tcr diversity
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 36)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yi-Tung Chen ◽  
Hung-Chih Hsu ◽  
Yun-Shien Lee ◽  
Hsuan Liu ◽  
Bertrand Chin-Ming Tan ◽  
...  

Colorectal cancer (CRC) is a major cause of cancer mortality and morbidity. Despite advances in chemotherapy and targeted therapy, unsustainable clinical benefit was noted due to recurrence and therapy resistance. The immune status of the cancer patient may affect the effectiveness of disease treatments. The dynamic change in the T-cell receptor (TCR) repertoire might be a clinical parameter for monitoring treatment responses. In this study, we aimed to determine the characteristics and clinical significance of the TCR repertoire in patients with unresectable metastatic colorectal cancer (mCRC). Herein, we comprehensively profile 103 peripheral blood samples from 20 healthy controls and 16 CRC patients with a follow-up of 98 to 452 days to identify hypervariable rearrangements of the TCRα and TCRβ repertoires using high-throughput sequencing. We found that TCRα repertoires, TCRβ repertoires, and CDR3 clonotypes were altered in mCRC patients compared with healthy controls. The diversity of TCR repertoires and CDR3 clonotypes decreased in most mCRC patients after therapy. Furthermore, compared with baseline TCR diversity, patients whose TCR diversity dropped considerably during therapy had better treatment responses, including lower CEA and CA19-9 levels and smaller tumor sizes. TCR baseline diversity was also significantly associated with partial response (PR) status (odds ratio: 5.29, p = 0.04). In conclusion, the present study demonstrated the association between dynamic changes in TCR diversity during chemotherapy and clinical outcomes as well as the potential utility of the TCR repertoire in predicting the prognosis of cancer treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hongling Liang ◽  
Jia Huang ◽  
Xiang Ao ◽  
Weibang Guo ◽  
Yu Chen ◽  
...  

Immune characteristics were reported correlated to benefit neoadjuvant chemotherapy (NAC) in breast cancer, yet integration of comprehensive genomic alterations and T-cell receptors (TCR) to predict efficacy of NAC needs further investigation. This study simultaneously analyzed TMB (Tumor Mutation Burden), TCRs, and TILs (tumor infiltrating lymphocyte) in breast cancers receiving NAC was conducted in a prospective cohort (n = 22). The next-generation sequencing technology-based analysis of genomic alterations and TCR repertoire in paired breast cancer samples before and after NAC was conducted in a prospective cohort (n = 22). Fluorescent multiplex immunohistochemistry was used to stain CD4, CD8, PD1, TIM3, and cytokeratins simultaneously in those paired samples. TMB in pretreatment tumor tissues and TCR diversity index are higher in non-pCR patients than in pCR patients (10.6 vs. 2.3; p = 0.043) (2.066 vs. 0.467; p = 0.010). TMB and TCR diversity index had linear correlation (y = 5.587x − 0.881; r = 0.522, p = 0.012). Moreover, infiltrating T cells are significantly at higher presence in pCR versus non-pCR patients. Dynamically, the TMB reduced significantly after therapy in non-pCR patients (p = 0.010) but without TCR index change. The CDR3 peptide AWRSAGNYNEQF is the most highly expressed in pre-NAC samples of pCR patients and in post-NAC samples of non-pCR patients. In addition to pCR, high clonality of TCR and high level of CD8+ expression are associated with disease-free survival (DFS). TCR index and TMB have significant interaction and may guide neo-adjuvant treatment in operable breast cancers. Response to NAC in tumors with high TCR clonality may be attributable to high infiltration and expansion of tumor-specific CD8 positive effector cells.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Koshlan Mayer-Blackwell ◽  
Stefan Schattgen ◽  
Liel Cohen-Lavi ◽  
Jeremy C Crawford ◽  
Aisha Souquette ◽  
...  

T-cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages experimentally inferred antigen-associated TCRs to form meta-clonotypes – groups of biochemically similar TCRs – that can be used to robustly quantify functionally similar TCRs in bulk repertoires across individuals. We apply the framework to TCR data from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the SARS-CoV-2 antigen-associated TCRs that have strong evidence of restriction to patients with a specific human leukocyte antigen (HLA) genotype. Applied to independent cohorts, meta-clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients that expressed the putative restricting HLA allele (false discovery rate [FDR]<0.01), demonstrating the potential utility of meta-clonotypes as antigen-specific features for biomarker development. To enable further applications, we developed an open-source software package, tcrdist3, that implements this framework and facilitates flexible workflows for distance-based TCR repertoire analysis.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3942-3942
Author(s):  
Simon Husby ◽  
Gustav Ørting Jørgensen ◽  
Francesco Favero ◽  
Jakob Schmidt Jespersen ◽  
German G.R. Gonzalez ◽  
...  

