scholarly journals Targeting Misfolded p53 and p53 Aggregation to Overcome Resistance to Apoptosis in Acute Myeloid Leukemia

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3786-3786
Author(s):  
Michael Andreeff ◽  
Jianfang Zeng ◽  
Alice Soragni ◽  
Vivian Ruvolo ◽  
Bing Z Carter ◽  
...  

The function of wild-type (wt) p53 in acute myeloid Leukemia (AML) is suppressed by MDM2, MDM4 and XPO-1 (Andreeff et al, Exp Hematol, 2016). We propose that wt p53 protein misfolding and cytosolic localization are contributing to its inactivation in AML. Immunofluorescence staining with OpalR TSA amplification demonstrated that p53 is localized both in the nucleus and in the cytosol of AML cells with prominent para-nuclear accumulation. We show here that misfolded wt p53 is localized mainly in the cytoplasm of AML cells, similar to what we reported for mutant (mt) p53 previously (Zeng et al, Blood, 2016). p53 misfolding promotes its aggregation which was recently reported as a novel mechanism promoting loss of its anti-tumor functions (Xu et al, Nat Chem Biol, 2011; Soragni et al, Cancer Cell, 2016). A pro-aggregating segment in the p53 DNA binding domain is exposed when p53 is misfolded. We showed that ReACp53, a cell permeable peptide designed to inhibit the aggregation of this segment, induced apoptosis in ovarian cancers bearing mt p53 (Soragni et al, Cancer Cell, 2016). We also reported that wt p53 AML cells responded to ReACp53 treatment (Zeng et al, Blood, 2016). ReACp53 eliminated misfolded p53, promoted its mitochondrial translocation and induced rapid apoptosis, suggesting that cytoplasmic misfolded wt p53 is a novel target in AML. MDM2 promotes p53 degradation, and inhibitors of MDM2 such as Nutlin derivatives are currently in trials for AML. These molecules inhibit p53 proteasomal degradation and result in p53-mediated apoptosis, as we demonstrated pre-clinically and in a Phase I trial of RG7112 in AML (Andreeff et al, Clin Cancer Res, 2015). p53 aggregation is initiated by protein misfolding, and progresses with increasing accumulation of misfolded p53. While p53 degradation is promoted by MDM2, binding of MDM2 to p53 causes p53 to misfold (Sasaki et al, J Biol Chem, 2007). This raises concerns about induction of p53 misfolding and consequent aggregation in tumors treated with MDM2 inhibitors, which could diminish therapeutic efficacy. We observed that levels of total and misfolded p53 and protein aggregation as identified by Proteostat positivity were MDM2 inhibitors dose- and time-dependent in wt p53 AML cells. This supports the hypothesis that MDM2 inhibition can cause not only p53 misfolding but also aggregation. Consequently, we show that adding a p53-aggregation inhibitor such as ReACp53 to an MDM2 inhibitor to limit p53 misfolding and aggregation results in increased cytotoxic activity in wt p53 AML. Co-aggregation of mt p53 with p63/p73 proteins carrying similar pro-aggregating segments has been reported (Xu et al, Nat Chem Biol, 2011). Next, we tested whether coaggregation could be an additional factor sequestering and inactivating wt p53. High levels of ΔNp73α, a tumor-promoting isoform of p73, can antagonize p53 function possibly through hetero-tetramer formation (Coutandin et al, Cell Death Differ, 2009), resulting in chemoresistance (Kazushi et al, Subcell Biochem, 2014). We hypothesize that upregulated ΔNp73α could constrain wt p53 through protein co-aggregation causing inactivation. Increased levels of misfolded p53 and protein aggregation were detected in both ΔNp73α-overexpressing HEK293T and MOLM13 (M13) cells. ΔNp73α-overexpressing M13 cells were resistant to MDM2 inhibitor-induced apoptosis compared to controls but sensitive to ReACp53. Treatment with Nutlin-derivatives (RG7388 or DS3032b) did not alter ΔNp73α levels but caused dose- and time-dependent increases in total and misfolded p53 and protein aggregation. HEK293T and M13 cells overexpressing ΔNp73α had higher levels of misfolded and aggregated p53, which we interpret as ΔNp73α providing a "seed" to accelerate p53 co-aggregation due to MDM2 inhibition. This suggests that ΔNp73α-overexpression conferred resistance to MDM2-mediated apoptosis that could be overcome by inhibition of p53 aggregation. Thus, combination of Nutlin derivatives and ReACp53 treatment exerted enhanced cytotoxicity in both cells lines. In conclusion, our data supports cytoplasmic, misfolded wt p53 as a novel target in AML and offers a rationale to combine therapeutic approaches supplementing MDM2 inhibition with p53 aggregation-targeting molecules to increase effectiveness. The model of wt p53 aggregation and coaggregation induced by MDM2 inhibition may apply to other cancer types. Disclosures Andreeff: Oncoceutics: Equity Ownership; Oncolyze: Equity Ownership; Breast Cancer Research Foundation: Research Funding; CPRIT: Research Funding; NIH/NCI: Research Funding; Cancer UK: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees; BiolineRx: Membership on an entity's Board of Directors or advisory committees; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 6 Dimensions Capital: Consultancy; AstaZeneca: Consultancy; Celgene: Consultancy; Amgen: Consultancy; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees; Reata: Equity Ownership; Aptose: Equity Ownership; Eutropics: Equity Ownership. Carter:Amgen: Research Funding; AstraZeneca: Research Funding; Ascentage: Research Funding. Ishizawa:Daiichi Sankyo: Patents & Royalties: Joint submission with Daiichi Sankyo for a PTC patent titled "Predictive Gene Signature in Acute Myeloid Leukemia for Therapy with the MDM2 Inhibitor DS-3032b," United States, 62/245667, 10/23/2015, Filed.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 523-523
Author(s):  
Rasoul Pourebrahimabadi ◽  
Zoe Alaniz ◽  
Lauren B Ostermann ◽  
Hung Alex Luong ◽  
