scholarly journals A Phase 2 Open-Label, Multicenter, Dose Optimization Clinical Study of the Safety, Tolerability, and Pharmacokinetic (PK) and Pharmacodynamic (PD) Profiles of Cfi-400945 As a Single Agent or in Combination with Azacitidine or Decitabine in Patients with Acute Myeloid Leukemia, Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia (TWT-202)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4432-4432
Author(s):  
Gautam Borthakur ◽  
Brian A. Jonas ◽  
Emily L Roberts-Thomson ◽  
Glenn C. Michelson ◽  
Mark R Bray

Abstract Background: CFI-400945 is a potent, selective, orally administered, first-in-class inhibitor of the serine/threonine kinase, Polo-like kinase 4 (PLK4). PLK4 is a highly conserved master upstream regulator of centriole duplication and is critical for maintenance of genomic integrity. Aberrant expression of PLK4 results in a number of effects including the centrosome amplification often seen in aneuploid cancers, pointing to a potentially causative role for PLK4 in genome instability and cancer progression. A Phase 1 study has been completed evaluating CFI-400945 as a monotherapy in solid tumors, showing a tolerable safety profile and promising signs of activity. Given acute myeloid leukemia (AML) is characterized by genomic instability, CFI-400945 has been evaluated in pre-clinical and clinical studies in AML. In pre-clinical studies, CFI-400945 showed potent activity towards leukemia cell lines and primary human samples in vitro, as well as marked efficacy in two subcutaneous models of leukemia. A prior Phase 1 trial in AML was initiated at the Princess Margaret Cancer Center (PMCC), and of six patients evaluable for response, two (33%) achieved complete remission (CR) at 96 mg and 128 mg, and 3 patients (50%) had stable disease (with one patient having a 78% reduction in marrow blast count) at 64 mg (2 patients) and 96 mg [re: Murphy et al, ASH 2020]. Responses were seen in patients with adverse cytogenetics. The optimal dosing of CFI-400945 and its potential role as a combination agent are not yet clinically defined. Study Design and Methods: The study (TWT-202) has 4 parts, Part 1A (1A): a single agent dose escalation portion, Part 1B (1B): a food effect portion once the MTD of 1A is determined, and combinations with azacitidine (2A), and decitabine (2B). TWT-202 uses an updated version of investigational product which is identical in formulation to the drug used in the PMCC study, but which may result in higher exposures at a given dose. This study will therefore refine the dose through escalation cohorts. For parts 1A and 1B, patients with relapsed and/or refractory AML, MDS, or CMML after >1 prior therapy will be included. Patients with MDS or CMML must have progressed or had a lack of response after at least 4 cycles of hypomethylating agents. For parts 2A and 2B, patients should have relapsed and/or refractory AML or untreated MDS or CMML. Untreated patients who decline or are ineligible for intensive therapy may be included. The study will use a standard 3 + 3 design. The maximum tolerated dose (MTD) will be defined as the dose level where the number of dose limiting toxicities (DLTs) is <1 out of 6 at highest dose level below the maximally administered dose. Pharmacokinetics (PK) and pharmacodynamic (PD) markers will be assessed. Results: As of June 21, 2021, 2 patients had been enrolled into the study, one of the patients (50%) received >3 prior therapies (including venetoclax). Neither patient had had stem cell transplant at study entry. Both patients had secondary AML (one with antecedent MDS with excess blasts and the other with CMML). Both patients received 32 mg of CFI-400945 for 21 days followed by a 7-day rest. Both patients completed cycle 1 and neither experienced a DLT. Both patients experienced a single serious treatment emergent adverse event (SAE) of febrile neutropenia each, with neither event considered related to CFI-400945. There were 13 Grade 3 or greater TEAE's, including anemia, thrombocytopenia (3 events each), febrile neutropenia (2 events), agitation, angioinvasive fungal sinusitis, acute kidney injury, hypotension and neutropenia (1 event each). None of the grade 3 or greater TEAE's were considered related to CFI-400945. Neither patient responded to therapy at 32 mg and both came off treatment after one cycle due to progressive disease. PK and PD studies are pending. Conclusion: CFI-400945 has been generally well tolerated and TWT-202 continues to enroll in the Part 1A and Part 1B monotherapy cohorts. Updated safety, efficacy, PK, and PD data for the study will be presented at the time of the meeting. Disclosures Borthakur: University of Texas MD Anderson Cancer Center: Current Employment; ArgenX: Membership on an entity's Board of Directors or advisory committees; Protagonist: Consultancy; Astex: Research Funding; Ryvu: Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy; Takeda: Membership on an entity's Board of Directors or advisory committees. Jonas: 47, AbbVie, Accelerated Medical Diagnostics, Amgen, AROG, Celgene, Daiichi Sankyo, F. Hoffmann-La Roche, Forma, Genentech/Roche, Gilead, GlycoMimetics, Hanmi, Immune-Onc, Incyte, Jazz, Loxo Oncology, Pfizer, Pharmacyclics, Sigma Tau, Treadwell: Research Funding; AbbVie: Other: Travel reimbursement; AbbVie, BMS, Genentech, GlycoMimetics, Jazz, Pfizer, Takeda, Treadwell: Consultancy. Roberts-Thomson: Treadwell Therapeutics: Current Employment. Michelson: Treadwell Therapeutics: Consultancy. Bray: Treadwell Therapeutics: Current Employment.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-2
Author(s):  
Tracy Murphy ◽  
Brian Leber ◽  
Mark R Bray ◽  
Steven M Chan ◽  
Vikas Gupta ◽  
...  