Abstract The advent of novel immunotherapy (CAR-T cell therapy, bispecific CD20×CD3 antibodies) have highlighted the importance of T-cells in the treatment of lymphoma. However, overall T-cell characteristics have not been properly examined in patients receiving conventional chemotherapy. Next-generation sequencing (NGS) of the T-cell receptor (TCR) has enabled the possibility of identifying hundred thousands of unique T-cell clones in a single patient sample. Here we analyzed the impact of systemic TCR diversity and T-cell clonotypes in patients with Non-Hodgkin lymphoma (NHL) and Hodgkin-lymphoma (HL) receiving high-dose chemotherapy with stem cell support (HDT/ASCT). Autologous peripheral blood stem cell harvest samples from patients with lymphoma (predominantly B-cell NHL) were collected as part of a national population-based study (Husby et al. - Leukemia 2020). We performed high-throughput RNA-based sequencing of the V, D and J segment of the TCR β-chain to identify unique clonal rearrangements. To ensure supreme quality for TCR repertoire calculations, samples with less than 100.000 aligned reads to the TCR β chain were omitted from further analysis. By using the MiXCR bioinformatic pipeline we analyzed the number of unique clonotypes and TCR repertoire diversity, as calculated by the Simpson index. T-cell clonotype and diversity were for categorical analyses split in two groups by the median, respectively. A total of 96 patients with lymphoma who were intended for HDT/ASCT were included and analyzed for TCR characteristics. In brief, median age was 56 years, 64% were male and major subtypes were diffuse large B-cell lymphoma (37%), follicular lymphoma (24%), Hodgkin lymphoma (16%), and mantle cell lymphoma (14%). Median follow-up time was 6.7 years. Number of unique T-cell clonotypes was not associated with age (Fig. 1A), but low levels were highly associated with inferior survival (Fig. 1B, p=0.008), especially in the first year of follow-up. In contrast, elderly patients had a trend toward lower TCR diversity (Fig. 1C, p=0.08), but this did not impact overall survival (Fig. 1D). Low T-cell clonotype levels was also significantly associated with presence of clonal hematopoiesis (Fig. 1E, p=0.033). No association with clonal hematopoiesis was found with regard to TCR diversity (Fig. 1F). Furthermore, we investigated TCR repertoire in relation to subsequent severe infections (defined as sepsis, pneumonia, or invasive fungal infection). Number of unique T-cell clonotypes did not have an impact (Fig. 1F), but remarkably patients with a high T-cell diversity had significant increased incidence of severe infections in the first 500 days after sampling (Fig. 1G, p=0.029). This implies that patients who have a high T-cell diversity before high-dose chemotherapy, are more capable of mounting an immune response against infectious pathogens. These findings should be validated in larger homogenous cohorts. However, they imply the importance of inherent immune characteristics in patients with lymphoma. Although the immune response is exceedingly complex, we have identified systemic T-cell characteristics that associate with several important clinical variables. Assessment of systemic immunological parameters in patients with aggressive lymphoma may in the future inform on choice of optimal personalized therapy. Figure 1 Figure 1. Disclosures El-Galaly: ROCHE Ltd: Ended employment in the past 24 months; Abbvie: Other: Speakers fee. Larsen: Odense University Hospital, Denmark: Current Employment; Celgene: Consultancy; BMS: Consultancy; Novartis: Consultancy; Gilead: Consultancy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A1002-A1003
Author(s):  
Mallikarjuna Gedda ◽  
Patrick Danaher ◽  
Lipei Saho ◽  
Martin Ongkeko ◽  
Leonard Chen ◽  
...  