Rafael Heinz Montoya ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous disease that develops within a complex microenvironment. Reciprocal interactions between the bone marrow mesenchymal stem/stromal cells (BM-MSCs) and AML cells can promote AML progression and resistance to chemotherapy (Jacamo et al., 2014). We have recently reported that BM-MSCs derived from AML patients (n=103) highly express p53 and p21 compared to their normal counterparts (n=73 p<0.0001) (Hematologica, 2018). To assess the function of p53 in BM-MSCs, we generated traceable lineage specific mouse models targeting Mdm2 or Trp53 alleles in MSCs (Osx-Cre;mTmG;p53fl/fl and Osx-Cre;mTmG;Mdm2fl/+) or hematopoietic cells (Vav-Cre;mTmG;p53fl/fl and Vav-Cre;mTmG;Mdm2fl/+). Homozygote deletion of Mdm2 (Osx-Cre;Mdm2fl/fl) resulted in death at birth and displayed skeletal defects as well as lack of intramedullary hematopoiesis. Heterozygote deletion of Mdm2 in MSCs was dispensable for normal hematopoiesis in adult mice, however, resulted in bone marrow failure and thrombocytopenia after irradiation. Homozygote deletion of Mdm2 in hematopoietic cells (Vav-Cre;Mdm2fl/fl) was embryonically lethal but the heterozygotes were radiosensitive. We next sought to examine if p53 levels in BM-MSCs change after cellular stress imposed by AML. We generated a traceable syngeneic AML model using AML-ETO leukemia cells transplanted into Osx-Cre;mTmG mice. We found that p53 was highly induced in BM-MSCs of AML mice, further confirming our findings in primary patient samples. The population of BM-MSCs was significantly increased in bone marrow Osx-Cre;mTmG transplanted with syngeneic AML cells. Tunnel staining of bone marrow samples in this traceable syngeneic AML model showed a block in apoptosis of BM-MSCs suggesting that the expansion of BM-MSCs in AML is partly due to inhibition of apoptosis. As the leukemia progressed the number of Td-Tomato positive cells which represents hematopoietic lineage and endothelial cells were significantly decreased indicating failure of normal hematopoiesis induced by leukemia. SA-β-gal activity was significantly induced in osteoblasts derived from leukemia mice in comparison to normal mice further supporting our observation in human leukemia samples that AML induces senescence of BM-MSCs. To examine the effect of p53 on the senescence associated secretory profile (SASP) of BM-MSCs, we measured fifteen SASP cytokines by qPCR and found significant decrease in Ccl4, Cxcl12, S100a8, Il6 and Il1b upon p53 deletion in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) compared to p53 wildtype mice. To functionally evaluate the effects of p53 in BM-MSCs on AML, we deleted p53 in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) and transplanted them with syngeneic AML-ETO-Turquoise AML cells. Deletion of p53 in BM-MSCs strongly inhibited the expansion of BM-MSCs in AML and resulted in osteoblast differentiation. This suggests that expansion of BM-MSCs in AML is dependent on p53 and that deletion of p53 results in osteoblast differentiation of BM-MSCs. Importantly, deletion of p53 in BM-MSCs significantly increased the survival of AML mice. We further evaluated the effect of a Mdm2 inhibitor, DS-5272, on BM-MSCs in our traceable mouse models. DS-5272 treatment of Osx-cre;Mdm2fl/+ mice resulted in complete loss of normal hematopoietic cells indicating a non-cell autonomous regulation of apoptosis of hematopoietic cells mediated by p53 in BM-MSCs. Loss of p53 in BM-MSCs (Osx-Cre;p53fl/fl) completely rescued hematopoietic failure following Mdm2 inhibitor treatment. In conclusion, we identified p53 activation as a novel mechanism by which BM-MSCs regulate proliferation and apoptosis of hematopoietic cells. This knowledge highlights a new mechanism of hematopoietic failure after AML therapy and informs new therapeutic strategies to eliminate AML. Disclosures Khoury: Angle: Research Funding; Stemline Therapeutics: Research Funding; Kiromic: Research Funding. Bueso-Ramos:Incyte: Consultancy. Andreeff:BiolineRx: Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; Cancer UK: Membership on an entity's Board of Directors or advisory committees; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees; NIH/NCI: Research Funding; CPRIT: Research Funding; Breast Cancer Research Foundation: Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eutropics: Equity Ownership; Aptose: Equity Ownership; Reata: Equity Ownership; 6 Dimensions Capital: Consultancy; AstaZeneca: Consultancy; Amgen: Consultancy; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy. OffLabel Disclosure: Mdm2 inhibitor-DS 5272


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2625-2625
Author(s):  
Rasoul Pourebrahim ◽  
Peter P. Ruvolo ◽  
Steven M. Kornblau ◽  
Carlos E. Bueso-Ramos ◽  
Michael Andreeff

Abstract Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy characterized by bone marrow infiltration of abnormally proliferating leukemic blasts which results in fatal anemia, bleeding and infectious complications due to compromised normal hematopoiesis. Patients with complete remission (CR) but incomplete blood cell count recovery (CRi) have significantly shorter survival compared to CR patients. Although there is a correlation between CRi and minimal residual disease (MRD), the two variables were shown to be independent risk factors for relapse development (1). The mechanism by which AML induces bone marrow failure in patients is largely unknown. Here, we demonstrate that AML derived MSCs highly express p53 and p21 proteins and are more senescent compared to their normal age-matched controls as demonstrated by high β-galactosidase staining (figure 1. A, B&C). Emerging evidence indicates that the aging of endosteal niche cells results in lower reconstitution potential of hematopoietic stem cells (2). To functionally