Bianca: Phase II, single-arm, global trial to determine efficacy and safety of tisagenlecleucel in pediatric/young adult (YA) patients (Pts) with relapsed/refractory B-cell non-Hodgkin lymphoma (R/R B-NHL).

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e22504-e22504 ◽  
Author(s):  
Veronique Minard ◽  
Shannon L. Maude ◽  
Jochen Buechner ◽  
Joerg Krueger ◽  
Franco Locatelli ◽  
...  

e22504 Background: Pediatric/YA pts with r/r B-NHL are rare and have heterogenous, aggressive histology and poor prognosis. We report early results for tisagenlecleucel (anti-CD19 CAR-T cell therapy) in pediatric/YA pts with r/r B-NHL. Methods: BIANCA (NCT03610724) is a phase 2, single-arm, global, open-label trial of tisagenlecleucel in pediatric/YA pts with CD19+ r/r B-NHL. Pts must have confirmed mature B-NHL r/r to ≥1 prior lines of therapy and no active CNS involvement. Primary endpoint is ORR. Secondary outcomes include DOR, EFS, safety and pharmacokinetics. Results: As of Nov 4, 2019, 8 pts were enrolled, of whom 4 had large B-cell lymphoma (LBCL), 3 Burkitt lymphoma (BL), and 1 gray zone lymphoma (GZL) (Table). Five pts had ≥2 lines of prior therapy. Suitable apheresis product was harvested in all 8 pts. Five pts were infused and 3 were pending infusion at data cut off. Product was successfully manufactured within specifications for all infused pts. Median time from enrollment to infusion was 33 days (range 30-67). All 5 pts have ≥28 days follow up; 2 pts have ≥3 months follow up (median [range] 85 days [69-97]). All 8 pts received bridging chemotherapy (including 1 pt who also had surgery and 1 who also had radiotherapy). Tisagenlecleucel dose range was 0.3-1.1 × 108 CAR+ viable T cells (weight-based: 0.9-1.7 × 106 CAR+ viable T cells/kg). Cmax (range: Cmax= 8520-14,200 copies/µg; time to Cmax= 2-21 days; n = 4) was within range of expansion observed in pediatric/YA acute lymphoblastic leukemia and adult diffuse LBCL. All 5 pts had CRS; no grade ≥3 CRS was recorded. Three pts had neurologic events, including 2 grade 3/4 events. One pt died due to disease progression. Conclusions: Pediatric/YA pts with r/r B-NHL (including BL) were successfully infused with tisagenlecleucel in the BIANCA trial with a manageable safety profile. Apheresis/manufacturing were feasible in this cohort of rapidly progressing disorders. Tisagenlecleucel was shown to expand in vivo. BIANCA provides the first systematic data on CAR-T cell therapy in highly aggressive, pediatric/YA B-NHL. Planned enrollment is 35 pts (26 infused and evaluable). Clinical trial information: NCT03610724. [Table: see text]

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-6
Author(s):  
Xian Zhang ◽  
Junfang Yang ◽  
Wenqian Li ◽  
Gailing Zhang ◽  
Yunchao Su ◽  
...  