Introduction: CFI-400945 is a first-in-class, potent, selective, orally active inhibitor of Polo-like kinase 4 (PLK4) (Ki=0.26nM), a master regulator of centriole duplication, necessary for genomic integrity (Mason et al. Cancer Cell 2014; 26:163-76). CFI-400945 has activity in leukemia cell lines and primary leukemia samples including those with complex karyotype, inversion 3 and monosomy 7 (Minden. personal communications). This suggests that CFI-400945 may provide an effective treatment of patients with AML. The objectives of this phase 1 trial was to establish the safety, tolerability, and recommend phase II dose (RP2D) of CFI-400945 in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Methods: Patients with relapsed/refractory AML or MDS and patients with untreated AML who refused induction chemotherapy or who are not candidates for intensive chemotherapy were eligible. Dose escalation followed a standard 3+3 design with a starting dose of 64 mg orally once daily. Plasma levels of CFI-400945 free base were measured on Days 1, 2, & 29 of Cycle 1 and Day 15 on all subsequent cycles. Peripheral blood and/or bone marrow were obtained at baseline, Day 8 of Cycle 1 and Day 1 of each subsequent cycle prior to dosing for pharmacodynamic monitoring. Safety assessments using the NCI CTCAE version 4.03 were performed. Results: From May 2018 to June 2019, nine patients have been enrolled on study across three pre-defined dose levels (64 mg [n=3], 96 mg [n=4], and 128 mg [n=2]). Three patients had untreated AML, five patients had relapsed/refractory AML and one patient had myelodysplastic syndrome/myeloproliferative disorder (MDS/MPN). Patient characteristics at diagnosis are outlined in Table 1. Six (67%) patients had baseline high throughput sequencing; the most frequent mutations were TP53 (33%), TET2 (33%), KRAS (33%) and DNMT3A (33%). A total of 20 cycles were administered with a median of 1 cycle (range, 0 to 7 cycles). The most common non-hematological drug related toxicities of any grade, which occurred in over 20%, were diarrhea (44%), headache (44%), colitis (33%), vomiting (33%), bilirubin increase (22%), dizziness (22%), fatigue (22%), and nausea (22%). One patient on the 96 mg dose level was not evaluable for DLT and hence, replaced. Both patients treated at the 128 mg/day dose level developed DLTs, consisting of grade 3 colitis and grade 5 sepsis and colitis. Pharmacokinetic profile indicated low interpatient variability between patients. Maximum exposure did not correlate with toxicity Six patients were evaluable for disease response. Two (33%) achieved complete remission (CR), 3 pts (50%) had stable disease (with one patient having a 78% reduction in marrow blast count). The patient with MDS/MPN who did not complete 1 cycle of therapy progressed to AML (Figure 1). Both patients who obtained a CR had an early response within 2 cycles. One CR has been durable for 218 days with no measurable residual disease (MRD) by flow cytometry. The additional patient, who obtained a CR with incomplete platelets recovery, with subsequent best response of CR, had a sustained response for 91 days before relapse was confirmed by bone marrow examination (Figure 1). Conclusion: Single agent CFI-400945 has activity in patients with poor risk AML. The RP2D in this population is 96 mg once daily. Dose expansion is occurring at the RP2D level. A phase 2 study with CFI-400945 single agent or in combination study with azacitidine or decitabine is planned. Disclosures Leber: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Alexion: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Lundbeck: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda/Palladin: Honoraria, Membership on an entity's Board of Directors or advisory committees; Treadwell: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BMS/Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Otsuka Pharmaceutical: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Bray:Treadwell Therapeutics: Current Employment; TIO Discovery: Current Employment. Gupta:Pfizer: Consultancy; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sierra Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bristol MyersSquibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Incyte: Honoraria, Research Funding. Maze:Novartis: Honoraria; Pfizer: Consultancy; Takeda: Research Funding. McNamara:Novartis: Honoraria. Schimmer:Jazz: Honoraria; Otsuka: Honoraria; Medivir AB: Research Funding; AbbVie Pharmaceuticals: Other: owns stock ; Takeda: Honoraria, Research Funding; Novartis: Honoraria.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2722-2722
Author(s):  
Kelly S. Chien ◽  
Christopher B. Benton ◽  
Ayalew Tefferi ◽  
José Rodríguez ◽  
Farhad Ravandi ◽  
...  

Abstract Background: Trabectedin is an FDA-approved DNA minor groove binder (MGB) that has activity against translocation-associated sarcomas. Lurbinectedin is a next-generation MGB with pre-clinical activity against myeloid leukemia cells. A dose-finding phase 1 clinical trial was performed in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) with further assessment of safety and tolerability. Methods: Forty-two patients with relapsed/refractory AML/MDS received lurbinectedin administered as a 1-hour intravenous infusion in a 3+3 study design. Two dosing schedules were used: 3.5 mg, 5 mg, 7 mg, or 6 mg on days 1 and 8 or 2 mg, 3 mg, 1 mg, or 1.5 mg for 3 consecutive days on days 1 to 3. Patients 18 years or older with a diagnosis of advanced, relapsed/refractory AML (non-acute promyelocytic leukemia) and MDS were eligible and treated on study. Eligible patients had adequate hepatic, renal, and cardiac function and an Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 2. Patients with uncontrolled infection, human immunodeficiency virus, cardiac and neurological disorders, or those who were pregnant were ineligible. Clinical trial information: NCT01314599. Results: Three patients experienced dose-limiting toxicities of rhabdomyolysis (grade 4), hyperbilirubinemia (grade 3), and oral herpes (grade 3) with the days 1 and 8 schedule. Otherwise, adverse events mainly consisted of gastrointestinal manifestations (n=11), febrile neutropenia/infections (n=4), pulmonary toxicity (n=2), and renal failure (n=2). The most common laboratory abnormalities observed were an increase in creatinine (93%) and anemia, neutropenia, and thrombocytopenia (100%). Overall, 33 of 42 patients (79%) had reduction in blasts in peripheral blood or bone marrow. One patient achieved a partial response and two patients a morphologic leukemia-free state. Most (n=30, 71%) were discontinued due to progressive disease. Early deaths occurred from disease-related causes that were not attributable to lurbinectedin. Four patients with a chromosome 11q21-23 abnormality had significantly greater bone marrow blast reduction than those without such abnormality, with decrease of 31±14% (n=4) vs. 8±8% (n=16), respectively (P=0.04). Conclusions: Overall, lurbinectedin was safe and tolerated using the schedules and dose levels tested. While no sustained remissions were observed, single-agent lurbinectedin was transiently leukemia suppressive for some patients. Disclosures Rodríguez: PharmaMar: Employment. Ravandi:Bristol-Myers Squibb: Research Funding; Jazz: Honoraria; Abbvie: Research Funding; Seattle Genetics: Research Funding; Abbvie: Research Funding; Amgen: Honoraria, Research Funding, Speakers Bureau; Orsenix: Honoraria; Seattle Genetics: Research Funding; Astellas Pharmaceuticals: Consultancy, Honoraria; Sunesis: Honoraria; Orsenix: Honoraria; Macrogenix: Honoraria, Research Funding; Astellas Pharmaceuticals: Consultancy, Honoraria; Jazz: Honoraria; Xencor: Research Funding; Bristol-Myers Squibb: Research Funding; Amgen: Honoraria, Research Funding, Speakers Bureau; Macrogenix: Honoraria, Research Funding; Xencor: Research Funding; Sunesis: Honoraria. Daver:Sunesis: Consultancy; Alexion: Consultancy; Daiichi-Sankyo: Research Funding; BMS: Research Funding; ImmunoGen: Consultancy; Kiromic: Research Funding; Incyte: Research Funding; Pfizer: Consultancy; Incyte: Consultancy; ARIAD: