scholarly journals Heterogeneity of Hematopoietic Stem and Progenitor Cell (HSPC) Composition in Αβ T-Cell/CD19 B-Cell Depleted Peripheral Blood Cell Stem Cell (PBSC) Transplant Grafts and Correlation with Immune and Hematopoietic Recovery

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-13
Author(s):  
Giulia Barbarito ◽  
Beruch Dejene ◽  
David C Shyr ◽  
Gopin Saini ◽  
Linda Oppizzi ◽  
...  

INTRODUCTION. While total CD34 counts in PBSC graft products have correlated with overall likelihood of hematopoietic recovery after allogeneic hematopoietic stem cell transplantation (HSCT), analyses of the HSPC composition and its relationship to relevant post-transplant clinical outcomes are lacking. In fact, the biological basis for different dynamics of hematopoietic/immune recovery, the risk of infection, and graft-versus-host disease (GvHD) is not fully understood. We have performed the first analysis of HSPC graft composition in 6 αβ T-cell/CD19 B-cell depleted haploidentical (αβhaplo) HSCT. Additionally, we correlated the HSPC graft composition with the distribution of the same HSPC subsets in serial post-HSCT bone marrow aspirates performed at Days 30, 60, and 90, with the peripheral blood counts [neutrophils, monocytes, platelet (PLT)] and with the immune recovery (CD3+, CD3+CD4+, CD3+CD8+, αβT, γδT, NK cells) at the same time points. The patients were divided in two groups: 3 patients had a robust and sustained hematopoietic recovery (Group 1) while 3 patients experienced mild cytopenia after Day 60 (Group 2). All patients were transplanted for acute leukemia and received a myeloablative TBI-based conditioning regimen. See Table 1 for details about patients and graft composition. METHODS. All patients were enrolled in the Stanford IRB approved BMT Protocols 179/351/361 and had peripheral blood (PB) and bone marrow (BM) evaluated at Day 30, 60 and 90 post HSCT for the primitive CD34+ Lin- HSPC subsets: HSC (CD38-CD45RA-CD90+), MPP (CD38+CD45RA+), CMP (CD38+CD45RA-CD123+), GMP (CD38+CD45RA+CD123+), MEP (CD38+CD45RA-CD123+) and CLP (CD38+CD127+). Aliquots of αβhaplo-HSCT grafts were cryopreserved for later analyses. Mononuclear cells were isolated from PBSC, PB and BM by Ficoll-Hypaque (Sigma-Aldrich) density gradient centrifugation. FACS analyses were performed on either fresh or frozen cells on Becton Dickinson (BD) Aria II flow cytometer. At least 5x105 events were acquired and analyzed using FlowJo software (BD). RESULTS. Despite consistent levels of αβT-cell depletion and CD34 enrichment, the frequency of the HSPC subsets varied between the grafts. Notably, while CMP and GMP were very consistent across the 6 grafts, the frequency of HSC, CLP, MEP and MPP showed a 2-fold range of variation (Fig1A). No significant correlation was observed between the HSC frequency in the graft and the hematopoietic/immune recovery. However, the frequency of HSC in the BM at Day 30 is statistically correlated (P=0.027) with the PLT at Day 90 (Fig1B). In these preliminary results, the different distribution of CMP, GMP, MEP and MPP did not impact on the hematopoietic/immune recovery. However, there was a significant correlation (P=0.02) between CLP and γδ T cells reconstitution at Day 90 in Group 1 patients (Fig1C). Additionally, the neutrophils, monocytes and phagocytic cells recovery at Day 90 is statistically correlated with the GMP frequency in the BM at Day 30 (P=0.017; P=0.018; P=0.0132, respectively) (Fig1D). Interestingly, the same strong correlation is observed between the CMP in the BM at Day 60 and the recovery of neutrophils and phagocytic cells (P=0.016, P=0.019) at Day 90 (Fig1E), but the CMP at day 30 are already predictive of a robust engraftment in the Group 1 patients (data not shown). CONCLUSIONS. In αβhaplo-HSCT, previously identified factors influencing hematopoietic recovery have been mainly limited to the enumeration of bulk CD34 counts and of mature effector cells, such as αβ/γδ T and NK cells. On the other hand, the presence of GvHD and thymic injury have been correlated to the kinetics of immune reconstitution. We hypothesized that the HSPC composition of the graft would impact lymphohematopoietic recovery in αβhaplo-HSCT recipients. Although preliminary, our data indicate that even with a consistent method of graft manipulation, the HSPC graft composition is heterogeneous. Variations in HSPC subsets frequency and number can contribute to significant differences in lymphohematopoietic recovery and, therefore, clinical outcome. The evaluation of a larger number of patients with longer follow up after HSCT are required. Comparative studies with unmanipulated T-cell replete and cord blood grafts are ongoing. Such analyses will be instrumental not only for prediction of clinical outcome, but also for optimization of novel graft engineering strategies. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3106-3106
Author(s):  
Pietro Sodani ◽  
Buket Erer ◽  
Javid Gaziev ◽  
Paola Polchi ◽  
Andrea Roveda ◽  
...  