Backgrounds As CAR T-cell therapy is a highly personalized therapy, process of generating autologous CAR-T cells for each patient is complex and can still be problematic, particularly for heavily pre-treated patients and patients with significant leukemia burden. Here, we analyzed the feasibility and efficacy in 37 patients with refractory/relapsed (R/R) B-ALL who received CAR T-cells derived from related donors. Patients and Methods From April 2017 to May 2020, 37 R/R B-ALL patients with a median age of 19 years (3-61 years), were treated with second-generation CD19 CAR-T cells derived from donors. The data was aggregated from three clinical trials (www.clinicaltrials.gov NCT03173417; NCT02546739; and www.chictr.org.cn ChiCTR-ONC-17012829). Of the 37 patients, 28 were relapsed following allogenic hematopoietic stem cell transplant (allo-HSCT) and whose lymphocytes were collected from their transplant donors (3 HLA matched sibling and 25 haploidentical). For the remaining 9 patients without prior transplant, the lymphocytes were collected from HLA identical sibling donors (n=5) or haploidentical donors (n=4) because CAR-T cells manufacture from patient samples either failed (n=5) or blasts in peripheral blood were too high (>40%) to collect quality T-cells. The median CAR-T cell dose infused was 3×105/kg (1-30×105/kg). Results For the 28 patients who relapsed after prior allo-HSCT, 27 (96.4%) achieved CR within 30 days post CAR T-cell infusion, of which 25 (89.3%) were minimal residual disease (MRD) negative. Within one month following CAR T-cell therapy, graft-versus-host disease (GVHD) occurred in 3 patients including 1 with rash and 2 with diarrhea. A total of 19 of the 28 (67.9%) patients had cytokine release syndrome (CRS), including two patients (7.1%) with Grade 3-4 CRS. Four patients had CAR T-cell related neurotoxicity including 3 with Grade 3-4 events. With a medium follow up of 103 days (1-669days), the median overall survival (OS) was 169 days (1-668 days), and the median leukemia-free survival (LFS) was 158 days (1-438 days). After CAR T-cell therapy, 15 patients bridged into a second allo-HSCT and one of 15 patients (6.7%) relapsed following transplant, and two died from infection. There were 11 patients that did not receive a second transplantation, of which three patients (27.3%) relapsed, and four parents died (one due to relapse, one from arrhythmia and two from GVHD/infection). Two patients were lost to follow-up. The remaining nine patients had no prior transplantation. At the time of T-cell collection, the median bone marrow blasts were 90% (range: 18.5%-98.5%), and the median peripheral blood blasts were 10% (range: 0-70%). CR rate within 30 days post CAR-T was 44.4% (4/9 cases). Six patients developed CRS, including four with Grade 3 CRS. Only one patient had Grade 3 neurotoxicity. No GVHD occurred following CAR T-cell therapy. Among the nine patients, five were treated with CAR T-cells derived from HLA-identical sibling donors and three of those five patients achieved CR. One patient who achieved a CR died from disseminated intravascular coagulation (DIC) on day 16. Two patients who achieved a CR bridged into allo-HSCT, including one patient who relapsed and died. One of two patients who did not response to CAR T-cell therapy died from leukemia. Four of the nine patients were treated with CAR T-cells derived from haploidentical related donors. One of the four cases achieved a CR but died from infection on day 90. The other three patients who had no response to CAR T-cell therapy died from disease progression within 3 months (7-90 days). Altogether, seven of the nine patients died with a median time of 19 days (7-505 days). Conclusions We find that manufacturing CD19+ CAR-T cells derived from donors is feasible. For patients who relapse following allo-HSCT, the transplant donor derived CAR-T cells are safe and effective with a CR rate as high as 96.4%. If a patient did not have GVHD prior to CAR T-cell therapy, the incidence of GVHD following CAR T-cell was low. Among patients without a history of transplantation, an inability to collect autologous lymphocytes signaled that the patient's condition had already reached a very advanced stage. However, CAR T-cells derived from HLA identical siblings can still be considered in our experience, no GVHD occurred in these patients. But the efficacy of CAR T-cells from haploidentical donors was very poor. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4828-4828
Author(s):  
Yusra F Shao ◽  
Dipenkumar Modi ◽  
Andrew Kin ◽  
Asif Alavi ◽  
Lois Ayash ◽  
...  