Research Funding; Karyopharm: Consultancy; Pfizer: Research Funding; Karyopharm: Research Funding; Novartis: Consultancy; Sunesis: Research Funding; Novartis: Research Funding; Otsuka: Consultancy. Jain:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; ADC Therapeutics: Research Funding; Infinity: Research Funding; Pfizer: Research Funding; Novimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Servier: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Genentech: Research Funding; ADC Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologioes: Research Funding; Pharmacyclics: Research Funding; Incyte: Research Funding; Verastem: Research Funding; Seattle Genetics: Research Funding; Pharmacyclics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Astra Zeneca: Research Funding; Servier: Research Funding; Celgene: Research Funding; Seattle Genetics: Research Funding; Verastem: Honoraria, Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Honoraria, Membership on an entity's Board of Directors or advisory committees; Infinity: Research Funding; Adaptive Biotechnologies: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Research Funding; Cellectis: Research Funding; ADC Therapeutics: Research Funding; Abbvie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologioes: Research Funding; Pharmacyclics: Research Funding; Cellectis: Research Funding; Verastem: Research Funding; Servier: Research Funding; Abbvie: Research Funding; Incyte: Research Funding; Genentech: Research Funding; Abbvie: Research Funding; BMS: Research Funding; Astra Zeneca: Honoraria, Membership on an entity's Board of Directors or advisory committees; Verastem: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; ADC Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Servier: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Abbvie: Honoraria, Membership on an entity's Board of Directors or advisory committees. Maiti:Celgene Corporation: Other: Research funding to the institution. Martinez:PharmaMar: Employment. Siguero:PharmaMar: Employment. Al-Kali:Novartis: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Philip C. Amrein ◽  
Eyal C. Attar ◽  
Geoffrey Fell ◽  
Traci M. Blonquist ◽  
Andrew M. Brunner ◽  
...  

Introduction: Outcomes for acute myeloid leukemia (AML) among older patients has remained largely unchanged for decades. Long-term survival for patients aged >60 years is poor (median survival 10.5 months). Targeting the proteasome in AML is attractive, since leukemia stem cells have demonstrated sensitivity to proteasome inhibition in preclinical models, perhaps through down regulation of nuclear NF-KB (Guzman, Blood 2001). AML cell lines are susceptible to synergistic cytotoxicity when bortezomib, a proteasome inhibitor, is combined with daunorubicin and cytarabine. We have shown that adding bortezomib to standard treatment in AML results in a high remission rate, although grade 2 sensory neurotoxicity was noted in approximately 12% of treated patients. A newer generation proteasome inhibitor, ixazomib, is less frequently associated with neurotoxicity, and, therefore, was selected for combination with conventional chemotherapy in this phase I trial. The primary objective of this study was to determine the maximum tolerated dose (MTD) of ixazomib in combination with conventional induction and consolidation chemotherapy for AML. Herein are the initial results of this trial. Methods: Adults >60 years of age with newly diagnosed AML were screened for eligibility. Patients with secondary AML were eligible, including those with prior hypomethylating agent therapy for myelodysplastic syndromes (MDS). We excluded those with promyelocytic leukemia. There were 2 phases in this study. In the first phase (A), the induction treatment consisted of the following: cytarabine 100 mg/m2/day by continuous IV infusion, Days 1-7; daunorubicin 60 mg/m2/day IV, Days 1, 2, 3, and ixazomib was provided orally at the cohort dose, Days 2, 5, 9, and 12. Consolidaton or transplant was at the discretion of the treating physician in phase A. In the second phase (B), induction was the same as that with the determined MTD of ixazomib. All patients were to be treated with the following consolidation: cytarabine at 2 g/m2/day, days 1-5 with ixazomib on days 2, 5, 9, and 12 at the cohort dose for consolidation. A standard 3 + 3 patient cohort dose escalation design was used to determine whether the dose of ixazomib could be safely escalated in 3 cohorts (1.5 mg/day, 2.3 mg/day, 3.0 mg/day), initially in induction (phase A) and subsequently in consolidation (phase B). The determined MTD of ixazomib in the first portion (A) of the trial was used during induction in the second portion (B), which sought to determine the MTD for ixazomib during consolidation. Secondary objectives included rate of complete remission, disease-free survival, and overall survival (OS). Results: Thirty-six patients have been enrolled on study, and 28 have completed dose levels A-1 through A-3 and B1 through B-2. Full information on cohort B-3 has not yet been obtained, hence, this report covers the experience with the initial 28 patients, cohorts A-1 through B-2. There were 12 (43%) patients among the 28 with secondary AML, either with prior hematologic malignancy or therapy-related AML. Nineteen patients (68%) were male, and the median age was 68 years (range 61-80 years). There have been no grade 5 toxicities due to study drug. Three patients died early due to leukemia, 2 of which were replaced for assessment of the MTD. Nearly all the grade 3 and 4 toxicities were hematologic (Table). There was 1 DLT (grade 4 platelet count decrease extending beyond Day 42). There has been no grade 3 or 4 neurotoxicity with ixazomib to date. Among the 28 patients in the first 5 cohorts, 22 achieved complete remissions (CR) and 2 achieved CRi, for a composite remission rate (CCR) of 86%. Among the 12 patients with secondary AML 8 achieved CR and 2 achieved CRi, for a CCR of 83%. The median OS for the 28 patients has not been reached (graph). The 18-month OS estimate was 65% [90% CI, 50-85%]. Conclusions: The highest dose level (3 mg) of ixazomib planned for induction in this trial has been reached safely. For consolidation there have been no serious safety issues in the first 2 cohorts with a dose up to 2.3 mg, apart from 1 DLT in the form of delayed platelet count recovery. The recommended phase 2 dose of ixazomib for induction is 3 mg. Accrual to cohort B-3 is ongoing. Notably, to date, no grade 3 or 4 neurotoxicity has been encountered. The remission rate in this older adult population with the addition of ixazomib to standard chemotherapy appears favorable. Figure Disclosures Amrein: Amgen: Research Funding; AstraZeneca: Consultancy, Research Funding; Takeda: Research Funding. Attar:Aprea Therapeutics: Current Employment. Brunner:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Forty-Seven Inc: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. Hobbs:Constellation: Honoraria, Research Funding; Novartis: Honoraria; Incyte: Research Funding; Merck: Research Funding; Bayer: Research Funding; Jazz: Honoraria; Celgene/BMS: Honoraria. Neuberg:Celgene: Research Funding; Madrigak Pharmaceuticals: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding. Fathi:Blueprint: Consultancy; Boston Biomedical: Consultancy; BMS/Celgene: Consultancy, Research Funding; Novartis: Consultancy; Kura Oncology: Consultancy; Trillium: Consultancy; Amgen: Consultancy; Seattle Genetics: Consultancy, Research Funding; Abbvie: Consultancy; Pfizer: Consultancy; Newlink Genetics: Consultancy; Forty Seven: Consultancy; Trovagene: Consultancy; Kite: Consultancy; Daiichi Sankyo: Consultancy; Astellas: Consultancy; Amphivena: Consultancy; PTC Therapeutics: Consultancy; Agios: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Jazz: Consultancy. OffLabel Disclosure: Ixazomib is FDA approved for multiple myeloma. We are using it in this trial for acute myeloid leukemia.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Justin M. Watts ◽  
Tara Lin ◽  
Eunice S. Wang ◽  
Alice S. Mims ◽  
Elizabeth H. Cull ◽  
...  

