scholarly journals Feasibility, and Efficacy of Donor-Derived cd19-Targeted Car t-Cell Therapy in Refractory/Relapsed(r/r)b-Cell Acute Lymphoblastic Leukemia (b-all) Patients

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-6
Author(s):  
Xian Zhang ◽  
Junfang Yang ◽  
Wenqian Li ◽  
Gailing Zhang ◽  
Yunchao Su ◽  
...  

Backgrounds As CAR T-cell therapy is a highly personalized therapy, process of generating autologous CAR-T cells for each patient is complex and can still be problematic, particularly for heavily pre-treated patients and patients with significant leukemia burden. Here, we analyzed the feasibility and efficacy in 37 patients with refractory/relapsed (R/R) B-ALL who received CAR T-cells derived from related donors. Patients and Methods From April 2017 to May 2020, 37 R/R B-ALL patients with a median age of 19 years (3-61 years), were treated with second-generation CD19 CAR-T cells derived from donors. The data was aggregated from three clinical trials (www.clinicaltrials.gov NCT03173417; NCT02546739; and www.chictr.org.cn ChiCTR-ONC-17012829). Of the 37 patients, 28 were relapsed following allogenic hematopoietic stem cell transplant (allo-HSCT) and whose lymphocytes were collected from their transplant donors (3 HLA matched sibling and 25 haploidentical). For the remaining 9 patients without prior transplant, the lymphocytes were collected from HLA identical sibling donors (n=5) or haploidentical donors (n=4) because CAR-T cells manufacture from patient samples either failed (n=5) or blasts in peripheral blood were too high (>40%) to collect quality T-cells. The median CAR-T cell dose infused was 3×105/kg (1-30×105/kg). Results For the 28 patients who relapsed after prior allo-HSCT, 27 (96.4%) achieved CR within 30 days post CAR T-cell infusion, of which 25 (89.3%) were minimal residual disease (MRD) negative. Within one month following CAR T-cell therapy, graft-versus-host disease (GVHD) occurred in 3 patients including 1 with rash and 2 with diarrhea. A total of 19 of the 28 (67.9%) patients had cytokine release syndrome (CRS), including two patients (7.1%) with Grade 3-4 CRS. Four patients had CAR T-cell related neurotoxicity including 3 with Grade 3-4 events. With a medium follow up of 103 days (1-669days), the median overall survival (OS) was 169 days (1-668 days), and the median leukemia-free survival (LFS) was 158 days (1-438 days). After CAR T-cell therapy, 15 patients bridged into a second allo-HSCT and one of 15 patients (6.7%) relapsed following transplant, and two died from infection. There were 11 patients that did not receive a second transplantation, of which three patients (27.3%) relapsed, and four parents died (one due to relapse, one from arrhythmia and two from GVHD/infection). Two patients were lost to follow-up. The remaining nine patients had no prior transplantation. At the time of T-cell collection, the median bone marrow blasts were 90% (range: 18.5%-98.5%), and the median peripheral blood blasts were 10% (range: 0-70%). CR rate within 30 days post CAR-T was 44.4% (4/9 cases). Six patients developed CRS, including four with Grade 3 CRS. Only one patient had Grade 3 neurotoxicity. No GVHD occurred following CAR T-cell therapy. Among the nine patients, five were treated with CAR T-cells derived from HLA-identical sibling donors and three of those five patients achieved CR. One patient who achieved a CR died from disseminated intravascular coagulation (DIC) on day 16. Two patients who achieved a CR bridged into allo-HSCT, including one patient who relapsed and died. One of two patients who did not response to CAR T-cell therapy died from leukemia. Four of the nine patients were treated with CAR T-cells derived from haploidentical related donors. One of the four cases achieved a CR but died from infection on day 90. The other three patients who had no response to CAR T-cell therapy died from disease progression within 3 months (7-90 days). Altogether, seven of the nine patients died with a median time of 19 days (7-505 days). Conclusions We find that manufacturing CD19+ CAR-T cells derived from donors is feasible. For patients who relapse following allo-HSCT, the transplant donor derived CAR-T cells are safe and effective with a CR rate as high as 96.4%. If a patient did not have GVHD prior to CAR T-cell therapy, the incidence of GVHD following CAR T-cell was low. Among patients without a history of transplantation, an inability to collect autologous lymphocytes signaled that the patient's condition had already reached a very advanced stage. However, CAR T-cells derived from HLA identical siblings can still be considered in our experience, no GVHD occurred in these patients. But the efficacy of CAR T-cells from haploidentical donors was very poor. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4828-4828
Author(s):  
Yusra F Shao ◽  
Dipenkumar Modi ◽  
Andrew Kin ◽  
Asif Alavi ◽  
Lois Ayash ◽  
...  