Abstract Background Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a promising therapeutic option for relapsed/refractory non-Hodgkin lymphoma. However, access to CAR T cell therapy remains limited as CAR T cells are routinely administered in the hospital setting. Hence, there's a growing interest in standardizing outpatient administration of CAR T cells to increase patient access and minimize costs. Here, we describe our institution's experience with outpatient administration of CAR T cells. Methods In this retrospective study, we reviewed who received CAR T cell therapy in the outpatient setting at Karmanos Cancer Center between June 2019 and June 2021.Charts were reviewed for age, disease pathology, prior lines of therapy, need for hospitalization within 30 days, development of CRS and/or neurotoxicity, need for ICU admission, need for steroids and/or tocilizumab, length of admission, and disease state at last follow up. All patients received fludarabine and cyclophosphamide as lymphodepletion (LD) therapy day -5 to -3. CAR T cells were infused on day 0. Patients subsequently followed up in clinic daily for 2 weeks and were started on allopurinol, ciprofloxacin, fluconazole, acyclovir and levetiracetam. First response was assessed by FDG PET scan 4 weeks after CAR T cell . Results A total of 12 patients received CAR T cells during the study period. All patients had a diagnosis of DLBCL and received Tisagenlecleucel. Median age at CAR T cell therapy was 69.5 years (40-78 years). Median number of prior lines of therapy was (2-3) while 2 patients had received prior stem cell transplantation. Table 1 describes patient characteristics and lines of therapy. Two patients received bridging therapy prior to LD. Overall response rate was 58.3% (complete response-3, partial response-4). Median duration of follow up was 6.7 (0.6-13.8 months). Four patients required subsequent therapy after CAR T cell for disease progression while 9 patients were alive at the time of data cut off. Figure 1 summarizes disease response and follow . Table 2 summarizes complications during follow up. Nine (75%) patients developed anemia (grade 3-4 n=4, 33.3%), 8 (66.7%) developed thrombocytopenia (grade 3-4 n= 3, 37.5%), and 8 (66.7%) developed neutropenia (grade 3-4 n=8, 66.7%). Median time to platelet recovery to >,000 and neutrophil recovery to >500 was 66 days (44-81 days) and 11.5 days (6-65 days), respectively. Three (25%) patients required platelet and red blood cell transfusion support. Six (50%) patients developed cytokine release syndrome (CRS) with median grade 2 (range 1-3, grade 3-4 n=1). Five (5/6) patients required hospitalization, five (5/6) required tocilizumab, and one (1/6) required steroids. One (8.3%) patient developed neurotoxicity of grade 1 severity improved without systemic therapy. Six patients required hospitalization within 30 days of CAR T cell infusion. Median day of admission from CAR T cell infusion was 4 days (range 2-12 days (range 2-12 days, admission within 3 days n=2, admission under observation n=1). Patient characteristics at admission are summarized in table 3. Of these, 5 patients were diagnosed with CRS,1 patient with colitis and none with blood stream infection. Two patients required ICU admission. Median length of hospital admission was 5.5 days (2-9 days). All patients were alive at discharge while 1 patient required subsequent admission within 30 . Conclusion Outpatient administration of Tisagenlecleucel is feasible with low risk of hospital admission within 3 days of infusion. Adoption of outpatient CAR T cell therapy may increase patient access for treatment of DLBCL and diseases such as multiple myeloma while reducing administration costs for this novel therapy. Figure 1 Figure 1. Disclosures Modi: Genentech: Research Funding; Seagen: Membership on an entity's Board of Directors or advisory committees; MorphoSys: Membership on an entity's Board of Directors or advisory committees. Deol: Kite, a Gilead Company: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 39-40
Author(s):  
Aimee C Talleur ◽  
Renee M. Madden ◽  
Amr Qudeimat ◽  
Ewelina Mamcarz ◽  
Akshay Sharma ◽  
...  