Introduction Immunotherapy offers the promise of a new paradigm for patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). CD123, the IL-3 receptor alpha-chain, represents an attractive target for antibody therapies because of its high expression on AML/MDS blasts and leukemic stem cells compared to normal hematopoietic stem and progenitor cells. APVO436, a novel bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule, depleted CD123+ cells in AML patient samples ex vivo (Godwin et al. ASH 2017), reduced leukemia engraftment in a systemic AML xenograft model (Comeau et al. AACR 2018), and transiently reduced peripheral CD123+ cells in non-human primates with minimal cytokine release and in a dose-dependent fashion (Comeau et al. AACR 2019). These data provide a basis for the clinical application of APVO436 as a treatment in AML and MDS. Here, we report preliminary data from a first-in-human dose-escalation study of APVO436 in patients with R/R AML and high-risk MDS. Study Design/Methods This ongoing Phase 1/1b study (ClinicalTrials.gov: NCT03647800) was initiated to determine the safety, immunogenicity, pharmacokinetics, pharmacodynamics, and clinical activity of APVO436 as a single agent. Major inclusion criteria were: R/R AML with no other standard treatment option available, R/R MDS with > 5% marrow blasts or any peripheral blasts and failure of a hypomethylating agent, ECOG performance status ≤ 2, life expectancy > 2 months, white blood cells ≤ 25,000 cells/mm3, creatinine ≤ 2 x upper limit of normal (ULN), INR and PTT < 1.5 x ULN and alanine aminotransferase < 3 x ULN. Patients were not restricted from treatment due to cytogenetic or mutational status. Intravenous doses of APVO436 were administered weekly for up to six 28-day cycles (24 doses) with the option to continue dosing for up to 36 total cycles (144 doses). Flat and step dosing regimens were escalated using a safety-driven modified 3 + 3 design. Pre-medication with diphenhydramine, acetaminophen, and dexamethasone was administered starting with dose 1 to mitigate infusion related reactions (IRR) and cytokine release syndrome (CRS). First doses and increasing step doses of APVO436 were infused over 20-24 hours followed by an observation period of 24 hours or more. Bone marrow biopsies were performed every other cycle with responses assessed by European Leukemia Net 2017 criteria for AML or International Working Group (IWG) 2006 criteria for MDS. Results The data cut-off for this interim analysis was July 9, 2020. Twenty-eight patients with primary R/R AML (n=19), therapy-related R/R AML (n=3), or high-risk MDS (n=6) have been enrolled and received a cumulative total of 186 doses. The number of doses received per patient ranged from 1 to 43 (mean of 6.4 doses). Most patients discontinued treatment due to progressive disease; however, blast reduction was achieved in 2 patients, with one patient with MDS maintaining a durable response for 11 cycles before progressing. APVO436 was tolerated across all dose regimens in all cohorts tested. The most common adverse events (AEs), regardless of causality, were edema (32%), diarrhea (29%), febrile neutropenia (29%), fever (25%), hypokalemia (25%), IRR (21%), CRS (18%), chills (18%), and fatigue (18%). AEs ≥ Grade 3 occurring in more than one patient were: febrile neutropenia (25%), anemia (18%), hyperglycemia (14%), decreased platelet count (11%), CRS (11%), IRR (7%), and hypertension (7%). After observing a single dose limiting toxicity (DLT) at a flat dose of 9 µg, step dosing was implemented and no DLTs have been observed thereafter. No treatment-related anti-drug antibodies (ADA) were observed. Transient serum cytokine elevations occurred after several reported IRR and CRS events, with IL-6 most consistently elevated. Conclusions Preliminary results indicate that APVO436 is tolerated in patients with R/R AML and MDS at the doses and schedules tested to date, with a manageable safety profile. Dose escalation continues and the results will be updated for this ongoing study. Disclosures Watts: BMS: Membership on an entity's Board of Directors or advisory committees; Aptevo Therapeutics: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rafael Pharma: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees. Lin:Ono Pharmaceutical: Research Funding; Pfizer: Research Funding; Abbvie: Research Funding; Bio-Path Holdings: Research Funding; Astellas Pharma: Research Funding; Aptevo: Research Funding; Celgene: Research Funding; Genetech-Roche: Research Funding; Celyad: Research Funding; Prescient Therapeutics: Research Funding; Seattle Genetics: Research Funding; Mateon Therapeutics: Research Funding; Jazz: Research Funding; Incyte: Research Funding; Gilead Sciences: Research Funding; Trovagene: Research Funding; Tolero Pharmaceuticals: Research Funding. Wang:Abbvie: Consultancy; Macrogenics: Consultancy; Astellas: Consultancy; Jazz Pharmaceuticals: Consultancy; Bristol Meyers Squibb (Celgene): Consultancy; PTC Therapeutics: Consultancy; Stemline: Speakers Bureau; Genentech: Consultancy; Pfizer: Speakers Bureau. Mims:Leukemia and Lymphoma Society: Other: Senior Medical Director for Beat AML Study; Syndax Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Kura Oncology: Membership on an entity's Board of Directors or advisory committees; Novartis: Speakers Bureau; Agios: Consultancy; Jazz Pharmaceuticals: Other: Data Safety Monitoring Board; Abbvie: Membership on an entity's Board of Directors or advisory committees. Cull:Aptevo Therapeutics: Research Funding. Patel:Agios: Consultancy; Celgene: Consultancy, Speakers Bureau; DAVA Pharmaceuticals: Honoraria; France Foundation: Honoraria. Shami:Aptevo Therapeutics: Research Funding. Walter:Aptevo Therapeutics: Research Funding. Cogle:Aptevo Therapeutics: Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Chenault:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Macpherson:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Chunyk:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. McMahan:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gross:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Stromatt:Aptevo Therapeutics: Current equity holder in publicly-traded company.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3896-3896
Author(s):  
Yehuda E. Deutsch ◽  
Robert Wilkinson ◽  
Amanda Brahim ◽  
Stephanie Boisclair ◽  
Jose Sandoval-Sus ◽  
...  