evaluate the effects of AML on bone marrow MSCs, we utilized a murine leukemia model of the AML microenvironment. We transplanted Osx-Cre;mTmG mice with AML cells and compared the senescence of MSCs in normal bone marrow (Figure 1.D) with AML (Figure 1.E). Consistent with our initial findings in human, AML strongly induced senescence of osteoblasts. This suggests that AML suppresses normal hematopoiesis by inducing senescence in the hematopoietic niche. To address the role of p53 signaling in senescence of MSCs we generated a traceable conditional p53 gain/loss model specifically in bone marrow MSCs using Osx-Cre;mTmG; Mdm2fl/+ and Osx-Cre;mTmG;p53fl/fl mice respectively (Figure 1.F). Deletion of p53 in bone marrow MSCs resulted in an increased population of osteoblasts (GFP+) in Osx-Cre;mTmG;p53fl/fl mice in comparison to Osx-Cre;mTmG mice suggesting that p53 loss in osteoblasts inhibits senescence of osteoblasts. In order to evaluate p53 activity after recombination of p53fl alleles in the osteoblasts, we isolated MSCs from bone marrows and analyzed the expression of p21.P21 was significantly down regulated in osteoblasts (GFP+) derived from Osx-Cre;mTmG;p53fl/fl mice whereas its expression in the hematopoietic cells from same tissue (tdTomato+) remained comparable to p53 wild type suggesting that p21 as the master regulator of senescence is regulated by p53 in bone marrow mesenchymal cells. To evaluate the effect of p53 loss in osteoblasts and its impact on hematopoietic cells, we isolated the GFP+ cells (osteoblasts) and RFP + cells (hematopoietic) by FACS. Senescent cells, non-cell autonomously, modulate the bone marrow microenvironment through the senescence-associated secretory phenotype (SASP). We analyzed the expression of fifteen SASP cytokines by QPCR. Deletion of p53 in bone marrow mesenchymal cells strongly abrogated the expression of several SASP cytokines. Interestingly several Notch target genes such as Hey1 and Hey2 were highly induced in MSCs following p53 deletion suggesting a role for Notch signaling in hematopoietic failure following AML induced MSCs senescence. Our data suggest that AML induces senescence of endosteal niche resulting in hematopoietic failure. These findings contribute to our understanding of the role of p53 in leukemia MSCs and could have broad translational significance for the treatment of hematopoietic failure in patients with AML.Chen X, et al. (2015) Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia. J Clin Oncol 33(11):1258-1264.Li J, et al. (2018) Murine hematopoietic stem cell reconstitution potential is maintained by osteopontin during aging. Sci Rep 8(1):2833. Disclosures Andreeff: Astra Zeneca: Research Funding; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer ; Celgene: Consultancy; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Research Funding; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; SentiBio: Equity Ownership; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Oncolyze: Equity Ownership; Jazz Pharma: Consultancy; Reata: Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2726-2726
Author(s):  
Stephen E Kurtz ◽  
Christopher A. Eide ◽  
Narain P. Dubey ◽  
Andy Kaempf ◽  
Shannon K. McWeeney ◽  
...  

Abstract Background : Various pro-inflammatory and stress-related stimuli activate p38 mitogen-activated protein kinase (p38MAPK), triggering cascades of cell proliferation, differentiation, and apoptosis signaling. We have previously found that inflammatory cytokines promote growth and survival in primary cells from acute myeloid leukemia (AML) patients. The downstream mediator of inflammatory pathways is p38MAPK, and blocking this regulator with kinase inhibitors abrogates inflammation signaling in AML cells. Methods : We used a functional ex vivo screening assay to identify small-molecule targeted inhibitors and inhibitor combinations demonstrating selective efficacy across broad categories of leukemia. Primary mononuclear cells isolated from leukemia patients (n=408) were plated in the presence of the p38MAPK inhibitor doramapimod or combinations of doramapimod with a second targeted agent that inhibits or effects a non-overlapping biological pathway. A 7-point concentration series was evaluated for both single agent inhibitors and combinations. Leukemia specimens from 408 unique patients were classified into 5 diagnosis subgroups including acute myeloid leukemia (AML; n=206), acute lymphoblastic leukemia (ALL; n=42), chronic lymphocytic leukemia (CLL; n=115), chronic myeloid leukemia (CML; n=16) and myeloproliferative neoplasms/myelodysplastic syndrome (MPN or MDS/MPN; n=29). IC50 and AUC values were derived from probit-based regression for each response curve. Mutational status for FLT3-ITD and NPM1 were compiled from clinical labs or by capillary electrophoresis using a QiaXcel instrument. Disease status was obtained from clinical chart review. For a subset of AML samples, RNAseq analysis was obtained in parallel to drug sensitivity testing. Single and combination drug treatment IC50 and AUC values were compared within groups by Friedman test, across groups by Kruskal-Wallis test, and with continuous variables by Spearman rank correlation. Results : Among diagnostic subgroups tested, AML specimens showed the lowest median IC50 for doramapimod (1.71 uM), with 75 of 206 samples tested (36%) exhibiting IC50 values < 0.5 uM. In contrast, CLL specimens were significantly less sensitive (median IC50: 4.73 uM), with 27 of 115 samples tested (23%) showing IC50< 0.5 uM. For ALL, CML, and MDS/MPN subgroups, median IC50 values were 10, 3.19, and 6.78 uM, respectively; this translated to 17% of ALL, 19% of CML, and 38% of MDS/MPN samples with IC50< 0.5 uM. Doramapimod was also tested in combination with inhibitors of histone deacetylase (panobinostat), cyclin-dependent