CD19-CAR T-cell therapy has shown remarkable efficacy in pediatric patients with relapsed and/or refractory B-cell acute lymphoblastic leukemia (r/r ALL). Despite high short-term remission rates, many responses are not durable and the best management of patients who achieve a complete response (CR) post-CAR T-cell therapy remains controversial. In particular, it is unclear if these patients should be observed or proceed to consolidative allogeneic hematopoietic cell transplantation (HCT). To address this question, we reviewed the clinical course of all patients (n=22) who received either an investigational CAR T-cell product (Phase I study: SJCAR19 [NCT03573700]; n=12) or tisagenlecleucel (n=10) at our institution. The investigational CD19-CAR T cells were generated by a standard cGMP-compliant procedure using a lentiviral vector encoding a 2nd generation CD19-CAR with a FMC63-based CD19 binding domain, CD8a stalk and transmembrane domain, and 41BB.ζ signaling domain. Patients received therapy between 8/2018 and 3/2020. All products met manufacturing release specifications. Within the entire cohort, median age at time of infusion was 12.3 years old (range: 1.8-23.5) and median pre-infusion marrow burden using flow-cytometry minimal residual disease (MRD) testing was 6.8% (range: 0.003-100%; 1 patient detectable by next-generation sequencing [NGS] only). All patients received lymphodepleting chemotherapy (fludarabine, 25mg/m2 daily x3, and cyclophosphamide, 900mg/m2 daily x1), followed by a single infusion of CAR T-cells. Phase I product dosing included 1x106 CAR+ T-cells/kg (n=6) or 3x106 CAR+ T-cells/kg (n=6). Therapy was well tolerated, with a low incidence of cytokine release syndrome (any grade: n=10; Grade 3-4: n=4) and neurotoxicity (any grade: n=8; Grade 3-4: n=3). At 4-weeks post-infusion, 15/22 (68.2%) patients achieved a CR in the marrow, of which 13 were MRDneg (MRDneg defined as no detectable leukemia by flow-cytometry, RT-PCR and/or NGS, when available). Among the 2 MRDpos patients, 1 (detectable by NGS only) relapsed 50 days after CAR T-cell infusion and 1 died secondary to invasive fungal infection 35 days after infusion. Within the MRDneg cohort, 6/13 patients proceeded to allogeneic HCT while in MRDneg/CR (time to HCT, range: 1.8-2.9 months post-CAR T-cell infusion). All 6 HCT recipients remain in remission with a median length of follow-up post-HCT of 238.5 days (range 19-441). In contrast, only 1 (14.3%) patient out of 7 MRDneg/CR patients who did not receive allogeneic HCT, remains in remission with a follow up of greater 1 year post-CAR T-cell infusion (HCT vs. no HCT: p<0.01). The remaining 6 patients developed recurrent detectable leukemia within 2 to 9 months post-CAR T-cell infusion (1 patient detectable by NGS only). Notably, recurring leukemia remained CD19+ in 4 of 5 evaluable patients. All 4 patients with CD19+ relapse received a 2nd CAR T-cell infusion (one in combination with pembrolizumab) and 2 achieved MRDneg/CR. There were no significant differences in outcome between SJCAR19 study participants and patients who received tisagenlecleucel. With a median follow up of one year, the 12 month event free survival (EFS) of all 22 patients is 25% (median EFS: 3.5 months) and the 12 month overall survival (OS) 70% (median OS not yet reached). In conclusion, infusion of investigational and FDA-approved autologous CD19-CAR T cells induced high CR rates in pediatric patients with r/r ALL. However, our current experience shows that sustained remission without consolidative allogeneic HCT is not seen in most patients. Our single center experience highlights not only the need to explore maintenance therapies other than HCT for MRDneg/CR patients, but also the need to improve the in vivo persistence of currently available CD19-CAR T-cell products. Disclosures Sharma: Spotlight Therapeutics: Consultancy; Magenta Therapeutics: Other: Research Collaboration; CRISPR Therapeutics, Vertex Pharmaceuticals, Novartis: Other: Clinical Trial PI. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees. Gottschalk:Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties; TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy.


2020 ◽  
Vol 4 (13) ◽  
pp. 3024-3033 ◽  
Author(s):  
Kitsada Wudhikarn ◽  
Martina Pennisi ◽  
Marta Garcia-Recio ◽  
Jessica R. Flynn ◽  
Aishat Afuye ◽  
...  