Introduction: Acute myeloid leukemia (AML) is a heterogeneous disease with varied outcomes dependent on patient cytogenetic and mutational status. Thirty percent of adults with newly diagnosed AML have a mutation in the fms-related tyrosine kinase 3 (FLT3) gene. Midostaurin is a small molecule inhibitor that acts on multiple receptor tyrosine kinases, including FLT3. The RATIFY trial showed improved overall survival (OS) and event-free survival in patients treated with daunorubicin and cytarabine (7+3) plus midostaurin (Stone et al, NEJM 2017). In this trial, a dose of daunorubicin 60 mg/m2 was administered. High dose (HD) 90 mg/m2 daunorubicin significantly improved the rate of complete remission and overall survival, including in patients with FLT3-ITD (Luskin et al, Blood 2016). HD daunorubicin has also been shown to be more effective than idarubicin in patients with FLT3-ITD AML (Lee et al, J Clin Oncol 2017). This data raises the question of whether the combination of midostaurin and HD daunorubicin would further improve outcomes of FLT3 mutated AML patients, while maintaining a tolerable safety profile. The objective of this study is to describe the safety and efficacy endpoints of FLT3 mutated AML patients treated with HD daunorubicin plus midostaurin as part of induction therapy. Methods: We retrospectively reviewed clinical and molecular data of patients at Memorial Healthcare System, Moffitt Cancer Center, and Sylvester Cancer Center with newly diagnosed FLT3 mutated AML treated from May 1st, 2017 to July 1st, 2019. Clinical data was abstracted in accordance with institutional review board approved protocol. All patients were induced with HD daunorubicin 90 mg/m2 on days 1-3, cytarabine 100 mg/m2 on days 1-7, and midostaurin 50 mg PO twice daily on days 8-21. Growth factor and antimicrobial support were used per institutional guidelines. Demographics were analyzed using descriptive statistics. OS was analyzed using Kaplan Meier method. Other efficacy outcomes were CR, CRi (assessed according to the European Leukemia Network Criteria for AML), proportion of patients needing re-induction, and proportion of patients who underwent hematopoietic stem cell transplant (HSCT). Safety outcomes were adverse events (AEs) and early (30- and 60-day) mortality. Results: Twenty-six patients were included in the final analysis. Patient characteristics are outlined in TABLE 1. All patients were FLT3 mutated, as confirmed with molecular studies. The FLT3 subtype was ITD (high) in 3 patients, ITD (low) in 16 patients, TKD in 5 patients, and both in 2 patients. Seventy-seven percent of patients achieved a CR/CRi after one induction cycle, and 96.2% attained CR after two induction cycles. Median time to ANC and platelet recovery was 28 and 26 days, respectively. One patient died during the first 60 days, due to Enterococcus sepsis. The most common non-hematological AEs were nausea (77%), diarrhea (62%), mucositis (58%), rash (54%), and increased ALT (54%). Cumulative incidence of relapse in the cohort was 28% (n=7). Four patients relapsed pre-transplant and achieved CR2 with additional therapy. All 7 of these patients had co-occurring mutations of various types. Of the 20 patients who were considered transplant eligible, 13 (65%) underwent HSCT and 4 (20%) are pending transplant. Of the 13 transplanted patients, 3 experienced relapse post-transplant. After a median follow up of 14.5 months, median OS has not been reached. Conclusion: In our multi-center experience, induction with HD daunorubicin, cytarabine, and midostaurin is clinically effective and seems to be well tolerated. Short term mortality was low and AEs were manageable, with no unexpected safety signals. Also, CR/CRi rates were higher than previously reported, suggesting that the combination of HD daunorubicin and midostaurin may improve the outcomes of patients with FLT3 mutated AML. Future analyses with larger patient samples and longer follow up are warranted to further evaluate long-term safety and efficacy for this regimen. Figure Disclosures Sandoval-Sus: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Bradley:AbbVie: Other: Advisory Board. Talati:Agios: Honoraria; Celgene: Honoraria; Pfizer: Honoraria; Astellas: Honoraria, Speakers Bureau; Daiichi-Sankyo: Honoraria; Jazz Pharmaceuticals: Honoraria, Speakers Bureau. Watts:Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees. Sallman:Abbvie: Speakers Bureau; Novartis: Speakers Bureau; Jazz: Research Funding; Incyte: Speakers Bureau; Celyad: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding, Speakers Bureau. Sweet:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Speakers Bureau; Jazz: Speakers Bureau; Incyte: Research Funding; Pfizer: Consultancy; Stemline: Consultancy; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Abbvie: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Lancet:Daiichi Sankyo: Consultancy, Other: fees for non-CME/CE services ; Agios, Biopath, Biosight, Boehringer Inglheim, Celator, Celgene, Janssen, Jazz Pharmaceuticals, Karyopharm, Novartis: Consultancy; Pfizer: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1391-1391 ◽  
Author(s):  
Naveen Pemmaraju ◽  
Uma Borate ◽  
Melhem Solh ◽  
Gautam M. Borthakur ◽  
Amy E. DeZern ◽  
...  