Abstract Background Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a promising therapeutic option for relapsed/refractory non-Hodgkin lymphoma. However, access to CAR T cell therapy remains limited as CAR T cells are routinely administered in the hospital setting. Hence, there's a growing interest in standardizing outpatient administration of CAR T cells to increase patient access and minimize costs. Here, we describe our institution's experience with outpatient administration of CAR T cells. Methods In this retrospective study, we reviewed who received CAR T cell therapy in the outpatient setting at Karmanos Cancer Center between June 2019 and June 2021.Charts were reviewed for age, disease pathology, prior lines of therapy, need for hospitalization within 30 days, development of CRS and/or neurotoxicity, need for ICU admission, need for steroids and/or tocilizumab, length of admission, and disease state at last follow up. All patients received fludarabine and cyclophosphamide as lymphodepletion (LD) therapy day -5 to -3. CAR T cells were infused on day 0. Patients subsequently followed up in clinic daily for 2 weeks and were started on allopurinol, ciprofloxacin, fluconazole, acyclovir and levetiracetam. First response was assessed by FDG PET scan 4 weeks after CAR T cell . Results A total of 12 patients received CAR T cells during the study period. All patients had a diagnosis of DLBCL and received Tisagenlecleucel. Median age at CAR T cell therapy was 69.5 years (40-78 years). Median number of prior lines of therapy was (2-3) while 2 patients had received prior stem cell transplantation. Table 1 describes patient characteristics and lines of therapy. Two patients received bridging therapy prior to LD. Overall response rate was 58.3% (complete response-3, partial response-4). Median duration of follow up was 6.7 (0.6-13.8 months). Four patients required subsequent therapy after CAR T cell for disease progression while 9 patients were alive at the time of data cut off. Figure 1 summarizes disease response and follow . Table 2 summarizes complications during follow up. Nine (75%) patients developed anemia (grade 3-4 n=4, 33.3%), 8 (66.7%) developed thrombocytopenia (grade 3-4 n= 3, 37.5%), and 8 (66.7%) developed neutropenia (grade 3-4 n=8, 66.7%). Median time to platelet recovery to >,000 and neutrophil recovery to >500 was 66 days (44-81 days) and 11.5 days (6-65 days), respectively. Three (25%) patients required platelet and red blood cell transfusion support. Six (50%) patients developed cytokine release syndrome (CRS) with median grade 2 (range 1-3, grade 3-4 n=1). Five (5/6) patients required hospitalization, five (5/6) required tocilizumab, and one (1/6) required steroids. One (8.3%) patient developed neurotoxicity of grade 1 severity improved without systemic therapy. Six patients required hospitalization within 30 days of CAR T cell infusion. Median day of admission from CAR T cell infusion was 4 days (range 2-12 days (range 2-12 days, admission within 3 days n=2, admission under observation n=1). Patient characteristics at admission are summarized in table 3. Of these, 5 patients were diagnosed with CRS,1 patient with colitis and none with blood stream infection. Two patients required ICU admission. Median length of hospital admission was 5.5 days (2-9 days). All patients were alive at discharge while 1 patient required subsequent admission within 30 . Conclusion Outpatient administration of Tisagenlecleucel is feasible with low risk of hospital admission within 3 days of infusion. Adoption of outpatient CAR T cell therapy may increase patient access for treatment of DLBCL and diseases such as multiple myeloma while reducing administration costs for this novel therapy. Figure 1 Figure 1. Disclosures Modi: Genentech: Research Funding; Seagen: Membership on an entity's Board of Directors or advisory committees; MorphoSys: Membership on an entity's Board of Directors or advisory committees. Deol: Kite, a Gilead Company: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 39-40
Author(s):  
Aimee C Talleur ◽  
Renee M. Madden ◽  
Amr Qudeimat ◽  
Ewelina Mamcarz ◽  
Akshay Sharma ◽  
...  