kinases 4/6 (CDK4/6; palbociclib), bromodomain and extra-terminal (BET) domain (JQ1), and BCL2 (venetoclax). Doramapimod combinations with panobinostat or JQ1 did not show enhanced efficacy compared to either single agent. However, combining doramapimod with palbociclib or venetoclax resulted in significantly enhanced efficacy compared to each single agent (median IC50: 0.014 and 0.075 uM, respectively; p<0.0001). Similar results were obtained using AUC as a drug effect measure. Of the 206 AML samples tested, 75% were sensitive (IC50 values < 0.5 uM) to both of these combinations, whereas 8% and 14% were sensitive to doramapimod in combination with only palbociclib or venetoclax, respectively. Sensitivity to combinations of doramapimod and palbociclib or venetoclax was not significantly associated with either age or gender. For the doramapimod + palbociclib combination, drug sensitivity (AUC) was correlated with gene expression for p38MAPKδ(Spearman r: -0.25). For doramapimod + venetoclax, sensitivity was correlated with expression of BCL2, MCL1, p38MAPKγ (Spearman r: -0.53, 0.23, and -0.33, respectively). Further analysis to align drug sensitivities with additional clinical and genetic features and inflammatory gene expression for AML patient samples is in progress. Conclusions : AML patient specimens demonstrate ex vivo sensitivity to inhibition of p38MAPK, and this efficacy is enhanced when combined with inhibitors of either CDK4/6 or BCL2, suggesting dual inhibition of these pathways may extend clinical utility among patients with genetically heterogeneous leukemia. Disclosures Druker: Celgene: Consultancy; Blueprint Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; MolecularMD: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Leukemia & Lymphoma Society: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Bristol-Meyers Squibb: Research Funding; Cepheid: Consultancy, Membership on an entity's Board of Directors or advisory committees; Beta Cat: Membership on an entity's Board of Directors or advisory committees; ALLCRON: Consultancy, Membership on an entity's Board of Directors or advisory committees; Aptose Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Aileron Therapeutics: Consultancy; Millipore: Patents & Royalties; McGraw Hill: Patents & Royalties; Henry Stewart Talks: Patents & Royalties; GRAIL: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals: Research Funding; Third Coast Therapeutics: Membership on an entity's Board of Directors or advisory committees; Oregon Health & Science University: Patents & Royalties; Fred Hutchinson Cancer Research Center: Research Funding; Monojul: Consultancy; ARIAD: Research Funding; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Patient True Talk: Consultancy. Tyner:Genentech: Research Funding; Aptose: Research Funding; Janssen: Research Funding; Array: Research Funding; Incyte: Research Funding; Takeda: Research Funding; AstraZeneca: Research Funding; Constellation: Research Funding; Gilead: Research Funding; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1461-1461 ◽  
Author(s):  
Jan Moritz Middeke ◽  
Christoph Rollig ◽  
Michael Kramer ◽  
Alwin Kramer ◽  
Tilman Bochtler ◽  
...  

Abstract Purpose Mutations of the isocitrate dehydrogenase-1 (IDH1) and IDH2 genes are one of the most frequent alterations in acute myeloid leukemia (AML) and can be found in ~20% of patients at diagnosis. Several IDH inhibitors are currently in late stage clinical development with Enasidenib, an IDH2 inhibitor, being recently approved by the FDA. Previous analyses have reported differential impact on response to chemotherapy and outcome, depending on the IDH-mutation type, co-occurring mutations and cytogenetic abnormalities, as well as the variant allele frequency (VAF) of IDH mutations. In order to better understand its prognostic role, we analyzed newly diagnosed AML patients enrolled in prospective trials of the Study Alliance Leukemia (SAL) to investigate the impact of IDH1/2 mutations on outcome. Patients and Methods All AML patients consecutively enrolled into intensive AML treatment protocols of the SAL or into the SAL registry were included in this analysis. Next-generation sequencing (NGS) on an Illumina MiSeq-system was performed to detect IDH1/2 mutations using pre-treatment samples. Overall survival (OS) and response to therapy were analyzed for all patients with intensive treatment and according to the mutational status. Results Overall, samples of 3898 patients were analyzed. The median follow-up was 91 months (95% CI 87.2 - 93.9). Patients' characteristics are shown in Tbl.1. Three-hundred twenty-nine patients (8.4%) had IDH1 mutations and 423 (11%) had IDH2 mutations; both mutations were found in 12 pts, so the overall mutation rate in IDH1 and 2 was 19% (740/3898 patients). Of the IDH1 variants, the most common ones were the R132C found in 143 patients (43%) and R132H in 137 patients (42%). For IDH2, 324 patients had the R140Q (77%) and 80 patients the R172K (19%) variant. According to the two main variants of the more common IDH2 mutations, as reported before, the IDH2 R172K was mutually exclusive with NPM1 and/or FLT3-ITD mutations. Overall, there was a trend for increased OS for patients with IDH2 R172K (26 vs. 15 months) as compared to those with R140Q. Considering only patients with a normal karyotype and no NPM1/FLT3-ITD mutation, these patients (n=27) had a highly significant better OS than patients with IDH2 R140Q (46.3 vs. 13.1 months, p=.012), supporting the findings published by Papaemmanuil et al. (NEJM 2016). In IDH1-mutated patients, we observed statistically significant differences in baseline characteristics between the two most common mutation types, IDH1 R132C and R132H. Patients carrying the R132C mutation were older (62 vs. 55 years, p=.001), had lower WBC (3.6 vs. 