Background: PLX2853 is an orally available, non-benzodiazepine BET (bromodomain and extraterminal domain) inhibitor that exhibits low nanomolar potency and a modest preference for binding to the second bromodomain (BD2) of the BET proteins. By regulating genes (e.g. MYC and BCL2) critical to leukemic cell growth and survival, PLX2853 demonstrated broad anti-leukemic activity both as a single agent and in combination with other therapeutic agents in preclinical models. The pharmacokinetic (PK) profile in solid tumor patients revealed a short half-life (< 3 hour) enabling high peak plasma concentrations and nearly complete elimination from the plasma 9 hour post dose. Since strong and prolonged suppression of BET proteins have often untoward effects in normal tissues, the PLX2853 PK profile is hypothesized to be associated with improved tolerability by allowing transient target engagement followed by time for recovery after daily dosing. Methods: We are conducting an open-label, Phase 1b (Ph1b) study of PLX2853 as a single oral agent administered daily in adult patients with relapsed or refractory acute myeloid leukemia (AML) or high risk myelodysplastic syndrome (MDS) using a modified continuous reassessment model (mCRM) with escalation with overdose control (EWOC) to determine the recommended phase 2 dose (RP2D). Up to 36 patients are expected to enroll. The dosing cycle and dose limiting toxicity window (DLT) is 21 days. Primary objectives include safety and PK. Secondary objectives include measures of preliminary efficacy, and exploratory objectives include pharmacodynamics (PD) biomarker assessments in various tissues. Enrollment through Cohort 2 (40 mg QD) is ongoing as of July 2019. Results: Five subjects with relapsed or refractory AML (median age 65 years) have received PLX2853 in escalating doses from 20 to 40 mg QD. Among these first 5 patients treated, the most common treatment emergent adverse events (AEs) regardless of causality in > 1 patient: decreased appetite (n=3), nausea (n=2), diarrhea (n=2), peripheral edema (n=2), cough (n=2), oropharyngeal pain (n=2), blood bilirubin increase (n=2), anemia (n=2), febrile neutropenia (n=2), fatigue (n=2), bacteremia (n=2), headache (n=2), dyspnea (n=2), and hypertension (n=2). Most were grade (G) 1-2. Treatment emergent AEs > G2 in > 1 patient included: anemia (n=2), febrile neutropenia (n=2) and hypertension (n=2). No treatment-related serious AEs or DLTs have been observed. Following a 20 mg daily dose of PLX2853, median time to reach maximal plasma concentrations (Tmax) is 1 hour and the absorption half-life (T1/2) is < 3 hours. Conclusions: In an ongoing Ph1b study, PLX2853 has now completed its first dosing cohort for patients with relapsed or refractory AML or high risk MDS, and no DLT has been observed yet. As dose escalation continues, PK, PD, preliminary safety and efficacy data will be assessed further to determine the clinical significance of target engagement. This clinical trial is registered at clinicaltrials.gov: NCT03787498. Disclosures Pemmaraju: mustangbio: Consultancy, Research Funding; abbvie: Consultancy, Honoraria, Research Funding; samus: Research Funding; celgene: Consultancy, Honoraria; cellectis: Research Funding; Stemline Therapeutics: Consultancy, Honoraria, Research Funding; novartis: Consultancy, Research Funding; plexxikon: Research Funding; Daiichi-Sankyo: Research Funding; sagerstrong: Research Funding; affymetrix: Research Funding; incyte: Consultancy, Research Funding. Borate:Novartis: Consultancy; Takeda: Consultancy; Pfizer: Consultancy; Daiichi Sankyo: Consultancy; AbbVie: Consultancy. Solh:ADC Therapeutics: Research Funding; Amgen: Speakers Bureau; Celgene: Speakers Bureau. Borthakur:Polaris: Research Funding; Arvinas: Research Funding; Agensys: Research Funding; Tetralogic Pharmaceuticals: Research Funding; Cantargia AB: Research Funding; Argenx: Membership on an entity's Board of Directors or advisory committees; BioLine Rx: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncoceutics, Inc.: Research Funding; Eli Lilly and Co.: Research Funding; BMS: Research Funding; AstraZeneca: Research Funding; Bayer Healthcare AG: Research Funding; Novartis: Research Funding; FTC Therapeutics: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Strategia Therapeutics: Research Funding; Cyclacel: Research Funding; Xbiotech USA: Research Funding; Eisai: Research Funding; Merck: Research Funding; BioTheryX: Membership on an entity's Board of Directors or advisory committees; Oncoceutics: Research Funding; NKarta: Consultancy; Incyte: Research Funding; Janssen: Research Funding; GSK: Research Funding; PTC Therapeutics: Consultancy. DeZern:Astex Pharmaceuticals, Inc.: Consultancy; Celgene: Consultancy. Zhang:Plexxikon Inc.: Employment. Powell:Plexxikon Inc.: Employment. Severson:Plexxikon Inc.: Employment. Inokuchi:Plexxikon Inc.: Employment. Matusow:Plexxikon Inc.: Employment. Halladay:Plexxikon Inc.: Employment. Hsu:Daiichi Sankyo, Inc.: Employment. Watkins:Plexxikon Inc.: Employment. Walling:Myovant Sciences: Consultancy; Nurix: Consultancy; Aduro Biotech: Consultancy; Plexxikon: Consultancy; CytomyX: Consultancy; Flag Therapeutics: Consultancy; Aminex: Consultancy; Immunext: Consultancy; SensenBio: Consultancy; Harpoon Therapeutics: Consultancy. Tsiatis:Plexxikon Inc.: Employment. Mims:PTC Therapeutics: Membership on an entity's Board of Directors or advisory committees; Astellas Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Agios Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 301-301 ◽  
Author(s):  
Marc S Raab ◽  
Enrique M Ocio ◽  
Sheeba K. Thomas ◽  
Andreas Günther ◽  
Yeow-Tee Goh ◽  
...  