CD19-CAR T-cell therapy has shown remarkable efficacy in pediatric patients with relapsed and/or refractory B-cell acute lymphoblastic leukemia (r/r ALL). Despite high short-term remission rates, many responses are not durable and the best management of patients who achieve a complete response (CR) post-CAR T-cell therapy remains controversial. In particular, it is unclear if these patients should be observed or proceed to consolidative allogeneic hematopoietic cell transplantation (HCT). To address this question, we reviewed the clinical course of all patients (n=22) who received either an investigational CAR T-cell product (Phase I study: SJCAR19 [NCT03573700]; n=12) or tisagenlecleucel (n=10) at our institution. The investigational CD19-CAR T cells were generated by a standard cGMP-compliant procedure using a lentiviral vector encoding a 2nd generation CD19-CAR with a FMC63-based CD19 binding domain, CD8a stalk and transmembrane domain, and 41BB.ζ signaling domain. Patients received therapy between 8/2018 and 3/2020. All products met manufacturing release specifications. Within the entire cohort, median age at time of infusion was 12.3 years old (range: 1.8-23.5) and median pre-infusion marrow burden using flow-cytometry minimal residual disease (MRD) testing was 6.8% (range: 0.003-100%; 1 patient detectable by next-generation sequencing [NGS] only). All patients received lymphodepleting chemotherapy (fludarabine, 25mg/m2 daily x3, and cyclophosphamide, 900mg/m2 daily x1), followed by a single infusion of CAR T-cells. Phase I product dosing included 1x106 CAR+ T-cells/kg (n=6) or 3x106 CAR+ T-cells/kg (n=6). Therapy was well tolerated, with a low incidence of cytokine release syndrome (any grade: n=10; Grade 3-4: n=4) and neurotoxicity (any grade: n=8; Grade 3-4: n=3). At 4-weeks post-infusion, 15/22 (68.2%) patients achieved a CR in the marrow, of which 13 were MRDneg (MRDneg defined as no detectable leukemia by flow-cytometry, RT-PCR and/or NGS, when available). Among the 2 MRDpos patients, 1 (detectable by NGS only) relapsed 50 days after CAR T-cell infusion and 1 died secondary to invasive fungal infection 35 days after infusion. Within the MRDneg cohort, 6/13 patients proceeded to allogeneic HCT while in MRDneg/CR (time to HCT, range: 1.8-2.9 months post-CAR T-cell infusion). All 6 HCT recipients remain in remission with a median length of follow-up post-HCT of 238.5 days (range 19-441). In contrast, only 1 (14.3%) patient out of 7 MRDneg/CR patients who did not receive allogeneic HCT, remains in remission with a follow up of greater 1 year post-CAR T-cell infusion (HCT vs. no HCT: p<0.01). The remaining 6 patients developed recurrent detectable leukemia within 2 to 9 months post-CAR T-cell infusion (1 patient detectable by NGS only). Notably, recurring leukemia remained CD19+ in 4 of 5 evaluable patients. All 4 patients with CD19+ relapse received a 2nd CAR T-cell infusion (one in combination with pembrolizumab) and 2 achieved MRDneg/CR. There were no significant differences in outcome between SJCAR19 study participants and patients who received tisagenlecleucel. With a median follow up of one year, the 12 month event free survival (EFS) of all 22 patients is 25% (median EFS: 3.5 months) and the 12 month overall survival (OS) 70% (median OS not yet reached). In conclusion, infusion of investigational and FDA-approved autologous CD19-CAR T cells induced high CR rates in pediatric patients with r/r ALL. However, our current experience shows that sustained remission without consolidative allogeneic HCT is not seen in most patients. Our single center experience highlights not only the need to explore maintenance therapies other than HCT for MRDneg/CR patients, but also the need to improve the in vivo persistence of currently available CD19-CAR T-cell products. Disclosures Sharma: Spotlight Therapeutics: Consultancy; Magenta Therapeutics: Other: Research Collaboration; CRISPR Therapeutics, Vertex Pharmaceuticals, Novartis: Other: Clinical Trial PI. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees. Gottschalk:Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties; TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy.


2020 ◽  
Vol 4 (13) ◽  
pp. 3024-3033 ◽  
Author(s):  
Kitsada Wudhikarn ◽  
Martina Pennisi ◽  
Marta Garcia-Recio ◽  
Jessica R. Flynn ◽  
Aishat Afuye ◽  
...  

Abstract Cytokine release syndrome (CRS) immune effector cell–associated neurotoxicity syndrome are the most notable toxicities of CD19 chimeric antigen receptor (CAR) T-cell therapy. In addition, CAR T-cell–mediated toxicities can involve any organ system, with varied impacts on outcomes, depending on patient factors and involved organs. We performed detailed analysis of organ-specific toxicities and their association with outcomes in 60 patients with diffuse large B-cell lymphoma (DLBCL) treated with CD19 CAR T cells by assessing all toxicities in organ-based groups during the first year posttreatment. We observed 539 grade ≥2 and 289 grade ≥3 toxicities. Common grade ≥3 toxicities included hematological, metabolic, infectious, and neurological complications, with corresponding 1-year cumulative incidence of 57.7%, 54.8%, 35.4%, and 18.3%, respectively. Patients with impaired performance status had a higher risk of grade ≥3 metabolic complications, whereas elevated lactate dehydrogenase was associated with higher risks of grade ≥3 neurological and pulmonary toxicities. CRS was associated with higher incidence of grade ≥3 metabolic, pulmonary, and neurologic complications. The 1-year nonrelapse mortality and overall survival were 1.7% and 69%, respectively. Only grade ≥3 pulmonary toxicities were associated with an increased mortality risk. In summary, toxicity burdens after CD19 CAR T-cell therapy were high and varied by organ systems. Most toxicities were manageable and were rarely associated with mortality. Our study emphasizes the importance of toxicity assessment, which could serve as a benchmark for further research to reduce symptom burdens and improve tolerability in patients treated with CAR T cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1590-1590 ◽  
Author(s):  
Wei Sang ◽  
Ming Shi ◽  
Jingjing Yang ◽  
Jiang Cao ◽  
Linyan Xu ◽  
...  