21 Gpt/L, p≤.001) and were less likely to have a normal karyotype (43% vs. 66%, p=.002), NPM1 (23% vs. 66%, p=<.001), and FLT3-ITD mutations (8% vs. 27%, p<.001) than those with the R132H variant. In univariate testing, the CR rate was also statistically significant lower in patients with IDH1 R132C (53% vs. 72%, p≤.001), with a median OS of 12.9 months compared to 17.4 months for patients with R132H variant (p=.08). In multivariate analysis including age, WBC, NPM1 and FLT3 status, and ELN risk, the CR rate was significantly lower in patients with the IDH1 R132C variant (p=.038). The median IDH VAF was 38% (range, 0.1 - 58) with no difference according to the different types of mutation. Patients with a VAF > 30% had a significantly higher BM blast count (73% vs 40% for VAF≤5%) and WBC (21.2 Gpt/L vs. 3.7 Gpt/L) at baseline, but there was no clear impact on CR rate or OS found in multivariate analysis. Conclusion In this large cohort of AML patients with IDH1/2 mutations, we found significant and so far not reported differences for one of the two most prominent mutations types of IDH1. The R132C variant was associated with increased age, lower WBC, and lower NPM1 and/or FLT3 co-mutation rate. Further, these patients had lower CR rates and a trend for shorter OS. For IDH2 we were able to reproduce findings on co-mutations and showed a favorable outcome for intensively treated patients with a normal karyotype and no NPM1/FLT3-ITD mutation and the IDH2 R172K variant, providing additional evidence for classification as a separate AML entity. Disclosures Middeke: Roche: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Kramer:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Bayer: Research Funding; Daiichi Sankyo: Consultancy. Scholl:Alexion: Other: Travel support; Abbivie: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees; MDS: Other: Travel support; Jazz Pharma: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Incyte: Research Funding; Pfizer: Research Funding; Takeda: Research Funding; Bristol-Myers Squibb: Research Funding; Novartis: Research Funding. Brümmendorf:Takeda: Consultancy; Pfizer: Consultancy, Research Funding; Janssen: Consultancy; Merck: Consultancy; Novartis: Consultancy, Research Funding. Burchert:Novartis: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Novartis: Honoraria; Roche: Honoraria; Takeda: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Johnson & Johnson: Research Funding; Roche: Research Funding; Eisai: Research Funding; Affimed: Research Funding; Novartis: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Schetelig:Gilead: Consultancy, Honoraria, Research Funding; Abbvie: Honoraria; Janssen: Consultancy, Honoraria; Roche: Honoraria; Sanofi: Consultancy, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding. Stoelzel:Neovii: Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5220-5220 ◽  
Author(s):  
Tibor J. Kovacsovics ◽  
Alice S. Mims ◽  
Mohamed E Salama ◽  
Jeremy M Pantin ◽  
Ken M Kosak ◽  
...  

Abstract Acute myeloid leukemia (AML) therapy is associated with pancytopenia and with a high failure rate due to resistant leukemia stem cells that home to marrow niches. We present here updated results of this study that combined the low anticoagulant heparin CX-01 with chemotherapy for the treatment of AML. Induction consisted of cytarabine and idarubicin (7+3) along with CX-01. Patients younger than 60 received consolidation therapy with high dose cytarabine along with CX-01. Twelve patients were enrolled (median age 56; range 22 - 74; 3 women). Three, 5, and 4 patients had good, intermediate, and poor risk disease, respectively. Two patients did not finish induction due to events unrelated to CX-01. Day 14 bone marrows were available on 11 patients and were aplastic in all without detectable leukemia. Eleven patients (92%) had a morphologic complete remission after one induction (CR1), including all patients with de novo AML (11/11). No patient required re-induction at Day 14. Eight patients are alive at a median follow-up of 24 months (range 13 - 29). Four patients remain in CR1. Four patients received an allogeneic stem cell transplant in CR1. All patients who received a full induction were evaluable for platelet recovery and had a median day to an untransfused platelet count ≥ 20,000/μl of 21. Five patients who received a full induction without myelopoietic growth factor support were evaluable for neutrophil recovery and had a median time to a neutrophil count ≥ 500/mL of 22 days (mean 22.6 ± 2.4, range 21 - 27). Median disease free survival was 14.8 months. Median overall survival was not attained at the maximum follow up time of 29.4 months. No CX-01-associated serious adverse events occurred. In a supplemental surface plasmon resonance study, CX-01 inhibited binding of CXCL12 to surface conjugated heparin with a 50% inhibitory concentration (IC50) of 4.7 nM, suggesting the possibility that CX-01 may enhance CR by disrupting the CXCL12-mediated leukemic stem cell marrow niche. We conclude that CX-01 is well tolerated when combined with intensive therapy for AML. It appears to be associated with enhanced count recovery and treatment efficacy. Thus, CX-01 warrants further study in this setting. Disclosures Kovacsovics: Seattle Genetics: Research Funding. Deininger:CTI BioPharma Corp.: Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Research Funding; Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Bristol Myers Squibb: Consultancy, Research Funding; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees. Kennedy:Cantex Pharmaceuticals: Equity Ownership. Marcus:Cantex Pharmaceuticals: Employment, Equity Ownership. Shami:JSK Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Philip C. Amrein ◽  
Eyal C. Attar ◽  
Geoffrey Fell ◽  
Traci M. Blonquist ◽  
Andrew M. Brunner ◽  
...  