Abstract Approximately 60% of thalassemic patients can not apply to “gene therapy today” which the insertion of one allogenic HLA identical stem cell into the empty bone marrow as the vector of the normal gene for beta globin chain synthesis. We studied the use of the haploidentical mother as the donor of hematopoietic stem cells assuming that the immuno-tollerance established during the pregnancy will help to bypass the HLA disparity and allow the hemopoietic allogeneic reconstitution in the thalassemic recipient of the transplant. We have employed a new preparative regimen for the transplant in fourteen thalassemic children aged 3 to 12 years (median age 5 years) using T cell depleted peripheral blood stem cell (PBSCTs) plus bone marrow (BM) stem cells. All patients received hydroxyurea (OHU) 60 mg/kg and azathioprine 3 mg/kg from day -59 until day-11, fludarabine (FLU) 30 mg/m 2 from day -17 to day -11, busulphan (BU) 14 mg/kg starting on day -10, and cyclophosphamide(CY) 200mg/kg, Thiotepa 10 mg/kg and ATG Sangstat 2.5 mg/kg, followed by a CD34 + t cell depleted (CliniMacs system), granulocyte colony stimulating factor (G-csf) mobilized PBSC from their HLA haploidentical mother. The purity of CD34+ cells after MACS sorting was 98–99%, the average number of transplanted CD34+ cells was 15, 4 x 10 6/kg and the average number of infused T lymphocytes from BM was 1,8 x 10 5/Kg.The patients received cyclosporin after transplant for graft versus host disease(GVHD) prophylaxis during the first two months after the bone marrow transplantation. Results. Thirteen patients are alive. Four patients rejected the transplant and are alive with thalassemia One patients died six months after bone marrow transplant for central nervous system diffuse large B cell lymphoma EBV related. Nine patients are alive disease free with a median follow up of 30 months (range12–47). None of the seven patients showed AGVHD and CGVHD. This preliminary study suggest that the transplantation of megadose of haploidentical CD34+ cell from the mother is a realistic therapeutic option for those thalassemic patients without genotipically or phenotipically HLA identical donor.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Shatha Farhan ◽  
Edward Peres ◽  
Nalini Janakiraman

Allogeneic hematopoietic stem cell transplantation (SCT) is often the only curative option for many patients with malignant and benign hematological stem cell disorders. However, some issues are still of concern regarding finding a donor like shrinking family sizes in many societies, underrepresentation of the ethnic minorities in the registries, genetic variability for some races, and significant delays in obtaining stem cells after starting the search. So there is a considerable need to develop alternate donor stem cell sources. The rapid and near universal availability of the haploidentical donor is an advantage of the haploidentical SCT and an opportunity that is being explored currently in many centers especially using T cell replete graft and posttransplant cyclophosphamide. This is probably because it does not require expertise in graft manipulation and because of the lower costs. However, there are still lots of unanswered questions, like the effect of use of bone marrow versus peripheral blood as the source of stem cells on graft-versus-host disease, graft versus tumor, overall survival, immune reconstitution, and quality of life. Here we review the available publications on bone marrow and peripheral blood experience in the haploidentical SCT setting.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5672-5672
Author(s):  
Chi Hua Sarah Lin ◽  
Beth Shaz ◽  
Rona Singer Weinberg

