scholarly journals Level of Unique T-Cell Clonotypes Are Associated with Clonal Hematopoiesis and Survival in Patients with Lymphoma Intended for Autologous Stem Cell Transplant

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3942-3942
Author(s):  
Simon Husby ◽  
Gustav Ørting Jørgensen ◽  
Francesco Favero ◽  
Jakob Schmidt Jespersen ◽  
German G.R. Gonzalez ◽  
...  

Abstract The advent of novel immunotherapy (CAR-T cell therapy, bispecific CD20×CD3 antibodies) have highlighted the importance of T-cells in the treatment of lymphoma. However, overall T-cell characteristics have not been properly examined in patients receiving conventional chemotherapy. Next-generation sequencing (NGS) of the T-cell receptor (TCR) has enabled the possibility of identifying hundred thousands of unique T-cell clones in a single patient sample. Here we analyzed the impact of systemic TCR diversity and T-cell clonotypes in patients with Non-Hodgkin lymphoma (NHL) and Hodgkin-lymphoma (HL) receiving high-dose chemotherapy with stem cell support (HDT/ASCT). Autologous peripheral blood stem cell harvest samples from patients with lymphoma (predominantly B-cell NHL) were collected as part of a national population-based study (Husby et al. - Leukemia 2020). We performed high-throughput RNA-based sequencing of the V, D and J segment of the TCR β-chain to identify unique clonal rearrangements. To ensure supreme quality for TCR repertoire calculations, samples with less than 100.000 aligned reads to the TCR β chain were omitted from further analysis. By using the MiXCR bioinformatic pipeline we analyzed the number of unique clonotypes and TCR repertoire diversity, as calculated by the Simpson index. T-cell clonotype and diversity were for categorical analyses split in two groups by the median, respectively. A total of 96 patients with lymphoma who were intended for HDT/ASCT were included and analyzed for TCR characteristics. In brief, median age was 56 years, 64% were male and major subtypes were diffuse large B-cell lymphoma (37%), follicular lymphoma (24%), Hodgkin lymphoma (16%), and mantle cell lymphoma (14%). Median follow-up time was 6.7 years. Number of unique T-cell clonotypes was not associated with age (Fig. 1A), but low levels were highly associated with inferior survival (Fig. 1B, p=0.008), especially in the first year of follow-up. In contrast, elderly patients had a trend toward lower TCR diversity (Fig. 1C, p=0.08), but this did not impact overall survival (Fig. 1D). Low T-cell clonotype levels was also significantly associated with presence of clonal hematopoiesis (Fig. 1E, p=0.033). No association with clonal hematopoiesis was found with regard to TCR diversity (Fig. 1F). Furthermore, we investigated TCR repertoire in relation to subsequent severe infections (defined as sepsis, pneumonia, or invasive fungal infection). Number of unique T-cell clonotypes did not have an impact (Fig. 1F), but remarkably patients with a high T-cell diversity had significant increased incidence of severe infections in the first 500 days after sampling (Fig. 1G, p=0.029). This implies that patients who have a high T-cell diversity before high-dose chemotherapy, are more capable of mounting an immune response against infectious pathogens. These findings should be validated in larger homogenous cohorts. However, they imply the importance of inherent immune characteristics in patients with lymphoma. Although the immune response is exceedingly complex, we have identified systemic T-cell characteristics that associate with several important clinical variables. Assessment of systemic immunological parameters in patients with aggressive lymphoma may in the future inform on choice of optimal personalized therapy. Figure 1 Figure 1. Disclosures El-Galaly: ROCHE Ltd: Ended employment in the past 24 months; Abbvie: Other: Speakers fee. Larsen: Odense University Hospital, Denmark: Current Employment; Celgene: Consultancy; BMS: Consultancy; Novartis: Consultancy; Gilead: Consultancy.

2014 ◽  
Vol 55 (10) ◽  
pp. 2319-2327 ◽  
Author(s):  
Yngvild N. Blaker ◽  
Marianne B. Eide ◽  
Knut Liestøl ◽  
Grete F. Lauritzsen ◽  
Arne Kolstad ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3333-3333 ◽  
Author(s):  
Ryan D. Cassaday ◽  
Oliver W. Press ◽  
John M. Pagel ◽  
Joseph G. Rajendran ◽  
Theodore A. Gooley ◽  
...  

