Novartis: Speakers Bureau; Incyte: Speakers Bureau. Rea:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Incyte: Honoraria, Membership on an entity's Board of Directors or advisory committees. Mahon:ARIAD: Honoraria; Pfizer: Honoraria; Novartis Pharma: Honoraria, Research Funding; BMS: Honoraria. Etienne:Pfizer: Consultancy, Speakers Bureau; Incyte: Consultancy, Speakers Bureau; Bristol-Myers Squibb: Consultancy, Research Funding, Speakers Bureau; Novartis: Consultancy, Research Funding, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 864-864 ◽  
Author(s):  
Prashant Kapoor ◽  
Morie A. Gertz ◽  
Betsy Laplant ◽  
Gabriella C Malave ◽  
Eric Wolfe ◽  
...  

Background: The current commonly used regimens in newly diagnosed multiple myeloma (NDMM) utilize steroids (dexamethasone or prednisone) in various combinations: bortezomib, lenalidomide and dexamethasone (VRd), bortezomib, thalidomide and dexamethasone (VTd), daratumumab, lenalidomide and dexamethasone (DRd) and daratumumab, bortezomib, melphalan and prednisone (DVMP). However, steroid therapy may be associated with various adverse effects, including, but not limited to mood changes, insomnia, hypertension, hyperglycemia, osteoporosis, adrenal suppression, muscle weakness, and increased risk of opportunistic infections. A recent trial demonstrated improved tolerability of a regimen (Rd-R) involving an abbreviated course of dexamethasone, without compromising the efficacy in patients with intermediate-fit NDMM (Lorocca A., et al., ASH 2018). We designed a phase 2 clinical trial to examine the safety and efficacy of daratumumab, an anti-CD38 monoclonal antibody in combination with an all-oral regimen of ixazomib, a proteasome inhibitor, lenalidomide, an immunomodulatory drug, and modified dose dexamethasone (IRd). Patients and Methods: NDMM patients with measurable disease and adequate organ function were enrolled, irrespective of their transplant eligibility. The primary objective was to determine the rate of complete response (CR) to daratumumab-IRd. Treatment consisted of daratumumab, 16 mg/kg, weekly for two cycles, every other week during cycles 3-6 and then every 4 weeks, ixazomib, 4 mg days 1, 8, 15, lenalidomide, 25 mg days 1-21, and dexamethasone upto 40 mg intravenously weekly for no more than two cycles, followed by use only as a prophylactic premedication for daratumumab-associated infusion reactions. Myeloma risk stratification was assessed by cytoplasmic immunoglobulin fluorescence in-situ hybridization (cIg FISH) analysis. Results: Overall, 40 patients were accrued, with data available on all patients for analysis at the cutoff date of July 19, 2019. The median age at enrollment was 64.5 (33-81) years; 37.5% were female. Eight (20%) patients were high risk by FISH. The median number of cycles was 6 (2-11) and the median follow up was 6.1 (2-11.7) months. Among 40 patients who had received at least 2 cycles of therapy, responses were attained rapidly; at the end of cycle 2, 88% patients achieved at least a partial response and 33% at least a very good partial response (VGPR) that improved to 52% at the end of 4 cycles among 29 patients who had completed at least 4 cycles. The overall best confirmed response rate among all 40 patients (Figure 1) was 95%, including 10% stringent CR, 5% CR and 23% near CR (13% VGPR excluding nCR). Stem cell collection was completed in 17 patients so far, all of whom required filgrastim and plerixafor. The median CD34+ cell count was 7.7 (range 2.9-11.6) million/kg . All patients were alive and 39 (97.5%) patients were progression-free at last follow up. Four (10%) patients proceeded to autologous stem cell transplantation off study, per patient and/or investigator discretion (1 in CR, 2 in PR, 1 with progressive disease). Overall, 224 cycles have been administered across the study, with dose reduction/ hold required in a subset of patients; ixazomib (10%), lenalidomide (20%), daratumumab (0%) and dexamethasone (13%); the most frequent reasons for dose adjustment were skin rash and hematologic toxicities. A grade 3 or higher adverse event, at least possibly attributed to the study drugs, was observed in 40% of patients; hematologic in 30% (lymphopenia 25%, neutropenia 15%, thrombocytopenia 5% and anemia 2.5%) and non-hematologic in 18% of patients (hyperglycemia 8%, diarrhea 5%, infections 5%, ileus 2.5%, maculopapular rash 2.5%, and fatigue 2.5%). Updated results with additional 6 months of follow up and minimal residual disease assessment related data will be presented at the meeting. Conclusion: Our early results suggest that the combination of daratumumab, ixazomib, lenalidomide and modified dose dexamethasone is well-tolerated, with excellent activity, and does not adversely impact stem-cell mobilization in patients with NDMM. Disclosures Kapoor: Takeda: Honoraria, Research Funding; Amgen: Research Funding; Sanofi: Consultancy, Research Funding; Celgene: Honoraria; Janssen: Research Funding; Glaxo Smith Kline: Research Funding; Cellectar: Consultancy. Gertz:Spectrum: Honoraria, Research Funding; Janssen: Honoraria; Celgene: Honoraria; Prothena: Honoraria; Alnylam: Honoraria; Ionis: Honoraria. Dingli:alexion: Consultancy; Janssen: Consultancy; Millenium: Consultancy; Rigel: Consultancy; Karyopharm: Research Funding. Leung:Takeda: Research Funding; Prothena: Membership on an entity's Board of Directors or advisory committees; Aduro: Membership on an entity's Board of Directors or advisory committees; Omeros: Research Funding. Dispenzieri:Pfizer: Research Funding; Janssen: Consultancy; Intellia: Consultancy; Akcea: Consultancy; Takeda: Research Funding; Celgene: Research Funding; Alnylam: Research Funding. Lacy:Celgene: Research Funding. Kumar:Takeda: Research Funding; Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. OffLabel Disclosure: Daratumumab in combination with Ixazomib, lenalidomide and dexamethasone for the management of newly diagnosed multiple myeloma


Sign in / Sign up

Export Citation Format

Share Document