Abstract Cytokine release syndrome (CRS) immune effector cell–associated neurotoxicity syndrome are the most notable toxicities of CD19 chimeric antigen receptor (CAR) T-cell therapy. In addition, CAR T-cell–mediated toxicities can involve any organ system, with varied impacts on outcomes, depending on patient factors and involved organs. We performed detailed analysis of organ-specific toxicities and their association with outcomes in 60 patients with diffuse large B-cell lymphoma (DLBCL) treated with CD19 CAR T cells by assessing all toxicities in organ-based groups during the first year posttreatment. We observed 539 grade ≥2 and 289 grade ≥3 toxicities. Common grade ≥3 toxicities included hematological, metabolic, infectious, and neurological complications, with corresponding 1-year cumulative incidence of 57.7%, 54.8%, 35.4%, and 18.3%, respectively. Patients with impaired performance status had a higher risk of grade ≥3 metabolic complications, whereas elevated lactate dehydrogenase was associated with higher risks of grade ≥3 neurological and pulmonary toxicities. CRS was associated with higher incidence of grade ≥3 metabolic, pulmonary, and neurologic complications. The 1-year nonrelapse mortality and overall survival were 1.7% and 69%, respectively. Only grade ≥3 pulmonary toxicities were associated with an increased mortality risk. In summary, toxicity burdens after CD19 CAR T-cell therapy were high and varied by organ systems. Most toxicities were manageable and were rarely associated with mortality. Our study emphasizes the importance of toxicity assessment, which could serve as a benchmark for further research to reduce symptom burdens and improve tolerability in patients treated with CAR T cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4810-4810
Author(s):  
Mark B. Geyer ◽  
Briana Cadzin ◽  
Elizabeth Halton ◽  
Peter Kane ◽  
Brigitte Senechal ◽  
...  