Abstract Background High-dose therapy and autologous stem cell transplant (ASCT) remains the standard of care for many high-risk/relapsed B-cell non-Hodgkin lymphomas (B-NHL), T-cell NHL (T-NHL) and classical Hodgkin lymphoma (HL), yet most will not achieve sustained remissions. High-dose anti-CD20 radioimmunotherapy (RIT) and ASCT has been successfully employed to address this challenge in B-NHL, yet relapse still occurs potentially due to blockade of target sites by circulating rituximab (R). RIT options are limited for patients with T-NHL and HL. Preclinical data indicate that targeting the panhematopoietic antigen CD45 with RIT can successfully circumvent R blocking in B-NHL and target a variety of T-NHL histologies (Gopal, 2008 & 2009). We thus performed a phase I trial using high-dose anti-CD45 RIT and ASCT for B-NHL, T-NHL, and HL. Methods Patients were ≥18 years old with relapsed, refractory, or high-risk B-NHL, T-NHL, or HL and had acceptable organ function with an ECOG performance status of 0-1 and no detectible human anti-mouse antibodies. They could not have received ≥20 Gy of prior radiation (RT) to critical organs or prior ASCT within 1 year, or prior allogeneic transplant at any time. All patients first received anti-CD45 antibody (BC8) trace-labeled with 131I followed by gamma camera imaging to evaluate biodistribution and estimate organ-specific absorbed doses. Patients then received 131I-BC8 at an absorbed dose determined by the following: Patients with prior RT >20 Gy or prior ASCT started at 10 Gy to the dose-limiting normal organ (Arm A), while others started dose escalation at 20 Gy (Arm B). Subsequent dose escalation/de-escalation followed a two-stage approach (Storer, 2001). ASCT occurred after sufficient radiation decay, and G-CSF was started on day 1. Dose limiting toxicity (DLT) was determined by Bearman grade III/IV events. The primary objective was to estimate the maximum tolerated dose, defined as that yielding a DLT rate of 25%. Responses were scored using standard criteria (Cheson, 2007). Results Between August 2009 and March 2013, 15 patients were treated. Median age was 62 years (range 20-71); stage III/IV = 11 (73%); median prior regimens = 3 (range 2-12), including 1 prior ASCT; chemorefractory disease (i.e., <PR to the most recent chemotherapy) = 8 (53%); histologies were HL (n = 6), B-NHL (n = 6), and T-NHL (n = 3; see Table). The mean administered 131I activity was 646 mCi (range 344-1064 mCi; 23.9 GBq, range 12.7-39.4 GBq). The liver was the dose-limiting normal organ in 12 patients (2.41-3.98 cGy/mCi). The absorbed dose was escalated to 14 Gy for patients in Arm A (n = 3) and 30 Gy in Arm B (n = 12). Neutrophil (>500/μl) and platelet (>20 K/μl) engraftment occurred a median of 8 (range 10-20) and 12 (range 8-26) days after ASCT, respectively. No DLTs, non-relapse deaths, or non-hematologic toxicities > NCI-CTCAE v3 grade 3 have been observed. Currently, 11 (73%) patients are alive and 7 (47%) are progression-free with a median follow-up of 12 months. Seven (54%) of 13 patients with measurable disease at enrollment had objective disease responses, including 3 of 3 with T-NHL, 3 of 6 with HL, and 1 of 1 with follicular lymphoma (FL; see Table). Conclusion Myeloablative doses of 131I targeted to CD45 are safe and feasible in patients with lymphoma, with no DLTs observed after delivery of up to 30 Gy to the liver. Objective disease responses in heavily-treated B-NHL, T-NHL, and HL were observed. This work has led to current studies using yttrium-90 as the therapeutic radionuclide (given its longer beta pathlength and absence of gamma emission) in anti-CD45 RIT for lymphoma. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document