Objective Chimeric antigen receptor T (CAR-T) cells therapy demonstrated remarkable efficiency in refractory and relapsed diffuse large B cell lymphoma (R/R DLBCL). Antigen-loss potentially leads to failure after single-target CAR-T cellss therapy. Aim to evaluate the efficiency and safety of double-target CAR-T cellss therapy, we performed a phase Ⅰ/Ⅱ clinical trial of combination anti-CD19 and anti-CD20 CAR-T cellss therapy for R/R DLBCL. Methods A total of 21 patients were enrolled, and patients were monitored for treatment response, toxicity and persistence. Patients received a conditioning regimen of fludarabine and cyclophosphamide followed by infusion of anti-CD19 and anti-CD20 CAR-T cellss. Results Of the 21 patients, 17 had objective response, and the ORR was 81.0% (95% CI, 58 to 95). 11 had CR, the CR rate was 52.4% (95% CI, 26 to 70). 4 of 9 patients in completed remission at 3 months remain in remission by 6 months, the CR rate was 44.4% (95% CI, 14 to 79). The median OS was 8.1 months (95% CI, 7 to 10) and the median PFS was 5.0 months (95% CI, 2 to 8). The median duration response was 6.8 months (95% CI, 4 to 10). Cytokine release syndrome (CRS) occurred in all patients. Of the 21 patients, 15 (71.4%) had grade 1-2 CRS, 6 (28.5%) had severe (≥grade 3) CRS, and no grade 5 CRS occurred. There were 5 patients with different degrees of neurotoxicity, namely CAR-T associated encephalopathy syndrome (CRES). There were 2 cases with grade 3 or above CRES, 5 of them were self-limited, and none of them died of severe CRS or CRES. There were significant differences in peak levels of IL-6 (P=0.004)、ferritin (P=0.008) and CRP (P=0.000) secretion between CRS 1-2 and CRS 3-4 patients within one month after CAR-T cell infusion. In terms of hematological toxicity, there were 11 cases of neutropenia above grade 3 (52.4%), 6 cases of anemia (28.6%) and 6 cases of thrombocytopenia (28.6%). After 12 patients with response and 1 patient without response received CAR-T cell therapy, CD19 cell subsets all disappeared after 2 weeks. The level of serum immunoglobulin in 14 patients with response decreased progressively after 1 week of treatment with CAR-T cells, and maintained at a relatively low level. Eight patients received intravenous immunoglobulin during CAR-T cell therapy. Conclusion Anti-CD19 combined with anti-CD20 CAR-T cell is effective in the treatment of R/R DLBCL patients.2. Anti-CD19 combined with anti-CD20 CAR-T cell therapy has the occurrence of CRS, CRES and hematological toxicity, and adverse reactions could be controlled. This is the first report to our knowledge of successful treatment of combination of anti-CD19 and anti-CD20 CAR-T cellss in R/R DLBCL. Our results provide strong support for further multiple-target CAR-T cells therapy, which could potentially resolve antigen-loss related failure. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
pp. JCO.20.02262
Author(s):  
Nirali N. Shah ◽  
Daniel W. Lee ◽  
Bonnie Yates ◽  
Constance M. Yuan ◽  
Haneen Shalabi ◽  
...  

PURPOSE CD19 chimeric antigen receptor (CD19-CAR) T cells induce high response rates in children and young adults (CAYAs) with B-cell acute lymphoblastic leukemia (B-ALL), but relapse rates are high. The role for allogeneic hematopoietic stem-cell transplant (alloHSCT) following CD19-CAR T-cell therapy to improve long-term outcomes in CAYAs has not been examined. METHODS We conducted a phase I trial of autologous CD19.28ζ-CAR T cells in CAYAs with relapsed or refractory B-ALL. Response and long-term clinical outcomes were assessed in relation to disease and treatment variables. RESULTS Fifty CAYAs with B-ALL were treated (median age, 13.5 years; range, 4.3-30.4). Thirty-one (62.0%) patients achieved a complete remission (CR), 28 (90.3%) of whom were minimal residual disease−negative by flow cytometry. Utilization of fludarabine/cyclophosphamide–based lymphodepletion was associated with improved CR rates (29/42, 69%) compared with non–fludarabine/cyclophosphamide–based lymphodepletion (2/8, 25%; P = .041). With median follow-up of 4.8 years, median overall survival was 10.5 months (95% CI, 6.3 to 29.2 months). Twenty-one of 28 (75.0%) patients achieving a minimal residual disease−negative CR proceeded to alloHSCT. For those proceeding to alloHSCT, median overall survival was 70.2 months (95% CI, 10.4 months to not estimable). The cumulative incidence of relapse after alloHSCT was 9.5% (95% CI, 1.5 to 26.8) at 24 months; 5-year EFS following alloHSCT was 61.9% (95% CI, 38.1 to 78.8). CONCLUSION We provide the longest follow-up in CAYAs with B-ALL after CD19-CAR T-cell therapy reported to date and demonstrate that sequential therapy with CD19.28ζ-CAR T cells followed by alloHSCT can mediate durable disease control in a sizable fraction of CAYAs with relapsed or refractory B-ALL (ClinicalTrials.gov identifier: NCT01593696 ).