Abstract Background: LGH447 is a novel, specific pan-Pim kinase inhibitor in development for the treatment of patients with multiple myeloma (MM) and other hematologic malignancies. The PIM (Provirus Integration site for Moloney leukemia) kinase gene family encodes 3 serine/threonine protein kinases that have roles in cell cycle progression and survival. In human disease, elevated levels of Pim1 and Pim2 are associated with hematologic malignancies, with MM showing the highest level of Pim2 expression. In preclinical studies, a majority of MM cell lines proved sensitive in vitro to LGH447-mediated Pim inhibition, exhibiting a dose-dependent decrease in cell proliferation. LGH447 demonstrated significant tumor growth inhibition in xenograft mouse models of MM as compared with control animals, supporting the clinical development of LGH447 in MM patients. Methods: Patients with relapsed/refractory MM for whom no effective treatment options exist were enrolled on this first-in-human, multicenter, open-label phase 1 dose-escalation study (CLGH447X2101). Escalating doses of single-agent LGH447 were administered orally on a continuous daily dosing schedule. Treatment continued until disease progression, unacceptable toxicity, consent withdrawal, or death. The primary objective was to estimate the maximum tolerated dose (MTD) of LGH447 administered as a single agent, orally, once daily. Secondary objectives included assessing the safety, tolerability, preliminary anti-myeloma activity, and pharmacokinetics of LGH447. Dose escalation followed a Bayesian logistic regression model based on dose-limiting toxicities (DLTs) occurring in cycle 1. Adverse events (AEs) were graded according to NCI-CTCAE v4.03. Efficacy assessments were made by investigators according to International Myeloma Working Group (IMWG) uniform response criteria with modifications. Results:At the data cutoff, 54 patients have been treated at the following doses: 70 mg (n = 5), 150 mg (n = 6), 200 mg (n = 6), 250 mg (n = 7), 300 mg (n = 4), 350 mg (n=10), 500 mg (n=10), 700 mg (n=6), with the MTD determined to be 500 mg once daily. Median age was 65 years (range, 41-87 years). Most patients (92.6%) presented with baseline Eastern Cooperative Oncology Group performance status 0-1. Patients were heavily pretreated with a median of 4 prior lines of therapy (range, 1-16). 81.5% had received prior proteasome inhibitor therapy, 83.3% had received prior immunomodulatory therapy (70.4% lenalidomide and 48.1% thalidomide), 68.5% were treated with both proteasome inhibitor and immunomodulatory therapies, and 87.0% had received prior stem cell transplant. Seventeen patients are ongoing at doses between 250-700 mg, with a median duration of exposure of 10.6 weeks (range, 0.1-56.1 weeks), and 37 patients discontinued (disease progression [n = 29], AEs [n = 4], withdrawal of consent [n = 4]). There were 8 DLTs, consisting of four grade 3/4 thrombocytopenia (1 each at 200, 250, 350, 500 mg dose levels), two grade 3 fatigue (1 each at 500 and 700 mg dose levels), one grade 3 hypophosphatemia (300 mg), and one episode of vaso-vagal syncope (700 mg). This last event was the only reported unexpected serious AE that was suspected to be due to LGH447 treatment. The majority of AEs regardless of study drug relationship were grade 1/2. Most common grade 3/4 AEs were thrombocytopenia (18.5%), anemia (18.5%), neutropenia (13%), and fatigue (11.1%). No deaths have occurred on study. Forty-eight individuals (70-500 mg) were evaluable for disease response assessments. Evidence of single agent activity was noted at doses ≥ 150 mg, including 1 VGPR at 200 mg (exposure duration > 55 weeks) and 4 PRs noted at doses ranging from 150-500 mg (respective exposure durations of 32, 29, 24, and 21 weeks). Five additional patients achieved MR, resulting in a clinical benefit rate (≥ MR) of 20.8%, and 23 patients were noted to have SD, resulting in a remarkable disease control rate (≥ SD) of 68.8%. In addition, of those patients with SD, 8 had exposure durations for > 20 weeks. Conclusions:In heavily treated patients with relapsed/refractory MM, LGH447 was generally well tolerated and exhibited evidence of durable single-agent efficacy in multiple patients, with the best response being a VGPR. These findings validate Pim kinase inhibition as a promising therapeutic rationale in MM patients and support further clinical development in patients. Disclosures Ocio: Novartis: Honoraria. Thomas:Novartis: Research Funding; Celgene: Consultancy, Research Funding; Millennium: Research Funding; Idera Pharmaceuticals: Research Funding; Immunomedics: Research Funding. Günther:Novartis: Consultancy, Research Funding. Goh:Gilead Sciences: Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees; Jannsen Pharmaceuticals: Honoraria, Research Funding, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Lebovic:Celgene: Consultancy, Research Funding, Speakers Bureau; Onyx: Research Funding, Speakers Bureau; Millennium: Consultancy. Jakubowiak:Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; SkylineDx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Onyx: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Song:Novartis: Employment. Xiang:Novartis: Employment. Patel:Novartis: Employment. Vanasse:Novartis: Employment, Equity Ownership. Kumar:Celgene: Consultancy, Research Funding; Millennium: Consultancy, Research Funding; Onyx: Consultancy, Research Funding; Novartis: Research Funding; Array: Research Funding; Cephalon: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2550-2550
Author(s):  
Daniel J. DeAngelo ◽  
Amir T. Fathi ◽  
Lillian Werner ◽  
David Avigan ◽  
Katarina Luptakova ◽  
...  