Introduction: Outcomes for acute myeloid leukemia (AML) among older patients has remained largely unchanged for decades. Long-term survival for patients aged &gt;60 years is poor (median survival 10.5 months). Targeting the proteasome in AML is attractive, since leukemia stem cells have demonstrated sensitivity to proteasome inhibition in preclinical models, perhaps through down regulation of nuclear NF-KB (Guzman, Blood 2001). AML cell lines are susceptible to synergistic cytotoxicity when bortezomib, a proteasome inhibitor, is combined with daunorubicin and cytarabine. We have shown that adding bortezomib to standard treatment in AML results in a high remission rate, although grade 2 sensory neurotoxicity was noted in approximately 12% of treated patients. A newer generation proteasome inhibitor, ixazomib, is less frequently associated with neurotoxicity, and, therefore, was selected for combination with conventional chemotherapy in this phase I trial. The primary objective of this study was to determine the maximum tolerated dose (MTD) of ixazomib in combination with conventional induction and consolidation chemotherapy for AML. Herein are the initial results of this trial. Methods: Adults &gt;60 years of age with newly diagnosed AML were screened for eligibility. Patients with secondary AML were eligible, including those with prior hypomethylating agent therapy for myelodysplastic syndromes (MDS). We excluded those with promyelocytic leukemia. There were 2 phases in this study. In the first phase (A), the induction treatment consisted of the following: cytarabine 100 mg/m2/day by continuous IV infusion, Days 1-7; daunorubicin 60 mg/m2/day IV, Days 1, 2, 3, and ixazomib was provided orally at the cohort dose, Days 2, 5, 9, and 12. Consolidaton or transplant was at the discretion of the treating physician in phase A. In the second phase (B), induction was the same as that with the determined MTD of ixazomib. All patients were to be treated with the following consolidation: cytarabine at 2 g/m2/day, days 1-5 with ixazomib on days 2, 5, 9, and 12 at the cohort dose for consolidation. A standard 3 + 3 patient cohort dose escalation design was used to determine whether the dose of ixazomib could be safely escalated in 3 cohorts (1.5 mg/day, 2.3 mg/day, 3.0 mg/day), initially in induction (phase A) and subsequently in consolidation (phase B). The determined MTD of ixazomib in the first portion (A) of the trial was used during induction in the second portion (B), which sought to determine the MTD for ixazomib during consolidation. Secondary objectives included rate of complete remission, disease-free survival, and overall survival (OS). Results: Thirty-six patients have been enrolled on study, and 28 have completed dose levels A-1 through A-3 and B1 through B-2. Full information on cohort B-3 has not yet been obtained, hence, this report covers the experience with the initial 28 patients, cohorts A-1 through B-2. There were 12 (43%) patients among the 28 with secondary AML, either with prior hematologic malignancy or therapy-related AML. Nineteen patients (68%) were male, and the median age was 68 years (range 61-80 years). There have been no grade 5 toxicities due to study drug. Three patients died early due to leukemia, 2 of which were replaced for assessment of the MTD. Nearly all the grade 3 and 4 toxicities were hematologic (Table). There was 1 DLT (grade 4 platelet count decrease extending beyond Day 42). There has been no grade 3 or 4 neurotoxicity with ixazomib to date. Among the 28 patients in the first 5 cohorts, 22 achieved complete remissions (CR) and 2 achieved CRi, for a composite remission rate (CCR) of 86%. Among the 12 patients with secondary AML 8 achieved CR and 2 achieved CRi, for a CCR of 83%. The median OS for the 28 patients has not been reached (graph). The 18-month OS estimate was 65% [90% CI, 50-85%]. Conclusions: The highest dose level (3 mg) of ixazomib planned for induction in this trial has been reached safely. For consolidation there have been no serious safety issues in the first 2 cohorts with a dose up to 2.3 mg, apart from 1 DLT in the form of delayed platelet count recovery. The recommended phase 2 dose of ixazomib for induction is 3 mg. Accrual to cohort B-3 is ongoing. Notably, to date, no grade 3 or 4 neurotoxicity has been encountered. The remission rate in this older adult population with the addition of ixazomib to standard chemotherapy appears favorable. Figure Disclosures Amrein: Amgen: Research Funding; AstraZeneca: Consultancy, Research Funding; Takeda: Research Funding. Attar:Aprea Therapeutics: Current Employment. Brunner:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Forty-Seven Inc: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. Hobbs:Constellation: Honoraria, Research Funding; Novartis: Honoraria; Incyte: Research Funding; Merck: Research Funding; Bayer: Research Funding; Jazz: Honoraria; Celgene/BMS: Honoraria. Neuberg:Celgene: Research Funding; Madrigak Pharmaceuticals: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding. Fathi:Blueprint: Consultancy; Boston Biomedical: Consultancy; BMS/Celgene: Consultancy, Research Funding; Novartis: Consultancy; Kura Oncology: Consultancy; Trillium: Consultancy; Amgen: Consultancy; Seattle Genetics: Consultancy, Research Funding; Abbvie: Consultancy; Pfizer: Consultancy; Newlink Genetics: Consultancy; Forty Seven: Consultancy; Trovagene: Consultancy; Kite: Consultancy; Daiichi Sankyo: Consultancy; Astellas: Consultancy; Amphivena: Consultancy; PTC Therapeutics: Consultancy; Agios: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Jazz: Consultancy. OffLabel Disclosure: Ixazomib is FDA approved for multiple myeloma. We are using it in this trial for acute myeloid leukemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3765-3765
Author(s):  
Cheuk-Him Man ◽  
David T. Scadden ◽  
Francois Mercier ◽  
Nian Liu ◽  
Wentao Dong ◽  
...  