2020 ◽  
Vol 11 ◽  
Author(s):  
Xinrong Xiang ◽  
Qiao He ◽  
Yang Ou ◽  
Wen Wang ◽  
Yu Wu

Background: In recent years, chimeric antigen receptor-modified T (CAR-T) cell therapy for B-cell leukemia and lymphoma has shown high clinical efficacy. Similar CAR-T clinical trials have also been carried out in patients with refractory/relapsed multiple myeloma (RRMM). However, no systematic review has evaluated the efficacy and safety of CAR-T cell therapy in RRMM. The purpose of this study was to fill this literature gap.Methods: Eligible studies were searched in PUBMED, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CNKI, and WanFang from data inception to December 2019. For efficacy assessment, the overall response rate (ORR), minimal residual disease (MRD) negativity rate, strict complete response (sCR), complete response (CR), very good partial response (VGPR), and partial response (PR) were calculated. The incidence of any grade cytokine release syndrome (CRS) and grade ≥3 adverse events (AEs) were calculated for safety analysis. The effect estimates were then pooled using an inverse variance method.Results: Overall, 27 studies involving 497 patients were included in this meta-analysis. The pooled ORR and MRD negativity rate were 89% (95% Cl: 83–94%) and 81% (95% Cl: 67–91%), respectively. The pooled sCR, CR, VGPR, and PR were 14% (95% Cl: 5–27%), 13% (95% Cl: 4–26%), 23% (95% Cl: 14–33%), and 15% (95% Cl: 10–21%), respectively. Subgroup analyses of ORR by age, proportion of previous autologous stem cell transplantation (ASCT), and target selection of CAR-T cells revealed that age ≤ 55 years (≤55 years vs. > 55 years, p = 0.0081), prior ASCT ≤70% (≤70% vs. > 70%, p = 0.035), and bispecific CAR-T cells (dual B-cell maturation antigen (BCMA)/BCMA + CD19 vs specific BCMA, p = 0.0329) associated with higher ORR in patients. Subgroup analyses of remission depth by target selection suggested that more patients achieved a better response than VGPR with dual BCMA/BCMA + CD19 CAR-T cells compared to specific BCMA targeting (p = 0.0061). In terms of safety, the pooled incidence of any grade and grade ≥ 3 CRS was 76% (95% CL: 63–87%) and 11% (95% CL: 6–17%). The most common grade ≥ 3 AEs were hematologic toxic effects.Conclusion: In heavily treated patients, CAR-T therapy associates with promising responses and tolerable AEs, as well as CRS in RRMM. However, additional information regarding the durability of CAR-T cell therapy, as well as further randomized controlled trials, is needed.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1858-1858 ◽  
Author(s):  
Lijuan Chen ◽  
Jie Xu ◽  
Weijun Fu ◽  
Shiwei Jin ◽  
Shuangshuang Yang ◽  
...  