Abstract Background: Autologous CD19-targeted chimeric antigen receptor-modified (CAR) T-cell therapy leads to complete responses (CR) in patients (pts) with (w/) relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL, >80% CR rate) and diffuse large B-cell lymphoma (DLBCL, ~40-55% CR rate). However, following fludarabine/cyclophosphamide (Flu/Cy) conditioning and CAR T-cell therapy w/ a CD28 costimulatory domain (e.g. 19-28z CAR T-cells), rates of grade ≥3 ICANS and grade ≥3 cytokine release syndrome (CRS) in pts w/ R/R DLBCL and morphologic R/R B-ALL exceed 30%. CRS and ICANS are associated w/ considerable morbidity, including increased length of hospitalization, and may be fatal. Host monocytes appear to be the major reservoir of cytokines driving CRS and ICANS post-CAR T-cell therapy (Giavradis et al. and Norelli et al., Nature Medicine, 2018). Circulating monocytic myeloid-derived suppressor cells (MDSCs) may also blunt efficacy of 19-28z CAR T-cells in R/R DLBCL (Jain et al., Blood, 2021). The CD45-targeted antibody radioconjugate (ARC) 131-I apamistamab is being investigated at myeloablative doses as conditioning prior to hematopoietic cell transplantation in pts w/ R/R acute myeloid leukemia. However, even at low doses (4-20 mCi), transient lymphocyte and blast reduction are observed. Preclinical studies in C57BL/6 mice demonstrate low-dose anti CD45 radioimmunotherapy (100 microCi) transiently depletes >90% lymphocytes, including CD4/CD8 T-cells, B-cells, NK cells, and T-regs, as well as splenocytes and MDSCs, w/ negligible effect on bone marrow (BM) hematopoietic stem cells (Dawicki et al., Oncotarget, 2020). We hypothesized a higher, yet nonmyeloablative dose of 131-I apamistamab may achieve more sustained, but reversible depletion of lymphocytes and other CD45 + immune cells, including monocytes thought to drive CRS/ICANS. We additionally hypothesized this approach (vs Flu/Cy) prior to CAR T-cell therapy would promote CAR T-cell expansion while reducing CSF levels of monocyte-derived cytokines (e.g. IL-1, IL-6, and IL-10), thus lowering the risk of severe ICANS (Fig 1A). Study design and methods: We are conducting a single-institution pilot study of 131-I apamistamab in lieu of Flu/Cy prior to 19-28z CAR T-cells in adults w/ R/R BALL or DLBCL (NCT04512716; Iomab-ACT); accrual is ongoing. Pts are eligible for leukapheresis if they are ≥18 years-old w/ R/R DLBCL (de novo or transformed) following ≥2 chemoimmunotherapy regimens w/ ≥1 FDG-avid measurable lesion or B-ALL following ≥1 line of multi-agent chemotherapy (R/R following induction/consolidation; prior 2 nd/3 rd gen TKI required for pts w/ Ph+ ALL) w/ ≥5% BM involvement and/or FDG-avid extramedullary disease, ECOG performance status 0-2, and w/ appropriate organ function. Active or prior CNS disease is not exclusionary. Pts previously treated w/ CD19-targeted CAR T-cell therapy are eligible as long as CD19 expression is retained. See Fig 1B/C: Post-leukapheresis, 19-28z CAR T-cells are manufactured as previously described (Park et al., NEJM, 2018). Bridging therapy is permitted at investigator discretion. Thyroid blocking is started ≥48h pre-ARC. 131-I apamistamab 75 mCi is administered 5-7 days pre-CAR T-cell infusion to achieve total absorbed marrow dose ~200 cGy w/ remaining absorbed dose <25 cGy at time of T-cell infusion. 19-28z CAR T-cells are administered as a single infusion (1x10 6/kg, B-ALL pts; 2x10 6/kg, DLBCL pts). The primary objective is to determine safety/tolerability of 131-I apamistamab 75 mCi given prior to 19-28z CAR T-cells in pts w/ R/R B-ALL/DLBCL. Secondary objectives include determining incidence/severity of ICANS and CRS, anti-tumor efficacy, and 19-28z CAR T-cell expansion/persistence. Key exploratory objectives include describing the cellular microenvironment following ARC and 19-28z CAR T-cell infusion using spectral cytometry, as well as cytokine levels in peripheral blood and CRS. The trial utilizes a 3+3 design in a single cohort. If dose-limiting toxicity (severe infusion-related reactions, treatment-resistant severe CRS/ICANS, persistent regimen-related cytopenias, among others defined in protocol) is seen in 0-1 of the first 3 pts treated, then up to 6 total (up to 3 additional) pts will be treated. We have designed this study to provide preliminary data to support further investigation of CD45-targeted ARCs prior to adoptive cellular therapy. Figure 1 Figure 1. Disclosures Geyer: Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Actinium Pharmaceuticals, Inc: Research Funding; Amgen: Research Funding. Geoghegan: Actinium Pharmaceuticals, Inc: Current Employment. Reddy: Actinium Pharmaceuticals: Current Employment, Current holder of stock options in a privately-held company. Berger: Actinium Pharmaceuticals, Inc: Current Employment. Ludwig: Actinium Pharmaceuticals, Inc: Current Employment. Pandit-Taskar: Bristol Myers Squibb: Research Funding; Bayer: Research Funding; Clarity Pharma: Research Funding; Illumina: Consultancy, Honoraria; ImaginAb: Consultancy, Honoraria, Research Funding; Ymabs: Research Funding; Progenics: Consultancy, Honoraria; Medimmune/Astrazeneca: Consultancy, Honoraria; Actinium Pharmaceuticals, Inc: Consultancy, Honoraria; Janssen: Research Funding; Regeneron: Research Funding. Sauter: Genmab: Consultancy; Celgene: Consultancy, Research Funding; Precision Biosciences: Consultancy; Kite/Gilead: Consultancy; Bristol-Myers Squibb: Research Funding; GSK: Consultancy; Gamida Cell: Consultancy; Novartis: Consultancy; Spectrum Pharmaceuticals: Consultancy; Juno Therapeutics: Consultancy, Research Funding; Sanofi-Genzyme: Consultancy, Research Funding. OffLabel Disclosure: 131-I apamistamab and 19-28z CAR T-cells are investigational agents in treatment of ALL and DLBCL


2021 ◽  
Vol 11 ◽  
Author(s):  
Limin Xing ◽  
Yihao Wang ◽  
Hui Liu ◽  
Shan Gao ◽  
Qing Shao ◽  
...  