Acute myeloid leukemia (AML) cells exhibit metabolic alterations that may provide therapeutic targets not necessarily evident in the cancer cell genome. Among the metabolic features we noted in AML compared with normal hematopoietic stem and progenitors (HSPC) was a strikingly consistent alkaline intracellular pH (pHi). Among candidate proton regulators, monocarboxylate transporter 4 (MCT4) mRNA and protein were differentially increased in multiple human and mouse AML cell lines and primary AML cells. MCT4 is a plasma membrane H+and lactate co-transporter whose activity necessarily shifts protons extracellularly as intracellular lactate is extruded. MCT4 activity is increased when overexpressed or with increased intracellular lactate generated by glycolysis in the setting of nutrient abundance. With increased MCT4 activity, extracellular lactate and protons will increase causing extracellular acidification while alkalinizing the intracellular compartment. MCT4-knockout (MCT4-KO) of mouse and human AMLdid not induce compensatory MCT1 expression, reduced pHi, suppressed proliferation and improved animal survival. Growth reduction was experimentally defined to be due to intracellular acidification rather than lactate accumulation by independent modulation of those parameters. MCT4-KOmetabolic profiling demonstrated decreased ATP/ADP and increased NADP+/NADPH suggesting suppression of glycolysis and the pentose phosphate pathway (PPP) that was confirmed by stable isotopic carbon flux analyses. Notably,the enzymatic activity of purified gatekeeper enzymes, hexokinase 1 (HK1), pyruvate kinase M2 isoform (PKM2) and glucose-6-phosphate dehydrogenase (G6PDH) was sensitive to pH with increased activity at the leukemic pHi (pH 7.6) compared to normal pHi (pH 7.3). Evaluating MCT4 transcriptional regulation, we defined that activating histonemarks, H3K27ac and H3K4me3, were enriched at the MCT4 promoter region as were transcriptional regulators MLL1 and Brd4 by ChIP in AML compared with normal cells. Pharmacologic inhibition of Brd4 suppressed Brd4 and H3K27ac enrichment and MCT4 expression in AML and reduced leukemic cell growth. To determine whether MCT4 based pHi changes were sufficient to increase cell proliferation, we overexpressed MCT4 in normal HSPC and demonstrated in vivo increases in growth in conjunction with pHi alkalization. Some other cell types also were increased in their growth kinetics by MCT4 overexpression and pHi increase. Therefore, proton shifting may be a means by which cells respond to nutrient abundance, co-transporting lactate and protons out of the cell, increasing the activity of enzymes that enhance PPP and glycolysis for biomass generation. Epigenetic changes in AML appear to exploit that process by increasing MCT4 expression to enforce proton exclusion thereby gaining a growth advantage without dependence on signaling pathways. Inhibiting MCT4 and intracellular alkalization may diminish the ability of AML to outcompete normal hematopoiesis. Figure Disclosures Scadden: Clear Creek Bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Novartis: Other: Sponsored research; Editas Medicine: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Bone Therapeutics: Consultancy; Fog Pharma: Consultancy; Red Oak Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; LifeVaultBio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Magenta Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Agios Pharmaceuticals: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics: Consultancy, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 338-338
Author(s):  
Bradstock Kenneth ◽  
Emma Link ◽  
Juliana Di Iulio ◽  
Jeff Szer ◽  
Paula Marlton ◽  
...  

Abstract Background: Anthracylines are one of the major classes of drugs active against acute myeloid leukemia (AML). Increased doses of daunorubicin during induction therapy for AML have been shown to improve remission rates and survival. The ALLG used idarubicin in induction therapy at a dose of 9 mg/m2 x 3 days (total dose 27 mg/m2) in combination with high-dose cytarabine and etoposide (Blood 2005, 105:481), but showed that a total idarubicin dose of 36 mg/m2 was too toxic in this context (Leukemia 2001, 15:1331). In order to further improve outcomes in adult AML by anthracycline dose escalation, we conducted a phase 3 trial comparing standard to an increased idarubicin dose during consolidation therapy. Methods: Patients achieving complete remission after 1 or 2 cycles of intensive induction therapy (idarubicin 9 mg/m2 daily x3, cytarabine 3 g/m2 twice daily on days 1,3,5 and 7, and etoposide 75 mg/m2 daily x7; ICE protocol) were randomized to receive 2 cycles of consolidation therapy with cytarabine 100 mg/m2 per day for 5 days, etoposide 75 mg/m2 for 5 days, and idarubicin 9mg/m2 daily for either 2 or 3 days (standard and intensive arms respectively). No further protocol therapy was given. The primary endpoint was leukemia-free survival from randomization to consolidation therapy (LFS) with overall survival (OS) as secondary endpoint. Results: A total of 422 patients with AML (excluding cases with CBF rearrangements or APL) aged 16 to 60 years were enrolled between 2003-10, with 345 (82%) achieving complete remission, and 293 being randomized to standard (n=146) or intensive (n=147) consolidation arms. The median age was 45 years in both arms (range 16- 60), and both groups were balanced for intermediate versus unfavorable karyotypes and for frequency of mutations involving FLT3-ITD and NPM1 genes. Of the randomized patients, 120 in the standard arm (82%) and 95 in the intensive arm (65%) received the second consolidation cycle (p<0.001). The median total dose of idarubicin received in the 2 consolidation courses was 36 mg/m2 (range 17-45), or 99% (47-125%) of the protocol dose in the standard arm, versus 53 mg/m2 (18-73), or 98% (33-136%) of the protocol dose in the intensive arm. The durations of grades 3-4 neutropenia and thrombocytopenia were significantly longer in the intensive arm, but there were no differences in grade 3 or 4 non-hematological toxicities. There were no non-relapse deaths during consolidation on the standard arm and 2 in the intensive (0% vs 1%; p =0.50). Subsequently, 41 patients in the standard arm and 37 in the intensive arm underwent elective allogeneic BMT during first remission. On intention to-treat analysis uncensored for transplant and with a median follow-up time of 5.3 years (range 0.6 - 9.9), there was improvement in LFS in the intensive arm compared with the standard arm (3 year LFS 47% (95% CI 40-56%) versus 35% (28-44%); HR 0.74 (95% CI 0.55-0.99); p=0.045) (Figure 1). The 3 year OS for the intensive arm was 61% (95% CI 54-70%) and 50% (95% CI 43-59%) for the standard arm; HR 0.75 (95% CI 0.54-1.05); p=0.092). Although adverse cytogenetics, presence of FLT3-ITD mutation, and absence of NPM1 mutation were all associated with poorer outcomes, there was no evidence of a benefit of intensive consolidation being confined to specific cytogenetic or gene mutation sub-groups. Conclusion: We conclude that in adult patients in complete remission after intensive induction chemotherapy an increased dose of idarubicin delivered during consolidation therapy results in improved LFS, without increased non-hematologic toxicity. Figure 1. Figure 1. Disclosures Szer: Ra Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alexion Pharmaceuticals, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alnylam: Honoraria, Membership on an entity's Board of Directors or advisory committees. Marlton:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees. Wei:Novartis: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria; CTI: Consultancy, Honoraria; Abbvie: Honoraria, Research Funding; Servier: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding. Cartwright:ROCHE: Consultancy, Membership on an entity's Board of Directors or advisory committees. Roberts:Servier: Research Funding; Janssen: Research Funding; Genentech: Research Funding; AbbVie: Research Funding. Mills:Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Meeting attendance sponsorship. Gill:Janssen: Membership on an entity's Board of Directors or advisory committees. Seymour:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3402-3402
Author(s):  
Seung-Ah Yahng ◽  
Jae-Ho Yoon ◽  
Sung-Eun Lee ◽  
Seung-Hwan Shin ◽  
Byung-Sik Cho ◽  
...  