Background: LCAR-B38M is a structurally differentiated CAR-T cell therapy containing 2 BCMA-targeting single-domain antibodies designed to confer avidity. LEGEND-2 (NCT03090659) is an exploratory study using LCAR-B38M CAR-T cells for the treatment of patients (pts) with relapsed or refractory (R/R) multiple myeloma (MM). Key eligibility criteria included R/R MM ³3 prior lines of therapy. Earlier results from LEGEND-2 showed encouraging overall efficacy and manageable safety (N=74). Here, we present updated results of LCAR-B38M in 17 R/R MM pts published in PNAS (Xu J et al. Proc Natl Acad Sci USA. 2019;116:9543-9551), with a median follow-up of 22 months, from 3 sites: Jiangsu Provincial People's Hospital, Nanjing (JS); Ruijin Hospital, Shanghai (RJ); and Changzheng Hospital, Shanghai (CZ). Methods: Different sites adopted different lymphodepletion and dosing regimens. Eight pts (age, 18-75 years) with R/R MM received a lymphodepletion regimen of cyclophosphamide (Cy) 250 mg/m2 + fludarabine (Flu) 25 mg/m2, intravenously daily for 3 days (RJ and CZ), while 9 pts received Cy 300 mg/m2 intravenously daily for 3 days (JS). CAR-T cells were administered via 3 infusions (day 0, 3, and 6; n=8, RJ and CZ) or 1 infusion (day 0; n=9, JS) 5 days after lymphodepletion. Response was assessed per the International Myeloma Working Group criteria, adverse events graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03, and cytokine release syndrome was graded using CARTOX criteria (Neelapu SS et al. Nat Rev Clin Oncol. 2018;15:47-62). Results: Overall, 17 pts were enrolled. The mean dose was 0.7x106 (range, 0.2-1.5x106) CAR+ T cells/kg. The most common adverse events observed were cytokine release syndrome (100%; grade 1/2 [n=10]; grade 3 [n=6]; grade 5 [n=1]); cytopenia (82%; grade 1/2 [n=4]; grade 3 [n=5]; grade 4 [n=5]); and liver toxicity: 100%; elevated alanine aminotransferase (41%; grade 1/2 [n=7]; grade ≥3 [n=0]), elevated aspartate aminotransferase (94%, grade 1/2 [n=11]; grade 3 [n=5]), and elevated bilirubin (6%, grade 3 [n=1]). Tumor lysis syndrome was reported in 3 pts (18%) and no neurotoxicity was reported. The overall best response rate (partial response or better) was 88% (95% confidence interval [CI], 64-99). Complete response (CR) was achieved by 14 pts (82%; 62-99), and very good partial response by 1 pt (6%; 6-18). All of the 14 pts with CR were minimal residual disease negative (MRD-neg, by 8-color flow cytometry). The median time to first response was 1.0 months. At the July 20, 2019 data cutoff (median follow-up, 22 months [95% confidence interval, 16-23]), 6 (38%) pts remain progression-free. The median progression-free survival (PFS) for all-treated pts was 12 months (12-NE); median PFS for MRD-neg pts with CR was 18 months (13-NE). The median overall survival has not yet been reached (NE [12-NE]). At 18 months, 65% (39-90) of all-treated pts and 79% (54-99) of MRD-neg pts with CR were still living. In a post-hoc analysis, PFS was longer in pts at the RJ and CZ sites than in those at the JS site. Relapse occurred in 8/9 pts at the JS site, while relapse or progressive disease occurred in 2/7 evaluable pts at the RJ and CZ sites. In addition, 5/7 (71%) RJ/CZ pts remained stable in sCR (median follow-up, 745 days). Key differences between these sites included lymphodepletion regimens and the number of CAR-T infusions. Conclusions: LCAR-B38M has a safety profile consistent with other BCMA-targeted CAR-T cell therapy. This exploratory study has provided key evidence that LCAR-B38M may be a highly effective therapy for pts with R/R MM. It demonstrated deep and durable responses, particularly following Cy/Flu lymphodepletion. Although the sample size is too small to draw firm conclusions and multiple other factors may contribute, these outcomes suggest that different lymphodepletion regimens may contribute to differences in long-term efficacy. The study is ongoing for long-term safety and follow-up. A phase 1b/2 clinical study is ongoing in the United States (CARTITUDE-1, NCT03548207, JNJ-4528), and a phase 2 confirmatory study is ongoing in China (CARTIFAN-1, NCT03758417, LCAR-B38M). Pts in both of these studies will undergo Cy/Flu lymphodepletion and 1 single infusion of drug product. Disclosures Xu: National Natural Science Foundation of China: Other: Grants; Shanghai Rising-Star Program: Other: Grants; Shanghai Excellent Youth Medical Talents Training Program: Other: Grants.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 382-382 ◽  
Author(s):  
Jae H Park ◽  
Isabelle Riviere ◽  
Xiuyan Wang ◽  
Yvette J Bernal ◽  
Sarah Yoo ◽  
...  

Abstract Background: Relapsed adult acute lymphoblastic leukemia (ALL) is associated with high reinduction mortality, chemotherapy resistance, and dismal prognosis with a median overall survival (OS) < 6 months and 5-year OS ≤10%. We have previously reported a high anti-tumor activity of autologous T cells genetically modified to express 19-28z chimeric antigen receptor (19-28z CAR) targeting CD19 in adult patients with CLL and ALL (Brentjens R et al. Blood 2011; Davila M et al. Sci Transl Med2014). Herein, for the first time, we further report the long-term outcome of our phase I clinical trial in adults with relapsed/refractory (R/R) ALL (NCT01044069) with analysis on potential predictive markers of response and neurological toxicities. Patients and Methods: Adult patients with R/R B-ALL were enrolled. Eligible patients underwent leukapheresis, and T cells were transduced with a retrovirus encoding a CAR construct composed of anti-CD19 scFV linked to CD28 and CD3ζ signaling domains (19-28z). All patients received lymphodepleting chemotherapy followed 2 days later by 1x106 – 3x10619-28z CAR T cells/kg. The primary objective of the study was to evaluate the safety and anti-tumor activity of 19-28z CAR T cells in ALL. Post-treatment minimal residual disease (MRD) was assessed at day 14-28 by multiparameter flow cytometry and deep sequencing in the bone marrow (BM) samples (Adaptive Biotech Corp.) Results: 24 patients have been treated. The median age was 56 years (range, 23-74). 6 patients (25%) had Ph+ B-ALL (T315I mutation in 2 patients), 6 patients (25%) had prior allogeneic hematopoietic stem cell transplant (allo-HSCT), and 11 patients (46%) had 3 or more prior lines of ALL therapy before receiving the 19-28z CAR T cell therapy. Of the 24 patients, 22 patients were evaluable for response. At the time of 19-28z CAR T cell infusion, 12 of 22 patients had morphologic disease (6 to 97% blasts in the BM) and the remaining 10 patients had MRD. Twenty out of 22 patients (91%) were in complete remission (CR) after 19-28z CAR T-cell infusion, and 18 of these 20 patients (90%) achieved an MRD-negative CR. Ten of the 13 transplant eligible patients (77%) successfully underwent allo-HSCT following the 19-28z CAR T cell therapy. As of July 1, 2014, the median follow-up was 7.4 months (range 1-34), with 13 patients having at least 6 months of follow-up. Responses appear durable with 6 patients remaining disease-free beyond 1 year (range 12.6 – 34 months). Median overall survial (OS) is 9 months. 5 patients relapsed during the follow-up, including 1 patient with CD19 negative relapse. Three of the relapsed patients were treated again with the 19-28z CAR T cells, and two patients achieved a second CR. Comparing responders to non-responders, no association was observed between response and age (<60 vs. ≥60), prior allo-HSCT, number of prior therapies, or pre-treatment blast percentage. While none of the 10 patients with MRD at the time of T cell infusion developed cytokine release syndrome (CRS), 9 of 13 patients with morphologic disease at the time of the T cell infusion developed CRS with or without neurological symptoms that required intervention with an IL-6R antagonist or corticosteroid. A detailed analysis of serum cytokines demonstrated a consistent peak of IL-6 (22.2 to 553-fold increase) immediately prior to the development of neurological toxicities. Based on these data, we have developed a multi-disciplinary CRS management algorithm for patients at high risk in order to reduce the severity of CRS and improve safety of the 19-28z CAR T cell therapy. Conclusions: While longer follow-up is needed to confirm the durability of the observed responses, the potent induction of MRD-negative responses and successful long-term outcomes, including subsequent allo-HSCT without apparent additional post-transplant toxicities, strongly support the use of 19-28z CAR T cells in adult patients with B-ALL. A temporal relationship between serum IL-6 levels and neurological toxicities indicates that early intervention with IL-6 directed therapy may be more effective in ameliorating neurological toxicities in patients with morphologic disease at the time of T-cell infusion. These findings will need to be evaluated systematically and confirmed in a larger phase 2 trial. Disclosures Park: Juno Therapeutics: Research Funding. Riviere:Juno Therapeutics: Consultancy, scientific co-founders Other. Sadelain:Juno Therapeutics: Consultancy, Scientific co-founder and Stock holder Other. Brentjens:Juno Therapeutics: Consultancy, Scientific co-founder and Stock holder Other.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e22504-e22504 ◽  
Author(s):  
Veronique Minard ◽  
Shannon L. Maude ◽  
Jochen Buechner ◽  
Joerg Krueger ◽  
Franco Locatelli ◽  
...  