Chimeric antigen receptor T (CAR-T) cells show good efficacy in the treatment of relapsed and refractory B-cell tumors, such as acute B-cell leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). The main toxicities of CAR-T include cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, cytopenia, and severe infection. It is still very difficult for CAR-T to kill tumor cells to the maximum extent and avoid damaging normal organs. Here, we report a case of DLBCL with persistent grade 4 thrombocytopenia and severe platelet transfusion dependence treated with CD19 CAR-T cells. We used sirolimus to inhibit the sustained activation of CAR-T cells and restore normal bone marrow hematopoiesis and peripheral blood cells. Moreover, sirolimus treatment did not affect the short-term efficacy of CAR-T cells, and DLBCL was in complete remission at the end of follow-up. In conclusion, sirolimus can represent a new strategy for the management of CAR-T cell therapy-related toxicity, including but not limited to hematotoxicity. However, further controlled clinical studies are required to confirm these findings.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1590-1590 ◽  
Author(s):  
Wei Sang ◽  
Ming Shi ◽  
Jingjing Yang ◽  
Jiang Cao ◽  
Linyan Xu ◽  
...  

Objective Chimeric antigen receptor T (CAR-T) cells therapy demonstrated remarkable efficiency in refractory and relapsed diffuse large B cell lymphoma (R/R DLBCL). Antigen-loss potentially leads to failure after single-target CAR-T cellss therapy. Aim to evaluate the efficiency and safety of double-target CAR-T cellss therapy, we performed a phase Ⅰ/Ⅱ clinical trial of combination anti-CD19 and anti-CD20 CAR-T cellss therapy for R/R DLBCL. Methods A total of 21 patients were enrolled, and patients were monitored for treatment response, toxicity and persistence. Patients received a conditioning regimen of fludarabine and cyclophosphamide followed by infusion of anti-CD19 and anti-CD20 CAR-T cellss. Results Of the 21 patients, 17 had objective response, and the ORR was 81.0% (95% CI, 58 to 95). 11 had CR, the CR rate was 52.4% (95% CI, 26 to 70). 4 of 9 patients in completed remission at 3 months remain in remission by 6 months, the CR rate was 44.4% (95% CI, 14 to 79). The median OS was 8.1 months (95% CI, 7 to 10) and the median PFS was 5.0 months (95% CI, 2 to 8). The median duration response was 6.8 months (95% CI, 4 to 10). Cytokine release syndrome (CRS) occurred in all patients. Of the 21 patients, 15 (71.4%) had grade 1-2 CRS, 6 (28.5%) had severe (≥grade 3) CRS, and no grade 5 CRS occurred. There were 5 patients with different degrees of neurotoxicity, namely CAR-T associated encephalopathy syndrome (CRES). There were 2 cases with grade 3 or above CRES, 5 of them were self-limited, and none of them died of severe CRS or CRES. There were significant differences in peak levels of IL-6 (P=0.004)、ferritin (P=0.008) and CRP (P=0.000) secretion between CRS 1-2 and CRS 3-4 patients within one month after CAR-T cell infusion. In terms of hematological toxicity, there were 11 cases of neutropenia above grade 3 (52.4%), 6 cases of anemia (28.6%) and 6 cases of thrombocytopenia (28.6%). After 12 patients with response and 1 patient without response received CAR-T cell therapy, CD19 cell subsets all disappeared after 2 weeks. The level of serum immunoglobulin in 14 patients with response decreased progressively after 1 week of treatment with CAR-T cells, and maintained at a relatively low level. Eight patients received intravenous immunoglobulin during CAR-T cell therapy. Conclusion Anti-CD19 combined with anti-CD20 CAR-T cell is effective in the treatment of R/R DLBCL patients.2. Anti-CD19 combined with anti-CD20 CAR-T cell therapy has the occurrence of CRS, CRES and hematological toxicity, and adverse reactions could be controlled. This is the first report to our knowledge of successful treatment of combination of anti-CD19 and anti-CD20 CAR-T cellss in R/R DLBCL. Our results provide strong support for further multiple-target CAR-T cells therapy, which could potentially resolve antigen-loss related failure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Author(s):  
Elise A Chong ◽  
Cécile Alanio ◽  
Jakub Svoboda ◽  
Sunita D Nasta ◽  
Daniel J Landsburg ◽  
...  