Abstract Introduction Reconstitution of donor-derived immune system after allogeneic hematopoietic stem cell transplantation (HSCT) is essential for recovery and long-term survival. Despite routine use of human umbilical cord blood (hUCB) as a stem cell source for allogeneic HSCT, much remains unknown regarding the kinetics of immune recovery and correlation with different transplant cell dosages. To study the hUCB repopulating potential, different hUCB CD34+ cell dosages were transplanted into immune deficient NSG mice; hematopoietic cells were then collected and engraftment was analyzed. Methods NOD/SCID/IL-2Rγnull recipient (NSG) mice (Jackson Laboratories, Bar Harbor, ME) were kept in pathogen-free facilities. CD34+ cells were isolated from a pool of six hUCB donors using a CD34+ microbead kit (Miltenyi Biotec). Each sublethal irradiated (220 or 300 cGy) 8 week old female NSG mice received either low dose (15x103, N=15) or high dose (75x103, N=15) CD34+ cells transplanted intravenously via retro-orbital route. Animal experiments were performed in accordance with Institutional Animal Care and Use Committee guidelines. Statistical analysis was performed with Prism software (GraphPad Software, Inc) and Excel. Data are presented as mean ± standard error of the mean (SEM). Results To determine the effects of hUCB CD34+ cell dosages on the rate of engraftment, NSG mice were transplanted with low doseor high dose CD34+ cells. The transplanted CD34+ cell dosages were comparable to clinical dosages based on body weight (Mavroudis et al. 1996). The engrafted cells were analyzed for expression of surface markers that define human hematopoietic cells. During the follow up period of up to 18 weeks, the high dose infused group had increased hUCB engraftment compared with the low dose infused group in peripheral blood (Fig 1A), bone marrow (Fig 1B & 1C) and spleen (Fig 1D), which is consistent with reported clinical observations that infused cell dosage is inversely correlated with time to engraftment (Migliaccio et al. 2000 Blood). Interestingly, we observed different lymphoid subset frequencies between low and high dose infused groups at the post-engraftment stage (18 weeks post transplantation) (data not shown). To investigate different lymphoid subset engraftment frequencies in low and high dose hUCB transplanted recipient mice at early engraftment stage, peripheral blood and hematopoietic organs were collected and analyzed up to 10 weeks post transplantation. The low dose infused group had significantly lower CD3+ (T cells) and CD56+ (NK cells) frequency in peripheral blood at 4 and 8 weeks (Fig 2A & 3A). More importantly, CD3+ (T cells) frequency was close to non-detectable in the bone marrow and spleen in the low dose infused group (Fig 2B & 2C), and CD56 (NK cells) frequency was decreased in the low dose infused group compared with the high dose infused group (Fig 3B & 3C). The absolute CD3+ and CD56+ number, displayed as fold difference, were even more dramatically decreased in the femur (Fig 2D & 3D) and the spleen (Fig 2E & 3E) of low dose infused group. Because of the substantial difference in T cell subset frequencies between the two dosage groups in bone marrow and spleen, thymuses were collected and analyzed to study T cell development and maturation. Engraftment of hCD45+ cells in the thymuses were observed in 10 out of 15 animals (66.7%) in the low dose infused group and 12 out of 14 animals (85.7%) in the high dose infused group. Interestingly, in animals with high hCD45+ frequency, the total thymocyte CD3+ frequency was lower in the low dose infused group (Fig 4A). Additionally, the low dose infused group had lower CD3+CD4+ T cell frequency (Fig 4B) and higher CD3+CD4+CD8+ T cell frequency (Fig 4C), suggesting low dose infused group had a decreased mature T cell population and increased immature T cell population in the thymus. In contrast, the low dose hUCB CD34+ cells infused group had increased hCD19 (B cells) frequency in the peripheral blood, bone marrow and spleen (Fig 5A-5C), while the absolute hCD19 (B cells), displayed as fold difference, did not show a statistically significant difference between the two groups (Fig 5D & 5E). Conclusions In summary, our findings suggest that (1) transplanted hUCB cell dosage is inversely correlated with time to engraftment (2) low transplanted hUCB cell dosage resulted in skewed immune cell population which may contribute to delayed immune recovery after allogeneic HSCT. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5161-5161
Author(s):  
Pietro Sodani ◽  
Marco Andreani ◽  
Paola Polchi ◽  
Javid Gaziev ◽  
Filippo Centis ◽  
...  