e22504 Background: Pediatric/YA pts with r/r B-NHL are rare and have heterogenous, aggressive histology and poor prognosis. We report early results for tisagenlecleucel (anti-CD19 CAR-T cell therapy) in pediatric/YA pts with r/r B-NHL. Methods: BIANCA (NCT03610724) is a phase 2, single-arm, global, open-label trial of tisagenlecleucel in pediatric/YA pts with CD19+ r/r B-NHL. Pts must have confirmed mature B-NHL r/r to ≥1 prior lines of therapy and no active CNS involvement. Primary endpoint is ORR. Secondary outcomes include DOR, EFS, safety and pharmacokinetics. Results: As of Nov 4, 2019, 8 pts were enrolled, of whom 4 had large B-cell lymphoma (LBCL), 3 Burkitt lymphoma (BL), and 1 gray zone lymphoma (GZL) (Table). Five pts had ≥2 lines of prior therapy. Suitable apheresis product was harvested in all 8 pts. Five pts were infused and 3 were pending infusion at data cut off. Product was successfully manufactured within specifications for all infused pts. Median time from enrollment to infusion was 33 days (range 30-67). All 5 pts have ≥28 days follow up; 2 pts have ≥3 months follow up (median [range] 85 days [69-97]). All 8 pts received bridging chemotherapy (including 1 pt who also had surgery and 1 who also had radiotherapy). Tisagenlecleucel dose range was 0.3-1.1 × 108 CAR+ viable T cells (weight-based: 0.9-1.7 × 106 CAR+ viable T cells/kg). Cmax (range: Cmax= 8520-14,200 copies/µg; time to Cmax= 2-21 days; n = 4) was within range of expansion observed in pediatric/YA acute lymphoblastic leukemia and adult diffuse LBCL. All 5 pts had CRS; no grade ≥3 CRS was recorded. Three pts had neurologic events, including 2 grade 3/4 events. One pt died due to disease progression. Conclusions: Pediatric/YA pts with r/r B-NHL (including BL) were successfully infused with tisagenlecleucel in the BIANCA trial with a manageable safety profile. Apheresis/manufacturing were feasible in this cohort of rapidly progressing disorders. Tisagenlecleucel was shown to expand in vivo. BIANCA provides the first systematic data on CAR-T cell therapy in highly aggressive, pediatric/YA B-NHL. Planned enrollment is 35 pts (26 infused and evaluable). Clinical trial information: NCT03610724. [Table: see text]


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1830-1830
Author(s):  
Xiaoyan Qu ◽  
Gang An ◽  
Weiwei Sui ◽  
Tingyu Wang ◽  
Xian Zhang ◽  
...  