BackgroundCoronavirus disease 2019 (COVID-19) results in robust but dysregulated acute immune response characterized by pro-inflammatory cytokine production and T-cell exhaustion, but little is known concerning immune response following recovery. We assessed immune function in convalescent plasma donors (CCD) who had recovered from COVID-19.MethodsThe cellular immune response and T-cell receptor (TCR) diversity in CCD was investigated using the nCounter host response and TCR diversity panels. 270 CCD and 40 healthy donor (HD) blood samples collected 11 to 193 days after diagnosis were analyzed. The CCD samples were from 162 donors, 69 donated more than once. All HD donated only once.ResultsMany genes were differentially expressed for months following infection. Analysis of samples collected 0 to 90 days post-diagnosis found that 19 of 773 genes were differentially expressed among CCD and HD (FDR < 0.05) (figure 1a). At 90 to 120 days, 120 to 150 and >150 post-diagnosis, 13, 58 and 4 genes were differentially expressed respectively (FDR < 0.05) (figures 1b-d). At 120 to 150 days the differentially expressed genes included those in Treg differentiation, type III interferon signaling and chemokine signaling pathways. 76 genes were differently expressed at least once during the time windows described above. (Figure 1e). Among CCD, the expression of CTLA-4, ICOS, ICOSLG, OSM and CXCR4 were initially elevated but fell to HD levels at the end of the study period. The expression of LILRA6, CCR2 and CX3CR1 increased or remained elevated throughout (figure 1f).A subset of samples departed notably from the average trend. The transcriptome of each CCD sample was scored by its similarity to the mean transcriptome of HD samples. This analysis revealed 21 CCD samples from 19 unique donors were highly perturbed from HD samples (figure 2a). Among these highly perturbed samples 80% were collected > 90 days post-diagnosis. The perturbed samples clustered into two groups, labelled P1 and P2 (figure 2b) and displayed dysregulation of distinct gene sets (figures 2c, 2d). The P1 were characterized by increased expression of genes in myeloid inflammation, type 1 interferon and innate immune signaling pathways, lower COVID antibody levels and increased T-cell receptor diversity. P2 were characterized by highly up-regulated CD44, BCL2, TGFB1, IL18BP, IL27RA, and IL11RA.Abstract 953 Figure 1Longitudinal trends in CCD gene expression. a-d: Differential expression results in HD vs. 4 time windows of CCD. Genes with FDR <0.1 are labeled; e: average CCD log2 fold-changes from HD over time. Color is only given for times where the Loess regression is different from the mean HD with p < 0.05; f: longitudinal results for selected genes. Orange lines connect CCD samples over time. Blue lines show inner 95% quantiles of HD samplesAbstract 953 Figure 2CCD with more severe departure from HD gene expression. a: CCD samples (in orange) were scored for perturbation from the mean HD (in blue), and 21 highly perturbed sample subsets emerged; b: clustering of the 21 highly perturbed patients. The dendrogram was cut to define two groups. c: volcano plots comparing expression in P1 (left) and P2 (right) vs. CCD; d: longitudinal trends of selected genes perturbed in P1 and P2ConclusionsImmune dysregulation in CCD continues at least 6 months post-infection. Some CCDs experienced marked transcriptional changes which may be the result of COVID-19 reactivation and could be responsible for long-haul syndrome.AcknowledgementsN/ATrial RegistrationNCT04360278ReferencesN/A Ethics ApprovalN/AConsentN/A


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A73-A73
Author(s):  
Afaf Abed ◽  
Elin Gray ◽  
Michael Millward