Abstract Approximately 60% of thalassemic patients can not apply to “gene terapy today” which the insertion of one allogenic HLA identical stem cell into the empty bone marrow as the vector of the normal gene for beta globin chain synthesis. We studied the use of the haploidentical mother as the donor of hematopoietic stem cells assuming that the immuno-tollerance estabilished during the pregnancy will help to bypass the HLA disparity and allow the hemopoietic allogeneic reconstitution in the thalassemic recipient of the transplant.We have employed a new preparative regimen for the transplant in nine thalassemic children aged 3 to 8 years ( median age 5 years ) using T cell depleted peripheral blood stem cell (PBSCTs) plus bone marrow (BM) stem cells.. All patients received hydroxyurea (OHU) 60 mg/kg and azathioprine 3 mg/kg from day −59 untill day−11, fludarabine (FLU) 30 mg/m 2 from day −17 to day −11, busulphan (BU) 14 mg/kg starting on day −10, and cyclophosphamide(CY) 200mg/kg, Thiotepa 10 mg/kg and ATG Sangstat 2.5 mg/kg, followed by a CD34 + t cell depleted (CliniMacs sistem), granulocyte colony stimulating factor (G-csf) mobilized PBSC from their HLA haploidentical mother. The purity of CD34+ cells after MACS sorting was 98–99%, the average number of transplanted CD34+ cells was 15, 4 x 10 6/kg and the average number of infused T lymphocytes from BM was 1,8 x 10 5/Kg.The patients received cyclosporin after transplant for graft versus host disease( GVHD) prophilaxis. Four patients rejected the transplant and are alive with thalassemia: one patient received a different dose of CD3 without cyclosporine after transplant, two patients received a lower dose of CD34+, in the fourth patient the donor has been the haploidentical father instead than the mother. One of the nine patients, after the failure of the transplant from the mother, received a second transplant using purified CD34+ cells from the father, using the same preparative regimen and achieved a complete hematopoietic reconstitution. Six patients are alive disease free with a median follow up of 19 months (range 7–30). None of the six patients showed AGVHR. This preliminary study suggest that the transplantation of megadose of haploidentical CD34+ cell from the mother is a realistic therapeutic option for those thalassemic patients whithout genotipically or phenotipically HLA identical donor.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1124-1127 ◽  
Author(s):  
Sophie Archambeault ◽  
Nikki J. Flores ◽  
Ayami Yoshimi ◽  
Christian P. Kratz ◽  
Miriam Reising ◽  
...  

AbstractJuvenile myelomonocytic leukemia is an aggressive and frequently lethal myeloproliferative disorder of childhood. Somatic mutations in NRAS, KRAS, or PTPN11 occur in 60% of cases. Monitoring disease status is difficult because of the lack of characteristic leukemic blasts at diagnosis. We designed a fluorescently based, allele-specific polymerase chain reaction assay called TaqMAMA to detect the most common RAS or PTPN11 mutations. We analyzed peripheral blood and/or bone marrow of 25 patients for levels of mutant alleles over time. Analysis of pre–hematopoietic stem-cell transplantation, samples revealed a broad distribution of the quantity of the mutant alleles. After hematopoietic stem-cell transplantation, the level of the mutant allele rose rapidly in patients who relapsed and correlated well with falling donor chimerism. Simultaneously analyzed peripheral blood and bone marrow samples demonstrate that blood can be monitored for residual disease. Importantly, these assays provide a sensitive strategy to evaluate molecular responses to new therapeutic strategies.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2190-2190 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Gerald de Haan ◽  
Ronald P. van Os