Abstract Background The successful induction chemotherapy of acute myeloid leukemia (AML) depends on the ability to achieve complete remission (CR) and to maintain remission status as long as possible. Approach to improve the rate of CR includes the intensification of induction chemotherapy for AML. The primary goal of this study was to evaluate and compare the long-term outcomes between remission induction therapy with and without early intensification added to the standard 3+7 remission induction regimen. Methods A retrospective analysis was performed on de novo AML patients diagnosed and treated at Catholic Blood and Marrow Transplantation Center between January 2001 and December 2010. Six hundred forty-one adults of ages between 16 and 60 were included, all of whom received induction chemotherapy starting with 3 days of idarubicin and 7 days of cytarabine or behenoyl cytarabine (BHAC). Cases with t(9;22) and t(15;17) were excluded. Bone marrow (BM) aspiration study was assessed on day 7 of induction in all patients. Factors which were considered for early intensification of induction were the presence of ≥ 5% BM blasts, patient performance, and other high risk clinical characteristics, such as karyotype. Groups according to early intensification on days 8 to 10 of induction were as followings: no intensification (3+7), n=156; cytarabine or BHAC for 3 days (3+10), n=233; addition of idarubicin for 2 days to 3+10 regimen (5+10), n=252. After a median duration of 5.5 months (3.3-19.0) from diagnosis, 479 patients underwent stem cell transplantation (autologous [auto-SCT], n=144; allogeneic [allo-SCT], n=335). Conditioning regimen for auto-SCT consisted of fractionated total body irradiation (TBI), melphalan, and cytarabine, whereas 83% (n=278) of patients with allo-SCT received myeloablative conditioning, of which was mostly TBI-based regimen (92%). Donors were matched sibling (n=213), matched unrelated (n=63), mismatched unrelated (n=39), and haploidentical related (n=20). Results The median age at diagnosis was 39 years (16-60). Mean values of BM blast % on day 7 of induction was 3.5 in 3+7 group, 7.9 in 3+10, and 33.6 in 5+10 (p=<0.0001), while no significant difference in the proportion of adverse karyotype was shown (11.7% vs. 12.8%, p=0.804). After first induction (3+7, n=165; 3+10/5+10, n=465), the CR/CRi rate was significantly higher in 3+10/5+10 versus 3+7 (78.1% vs. 69.2%, p=0.023), while the rate for death in aplasia was lower (4.3% vs. 9.6%, p=0.013). After re-induction with various regimens, the CR/CRi rate was still significantly higher in intensified group (p=0.012). The relapse rates between the groups in 536 patients achieving CR (83.6%), however, was not significantly different (8.9% vs. 9.9%, p=0.737). SCT was performed at CR1 (n=459), CR2 (n=10), or relapsed/refractory status (n=10). Patients with auto-SCT mostly had better/intermediate cytogenetic risk (96%) at diagnosis, while 12% of allo-SCT had poor karyotype. After the median follow-up duration of 60.2 months (2.2-143.5), the median overall survival (OS) in all patients (n=641) was 65.6 months. The 5-year disease-free survival (DFS) of patients with auto- and allo-SCT was 58.4±4.2 and 64.9±2.7, respectively. Of 334 patients receiving allo-SCT, the 5-year DFS was significantly higher in patients achieving CR1 (n=299) after first induction therapy (p<0.0001), in whom 75% of them had early intensification. Other factors with significant impact on DFS after allo-SCT (n=334) were karyotype at diagnosis (p=0.032) and donor type (HLA-matched vs. HLA-mismatched sibling or unrelated, 58.1%±3.8 vs. 45.1±8.0, p=0.016). The significances were confirmed in multivariate analysis, which demonstrated that achieving CR1 after first induction regimen and its maintenance until SCT was the most powerful predictor for DFS after allo-SCT (67.1±2.9 vs. 34.6±7.8, p=<0.0001). When all patients were analyzed, according to induction intensification, a statistically significant benefit in 10-year OS was observed in 5+10 intensified group (44.8% vs. 52.9%, p=0.032). Conclusion Our results suggest possible benefit of examining day 7 BM aspiration for the strategy of early intensification of induction chemotherapy for adult AML patients and our intensification doses can be safely added with high efficacy in the achievement of CR1 compared to 3+7 standard regimen, and may have affected for better DFS after allo-SCT. Disclosures: Kim: BMS: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document