BackgroundTCR repertoire plays a key role on the orchestration of the immune response. In particular, reduced pre-treatment Shannon diversity, increase clonality and increase convergence of TCRs have been suggested to reflect clonal expansion of antigen-specific T-cells in the tumour microenvironment. These are thought to be correlated with better response rate, improved progression free survival (PFS) and overall survival (OS). Here we aim to explore the above TCR repertoire features in peripheral blood of NSCLC patients (with PDL1≥50%) treated with single agent pembrolizumab in the first line setting; and correlate them with overall response rate (ORR), PFS and OS.MethodsWe prospectively collected baseline blood from 48 NSCLC patients treated with first line pembrolizumab. High quality DNA was extracted from white blood cells and used for TCR sequencing using the Oncomine TCR Beta-SR Assay (Thermo Fisher). TCR clonality and convergence were calculated for each individual and correlated with survival using Kaplan-Meier curves and survival statistics. Multivariate analysis was carried out controlling for other variable that may influence the association of TCR repertoire and outcomes such as age, sex, ECOG, smoking status and pre-treatment neutrophil to lymphocyte ratio (NLR).ResultsOur data matured for 29 patients only with a follow-up of at least 6 months. We observed a trend towards increased pre-treatment TCR clonality in patients with objective response to pembrolizumab and statistically significant reduced Shannon diversity (P = 0.042). Convergence did not seem to affect ORR in our cohort. Moreover, there was a significantly longer PFS in patients with reduced number of pre-treatment clones (HR = 0.40, 95%CI 0.14–1.17, P = 0.031), reduced Shannon diversity (HR = 0.44, 95%CI 0.16–1.21, P = 0.041), reduced Evenness (HR = 0.31, 95%CI 0.11–0.94, P = 0.033) and elevated clonality (HR = 3.18, 95%CI 1.06–9.53, P = 0.033) (table 1). Reduced rather than increased convergence was correlated with a trend towards improved PFS. None of these parameters were statically significant in relation to OS (table 2).Abstract 66 Table 1TCR diversity and PFSAbstract 66 Table 2TCR diversity and OSConclusionsIncreased pre-treatment TCR clonality and reduced diversity are associated with improved ORR and PFS, but not OS in NSCLC patients with high PD-L1 treated with pembrolizumab monotherapy. Further maturation of this cohort will demonstrate whether the circulating pre-treatment TCR repertoire is a prognostic factor for immunecheckpoint inhibition.Ethics ApprovalThe proposed project has already received approval by the Human Research Ethics Committees and Research Governance at Fiona Stanley Hospital, Sir Charles Gairdner Hospital and Edith Cowan University [ECU (No. 18957) and SCGH (RGS0000003289)].ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.


2021 ◽  
Vol 9 (10) ◽  
pp. e002809
Author(s):  
Cangang Zhang ◽  
Lei Lei ◽  
Xiaofeng Yang ◽  
Kaili Ma ◽  
Huiqiang Zheng ◽  
...  

BackgroundAging has long been thought to be a major risk factor for various types of cancers. However, accumulating evidence indicates increased resistance of old animals to tumor growth. An in-depth understanding of how old individuals defend against tumor invasion requires further investigations.MethodsWe revealed age-associated alterations in tumor-infiltrating immune cells between young and old mice using single-cell RNA and coupled T cell receptor (TCR) sequencing analysis. Multiple bioinformatics methods were adopted to analyze the characteristics of the transcriptome between two groups. To explore the impacts of young and old CD8+ T cells on tumor growth, mice were treated with anti-CD8 antibody every 3 days starting 7 days after tumor inoculation. Flow cytometry was used to validate the differences indicated by sequencing analysis between young and old mice.ResultsWe found a higher proportion of cytotoxic CD8+ T cells, naturally occurring Tregs, conventional dendritic cell (DC), and M1-like macrophages in tumors of old mice compared with a higher percentage of exhausted CD8+ T cells, induced Tregs, plasmacytoid DC, and M2-like macrophages in young mice. Importantly, TCR diversity analysis showed that top 10 TCR clones consisted primarily of exhausted CD8+ T cells in young mice whereas top clones were predominantly cytotoxic CD8+ T cells in old mice. Old mice had more CD8+ T cells with a ‘progenitor’ and less ‘terminally’ exhausted phenotypes than young mice. Consistently, trajectory inference demonstrated that CD8+ T cells preferentially differentiated into cytotoxic cells in old mice in contrast to exhausted cells in young mice. Importantly, elimination of CD8+ T cells in old mice during tumor growth significantly accelerated tumor development. Moreover, senescent features were demonstrated in exhausted but not cytotoxic CD8+ T cells regardless of young and old mice.ConclusionsOur data revealed that a significantly higher proportion of effector immune cells in old mice defends against tumor progression, providing insights into understanding the altered kinetics of cancer development and the differential response to immunotherapeutic modulation in elderly patients.


2021 ◽  
Vol 9 (9) ◽  
pp. e002647
Author(s):  
Asaf Maoz ◽  
Carter Merenstein ◽  
Yusuke Koga ◽  
Austin Potter ◽  
Adam C Gower ◽  
...  