Abstract Background: C-CAR088, an anti-BCMA CAR T-cell therapy, is a novel 2nd generation 4-1BB chimeric antigen receptor T (CAR-T) cell therapy targeting BCMA. Previously presented results from an ongoing study of C-CAR088 in R/R MM (NCT03751293, NCT03815383, NCT04322292, NCT04295018) included a 95.7% overall response rate (ORR) for the dose of 1.0~6.0x10 6 CAR-T cells/kg with a favorable safety profile (Lu, 2020 ASH Oral Presentation #182). Here we present the updated results of the study, with more patients and longer follow up time. Methods: Dose escalation and expansion studies were conducted at four medical centers in China to evaluate the safety and efficacy of C-CAR088 in patients with R/R MM who were previously treated with at least 2 lines of therapy, including proteasome inhibitors (PIs) and IMiDs. C-CAR088 was administered to patients as a single infusion after lymphodepletion with fludarabine (30 mg/m 2) and cyclophosphamide (300 mg/m 2) daily for 3 days. The primary endpoint was the incidence of adverse events (AEs), including dose-limiting toxicities (DLTs), and the secondary endpoints included overall response rate(ORR), duration of response (DOR), and progression-free survival (PFS) by IMWG Uniform Response Criteria. Results: As of July 2nd, 2021, 31 patients had been infused with C-CAR088. The median vein-to-vein time was 18 days. The manufacturing success rate was 100%. 4, 13 and 14 patients were infused with 1.0, 3.0 and 4.5~6.0 x10 6 CAR+ T cells/kg respectively. The median follow-up time for all patients was 8.0 months (0.1-24.2). The median age of patients was 61 years (45-74). The median number of prior lines of therapy was 4 (2-13). There were 25 (80.6%) patients with at least one high risk cytogenetic abnormality and 17 (54.8%) patients with at least two high risk cytogenetic abnormalities. 7 patients (22.6%) received bridging therapy before C-CAR088 therapy. Cytokine release syndrome (CRS) developed in 29/31 (93.5%) patients, grade 1 in 18/31 (58.1%), grade 2 in 8/31 (25.8%) and grade 3 in 3/31 (9.7%) respectively. The median time to the first onset of CRS was 6 days (1-11) and the median duration of CRS was 5 days (2-14). 9/31 (29%) patients used tocilizumab and 6/31 (19.4%) patients used corticosteroids to manage CRS. Only one patient developed a grade 1 neurotoxicity. No DLTs were observed and all adverse events were reversible. One patient died of septic shock on day 2 after receiving C-CAR088. Clinical efficacy was assessed in 28 patients with ≥ 1 month of follow up. Among the 28 patients, 3, 11 and 14 patients were infused with the dose of 1.0 x 10 6 CAR+ T cells/kg 3 x10 6 CAR+ T cells/kg, and 4.5~6x10 6 CAR+ T cells/kg respectively. The ORR was 27/28 (96.4%): 4 (14.3%) achieved CR, 12 (42.9%) achieved sCR and 9 (32.1%) achieved very good partial response (VGPR). At the dose level of 1.0 x10 6 CAR+ T cells/kg, 3(100%) patients achieved VGPR. The median DOR was 3.7 months (1.8-5.8), and the median PFS was 4.6 months (2.7-6.2). The CR rate was 54.5% (6/11) and 71.4% (10/14) in the 3.0 and 4.5~6.0 x10 6 CAR+ T cells/kg cohorts respectively. The median time to CR was 2.0 (0.5-9.5) months. Minimal residual disease (MRD) was testedbyEuroFlow-based flow cytometric analysis in 16 patients who had CR, 15/16 (93.7%) patients were MRD negative with the sensitivity of 10 -5. With a median follow-up of 9.5 months (1.9-24.2) in ≥ 3.0x10 6 CAR+ T cells/kg cohorts, the median DOR and PFS had not been reached. The Kaplan-Meier estimation of PFS at 6 and 12 months was 81.1% (95% CI:65.9% ~99.8%) and 69.5 % (95% CI:51.6 % ~93.6%) respectively. 8 patients in the ≥ 3.0x10 6 CAR+ T cells/kg cohorts discontinued the study. 7 discontinued due to disease progression (PD), and 1 discontinued for other anticancer therapy. 4 progressed within 6 months, 2 progressed within 6-12 months, and 1 progressed within 12-24 months. C-CAR088 proliferated and expanded well in patients' blood. The median C max was 734,868 copies/μg gDNA. The median AUC 0~28day was 7,468,779 day·copies/μg gDNA. The median T max was 14 days. The median T last was 84 days. 71% (95% CI: 42%~92%) of patients with C max equal to or greater than the median C max achieved CR/sCR. Conclusion: C-CAR088 has a manageable safety profile, which includes low neurotoxicity rates (with no gr ≥3 events). Deep and durable responses were observed in ≥ 3.0x10 6 CAR-T cells/kg cohorts. Doses of 3.0 and 6.0×10 6 CAR T cells/kg were selected for further study. Figure 1 Figure 1. Disclosures Zhu: CBMG: Current Employment. Huang: CBMG: Current Employment. Li: CBMG: Current Employment. Lan: CBMG: Current Employment. Chen: CBMG: Current Employment. Humphries: CBMG Ltd: Current Employment. Yao: CBMG: Current Employment, Current holder of stock options in a privately-held company.


Sign in / Sign up

Export Citation Format

Share Document