Abstract Adhesion molecules have been implicated in the interactions of hematopoietic stem and progenitor cells with the bone marrow extracellular matrix and stromal cells. In this study we examined the role of very late antigen-5 (VLA-5) in the process of stem cell mobilization and homing after stem cell transplantation. In normal bone marrow (BM) from CBA/H mice 79±3 % of the cells in the lineage negative fraction express VLA-5. After mobilization with cyclophosphamide/G-CSF, the number of VLA-5 expressing cells in mobilized peripheral blood cells (MPB) decreases to 36±4%. The lineage negative fraction of MPB cells migrating in vitro towards SDF-1α (M-MPB) demonstrated a further decrease to 3±1% of VLA-5 expressing cells. These data are suggestive for a downregulation of VLA-5 on hematopoietic cells during mobilization. Next, MPB cells were labelled with PKH67-GL and transplanted in lethally irradiated recipients. Three hours after transplantation an increase in VLA-5 expressing cells was observed which remained stable until 24 hours post-transplant. When MPB cells were used the percentage PKH-67GL+ Lin− VLA-5+ cells increased from 36% to 88±4%. In the case of M-MPB cells the number increased from 3% to 33±5%. Although the increase might implicate an upregulation of VLA-5, we could not exclude selective homing of VLA-5+ cells as a possible explanation. Moreover, we determined the percentage of VLA-5 expressing cells immediately after transplantation in the peripheral blood of the recipients and were not able to observe any increase in VLA-5+ cells in the first three hours post-tranpslant. Finally, we separated the MPB cells in VLA-5+ and VLA-5− cells and plated these cells out in clonogenic assays for progenitor (CFU-GM) and stem cells (CAFC-day35). It could be demonstared that 98.8±0.5% of the progenitor cells and 99.4±0.7% of the stem cells were present in the VLA-5+ fraction. Hence, VLA-5 is not downregulated during the process of mobilization and the observed increase in VLA-5 expressing cells after transplantation is indeed caused by selective homing of VLA-5+ cells. To shed more light on the role of VLA-5 in the process of homing, BM and MPB cells were treated with an antibody to VLA-5. After VLA-5 blocking of MPB cells an inhibition of 59±7% in the homing of progenitor cells in bone marrow could be found, whereas homing of these subsets in the spleen of the recipients was only inhibited by 11±4%. For BM cells an inhibition of 60±12% in the bone marrow was observed. Homing of BM cells in the spleen was not affected at all after VLA-5 blocking. Based on these data we conclude that mobilization of hematopoietic progenitor/stem cells does not coincide with a downregulation of VLA-5. The observed increase in VLA-5 expressing cells after transplantation is caused by preferential homing of VLA-5+ cells. Homing of progenitor/stem cells to the bone marrow after transplantation apparantly requires adhesion interactions that can be inhibited by blocking VLA-5 expression. Homing to the spleen seems to be independent of VLA-5 expression. These data are indicative for different adhesive pathways in the process of homing to bone marrow or spleen.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3209-3209
Author(s):  
Sonali Chaudhury ◽  
Johannes Zakarzewski ◽  
Jae-Hung Shieh ◽  
Marcel van der Brink ◽  
Malcolm A.S. Moore

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) is associated with significant post-transplant immunoincompetence which affects in particular the T cell lineage and results in an increased susceptibility to infections. Novel strategies to enhance immune recovery after HSCT could prevent malignant relapse and immune deficiency and improve the overall outcome of this therapy. We have established a serum free culture system using murine bone marrow stroma expressing the Notch ligand Delta-like 1 (DL1) to obtain high numbers of human pre-T cells from CD34+ cells. Human cord blood CD34+ cells were plated on OP9 DL1 stroma transduced with adenovirus expressing thrombopoietin (ad-TPO) at an MOI of 30. Media used was QBSF-60 (Serum free media prepared by Quantity Biologicals) supplemented with Flt-3 ligand and IL-7 (10ng/ml). At 4–5 weeks we obtained a 10 5–10 7 fold expansions of cultured cells of which about 70–80% were CD5, CD7 positive pre T cells (Fig 1). We then developed an optimal system to study human lymphohematopoiesis using mouse models (NOD/SCID/IL2rϒnull and NOD/SCIDβ2null) and established an adequate pre T cell number (4 × 10 6) and radiation dose (300 Rads). We injected CD34 and pre-T cells (CD45 +, CD4−, CD5+, CD7+) derived from OP9 DL1 cultures into these mice and achieved ~50%engraftment of NK in the bone marrow and spleen of the mice at 2 weeks following transplant. The thymus from the same mice showed evidence of about 12–15% CD7+ pre T cells. We are currently studying the function of the generated NK and T cells both in vivo and in vitro studies. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document