ObjectiveThe immune response to invasive carcinoma has been the focus of published work, but little is known about the adaptive immune response to bronchial premalignant lesions (PMLs), precursors of lung squamous cell carcinoma. This study was designed to characterize the T cell receptor (TCR) repertoire in PMLs and its association with clinical, pathological, and molecular features.MethodsEndobronchial biopsies (n=295) and brushings (n=137) from high-risk subjects (n=50), undergoing lung cancer screening at approximately 1-year intervals via autofluorescence bronchoscopy and CT, were profiled by RNA-seq. We applied the TCR Repertoire Utilities for Solid Tissue/Tumor tool to the RNA-seq data to identify TCR CDR3 sequences across all samples. In the biopsies, we measured the correlation of TCR diversity with previously derived immune-associated PML transcriptional signatures and PML outcome. We also quantified the spatial and temporal distribution of shared and clonally expanded TCRs. Using the biopsies and brushes, the ratio of private (ie, found in one patient only) and public (ie, found in two or more patients) TCRs was quantified, and the CDR3 sequences were compared with those found in curated databases with known antigen specificities.ResultsWe detected 39,303 unique TCR sequences across all samples. In PML biopsies, TCR diversity was negatively associated with a transcriptional signature of T cell mediated immune activation (p=4e-4) associated with PML outcome. Additionally, in lesions of the proliferative molecular subtype, TCR diversity was decreased in regressive versus progressive/persistent PMLs (p=0.045). Within each patient, TCRs were more likely to be shared between biopsies sampled at the same timepoint than biopsies sampled at the same anatomic location at different times. Clonally expanded TCRs, within a biopsied lesion, were more likely to be expanded at future time points than non-expanded clones. The majority of TCR sequences were found in a single sample, with only 3396 (8.6%) found in more than one sample and 1057 (2.7%) found in two or more patients (ie, public); however, when compared with a public database of CDR3 sequences, 4543 (11.6%) of TCRs were identified as public. TCRs with known antigen specificities were enriched among public TCRs (p<0.001).ConclusionsDecreased TCR diversity may reflect nascent immune responses that contribute to PML elimination. Further studies are needed to explore the potential for immunoprevention of PMLs.


2021 ◽  
Vol 9 (7) ◽  
pp. e002503
Author(s):  
Miok Kim ◽  
Yong Ki Min ◽  
Jinho Jang ◽  
Hyejin Park ◽  
Semin Lee ◽  
...  

BackgroundAlthough cancer immunotherapy is one of the most effective advanced-stage cancer therapies, no clinically approved cancer immunotherapies currently exist for colorectal cancer (CRC). Recently, programmed cell death protein 1 (PD-1) blockade has exhibited clinical benefits according to ongoing clinical trials. However, ongoing clinical trials for cancer immunotherapies are focused on PD-1 signaling inhibitors such as pembrolizumab, nivolumab, and atezolizumab. In this study, we focused on revealing the distinct response mechanism for the potent CD73 ectoenzyme selective inhibitor AB680 as a promising drug candidate that functions by blocking tumorigenic ATP/adenosine signaling in comparison to current therapeutics that block PD-1 to assess the value of this drug as a novel immunotherapy for CRC.MethodsTo understand the distinct mechanism of AB680 in comparison to that of a neutralizing antibody against murine PD-1 used as a PD-1 blocker, we performed single-cell RNA sequencing of CD45+ tumor-infiltrating lymphocytes from untreated controls (n=3) and from AB680-treated (n=3) and PD-1-blockade-treated murine CRC in vivo models. We also used flow cytometry, Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS) models, and in vitro functional assays to validate our new findings.ResultsWe initially observed that the expressions of Nt5e (a gene for CD73) and Entpd1 (a gene for CD39) affect T cell receptor (TCR) diversity and transcriptional profiles of T cells, thus suggesting their critical roles in T cell exhaustion within tumor. Importantly, PD-1 blockade significantly increased the TCR diversity of Entpd1-negative T cells and Pdcd1-positive T cells. Additionally, we determined that AB680 improved the anticancer functions of immunosuppressed cells such as Treg and exhausted T cells, while the PD-1 blocker quantitatively reduced Malat1high Treg and M2 macrophages. We also verified that PD-1 blockade induced Treg depletion in AOM/DSS CRC in vivo models, and we confirmed that AB680 treatment caused increased activation of CD8+ T cells using an in vitro T cell assay.ConclusionsThe intratumoral immunomodulation of CD73 inhibition is distinct from PD-1 inhibition and exhibits potential as a novel anticancer immunotherapy for CRC, possibly through a synergistic effect when combined with PD-1 blocker treatments. This study may contribute to the ongoing development of anticancer immunotherapies targeting refractory CRC.


Sign in / Sign up

Export Citation Format

Share Document