CD19-directed chimeric antigen receptor-modified T cells (CAR T cells) achieve durable remissions in about 30-40% of relapsed/refractory large B-cell lymphomas. T cell exhaustion and/or an immunosuppressive tumor-microenvironment may contribute to CAR T-cell failure. Pembrolizumab, an anti-PD1 immune checkpoint inhibitor, may reverse T-cell exhaustion following CAR T-cell therapy. We treated 12 patients with B-cell lymphomas who were either refractory to (N=9) or relapsed after (N=3) CD19-directed CAR T cell (4-1BB-costimulated) therapy with pembrolizumab 200mg IV every 3 weeks. Median time from CAR T-cell infusion to first pembrolizumab dose was 3.3 months (range: 0.4-42.8 months). Pembrolizumab was well-tolerated and the only ≥ grade 3 adverse events related to pembrolizumab were neutropenia (N=3; 25%). Best overall response rate after pembrolizumab was 3/12 (25%) [1 complete response; 2 partial responses]. One (8%) patient had stable disease, thus, 4/12 (33%) patients had clinical benefit. After pembrolizumab, 4 patients with clinical benefit had increase in percentage of CAR T cells by mass cytometry (CyTOF); 3 of 4 of these patients also had increases in CAR19 transgene levels by qPCR. Deep immune profiling using mass cytometry revealed increased CAR T cell activation and proliferation and less T-cell exhaustion in clinical responders. Together, PD1 blockade with pembrolizumab after CD19-directed CAR T-cell therapy appears safe and may achieve clinical responses in some patients with B-cell lymphomas refractory to or relapsed after CAR T-cell therapy.


2021 ◽  
pp. JCO.20.02262
Author(s):  
Nirali N. Shah ◽  
Daniel W. Lee ◽  
Bonnie Yates ◽  
Constance M. Yuan ◽  
Haneen Shalabi ◽  
...  

PURPOSE CD19 chimeric antigen receptor (CD19-CAR) T cells induce high response rates in children and young adults (CAYAs) with B-cell acute lymphoblastic leukemia (B-ALL), but relapse rates are high. The role for allogeneic hematopoietic stem-cell transplant (alloHSCT) following CD19-CAR T-cell therapy to improve long-term outcomes in CAYAs has not been examined. METHODS We conducted a phase I trial of autologous CD19.28ζ-CAR T cells in CAYAs with relapsed or refractory B-ALL. Response and long-term clinical outcomes were assessed in relation to disease and treatment variables. RESULTS Fifty CAYAs with B-ALL were treated (median age, 13.5 years; range, 4.3-30.4). Thirty-one (62.0%) patients achieved a complete remission (CR), 28 (90.3%) of whom were minimal residual disease−negative by flow cytometry. Utilization of fludarabine/cyclophosphamide–based lymphodepletion was associated with improved CR rates (29/42, 69%) compared with non–fludarabine/cyclophosphamide–based lymphodepletion (2/8, 25%; P = .041). With median follow-up of 4.8 years, median overall survival was 10.5 months (95% CI, 6.3 to 29.2 months). Twenty-one of 28 (75.0%) patients achieving a minimal residual disease−negative CR proceeded to alloHSCT. For those proceeding to alloHSCT, median overall survival was 70.2 months (95% CI, 10.4 months to not estimable). The cumulative incidence of relapse after alloHSCT was 9.5% (95% CI, 1.5 to 26.8) at 24 months; 5-year EFS following alloHSCT was 61.9% (95% CI, 38.1 to 78.8). CONCLUSION We provide the longest follow-up in CAYAs with B-ALL after CD19-CAR T-cell therapy reported to date and demonstrate that sequential therapy with CD19.28ζ-CAR T cells followed by alloHSCT can mediate durable disease control in a sizable fraction of CAYAs with relapsed or refractory B-ALL (ClinicalTrials.gov identifier: NCT01593696 ).


Sign in / Sign up

Export Citation Format

Share Document