Abstract Background: The prognosis for patients with relapsed acute myeloid leukemia (AML) remains extremely poor. Standard reinduction regimens, such as mitoxantrone, etoposide, and ara-C (MEC), have been associated with complete remission rates in the 23 to 30% range. Lenalidomide (Len), an immunomodulatory drug, has efficacy in relapsed AML and has been shown to augment the effects of standard chemotherapies (anthracyclines and ara-C) in preclinical AML studies. These data prompted the current phase 1 study of Len in combination with MEC in pts with relapsed AML. Methods: The trial included pts (≥ 18 yrs) with relapsed or refractory AML. The primary objective was determination of the maximum tolerated dose (MTD) of Len when given in combination with MEC. Secondary objectives included safety, efficacy and time to count recovery. The study examined escalating doses (5-10 mg) of Len given daily for the first 14 days in combination with standard MEC doses of mitoxantrone (8 mg/m2/d), etoposide (100 mg/m2/d), and ara-C (1000 mg/m2/d) on days 4 through 8. Due to observations of prolonged count recovery, the Len dosing schedule was amended by reducing the duration of treatment to 10 days starting on Day 1. The dose of len was then re-escalated starting at 5 mg/d (5-10-25-50). A standard 3+3 dose-escalation design was used. Dose limiting toxicity was defined as Grade IV rash or Grade IV neuropathy during the first 28 day period, or delayed neutrophil (ANC <500/mL) or platelet (platelet count <20,000/mL) recovery beyond Day 45 after start of re-induction chemotherapy in the absence of persistent AML. Pts achieving a complete remission (CR) or complete remission with incomplete blood count recovery (CRi) went on to consolidation chemotherapy or hematopoietic stem cell transplantation at the discretion of the treating physician. Results: A total of 33 pts have been enrolled in the study (25 escalation phase [5 mg days 1-14, n=3; 10 mg days 1-14, n=6; 5 mg days 1-10, n=3; 10 mg days 1-10, n=3; 25 mg days 1-10, n=3; 50 mg days 1-10, n=6] and 8 expansion phase pts at 50 mg/d days 1-10). One patient was enrolled, found to be ineligible, and not treated. The median age was 62 years (range, 28-74), 45% were male and the median number of prior treatments was 2. Three dose limiting toxicities, all due to delayed count recovery past day 45, were observed in the escalation phase (n = 2/6 pts in the 10 mg/d day1-14 dose group and n = 1/6 in the in the 50 mg/d day1-10 dose group). The RP2D of Len in combination with MEC was 50 mg/d on days 1-10. Among the 14 pts treated at the RP2D, common grade 3/4 adverse events (AEs) regardless of causality were mainly hematologic including febrile neutropenia (36%). Overall 4 pts including none treated at the RP2D died during treatment. All of the on-treatment deaths, (grade 5 sepsis, n =1; infection, n=1; respiratory failure, n =2), were determined to be unrelated to the study drug. 32 pts were evaluable for response (one pt too early for assessment) with 12 pts achieving a CR and 1 pt a CRi with a total CR/CRi rate of 41% (95% CI: 24-59%). The median time to a neutrophil count of 1500/mL was 30 days and to a platelet count of 100,000/mL was 22 days. Conclusions: Len in combination with MEC re-induction chemotherapy for pts with relapsed or refractory AML was generally well tolerated and associated with an improved response rate as compared to historical controls. The safety profile was consistent with reported events in other MEC chemotherapy trials. Overall, these data suggest further exploration of high-dose Len in combination with MEC. Disclosures DeAngelo: Celgene: Consultancy; Agios: Consultancy; Incyte: Consultancy; Amgen: Consultancy; Pfizer: Consultancy; Bristol Myers Squibb: Consultancy; Ariad: Consultancy; Novartis: Consultancy. Off Label Use: lenalidomide in AML. Fathi:Takeda Pharmaceuticals International Co.: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; Exelexis: Research Funding; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Consultancy. Steensma:Incyte: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Onconova: Consultancy. Attar:Agios: Employment. Stone:Abbvie: Consultancy; Amgen: Consultancy; Agios: Consultancy; Celator: Consultancy; Merck: Consultancy; Karyopharm: Consultancy; Novartis: Research Funding; Celgene: Consultancy; Sunesis: Consultancy, Other: DSMB for clinical trial; Roche/Genetech: Consultancy; Pfizer: Consultancy; AROG: Consultancy; Juno: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1637-1637 ◽  
Author(s):  
Mareike Rasche ◽  
Beate Lerius ◽  
Ursula Creutzig ◽  
Martin Zimmermann ◽  
C. Michel Zwaan ◽  
...  

Abstract BACKGROUND: Long-term survival in pediatric acute myeloid leukemia (AML) improved remarkably during the last decades. However, children with refractory disease or relapsed AML still suffer from exceedingly poor outcome, especially those who relapse within one year of diagnosis with very limited treatment options. Gemtuzumab ozogamicin (GO) is an anti-CD33 antibody linked to calicheamicin, a potent cytotoxic agent. Developed for targeted treatment of CD33-positive AML, studies in adults showed its efficacy in relapsed and refractory AML. We performed this retrospective analysis of patients with highly advanced pediatric AML, receiving GO as compassionate use. PATIENTS AND METHOD: In total, 96 children <18 years diagnosed from 1995 to 2014 with multiple relapsed or refractory AML received GO as compassionate use. Eighty-eight patients had sufficient data available for this retrospective analysis, evaluation of adverse effects during first cycle of GO was based on medical reports of 83 patients. Sixty-one patients were treated in refractory disease or early first relapse, but also including 7 patients with 2 relapses within the first year after diagnosis. Nine patients were in 2nd relapse (>1year from diagnosis) and one patient in 3rdrelapse, four children had AML as secondary malignancy. Fourteen children have been already transplanted once, one child twice before GO therapy. Fourty-seven children received monotherapy with GO, 35 children were treated combined with cytarabine and 3 children received other combinations with other agents (3 unknown). Fifty-three patients received one cycle, 34 received 2 cycles of GO, however one patient received 4 cycles of monotherapy. Of note, eight patients have been previously reported elsewhere (Zwaan et al., Br J Haematol. 2010). Time of database lock was 07/2016 with a median follow-up of 9.8 years for the surviving patients. RESULTS: Safety profile was comparable to other pediatric studies. Adverse effects during first cycle of treatment consisted mostly of fever in neutropenia (n=49), less frequently infections (n=9) or allergic reactions (n=18). A few patients reported about mild gastrointestinal symptoms, which was not clearly related to GO due to combination therapy. Two patients suffered from sepsis. Veno-occlusive disease (VOD) of the liver occurred in three patients, one of those had a previous VOD, but all of them have been treated successfully with defibrotide. No lethal event was observed during treatment with GO. One patient developed a VOD during subsequent transplantation despite of prophylactic use of defibrotide. Sixty patients were evaluable for response assessment of the bone marrow. Twenty-eight children showed a response with a blast reduction to 5% or less in the bone marrow samples after treatment (46%). Fourteen out of these patients, received GO combined with cytarabine, 12 patients had monotherapy, and two other combinations. Subsequently, 53 children proceeded to stem cell transplantation (SCT) (one patient unknown). Of note, 13 out of those, received further chemotherapy before HSCT was performed. In details, 47 patients proceeded to first SCT, whereas 5 patients received 2ndSCT (one unknown). Time to transplantation varied (<3 weeks, n=14; 3 to 6 weeks, n=28; >6 weeks, n=11 patients [median time to transplantation after GO: 30 days]). The probability of 4-year overall survival after treatment with GO of all patients (n=88) was 21±4%. In patients treated with monotherapy it was 18±6%. Eighteen patients of this cohort are still alive at time of database lock. CONCLUSION: To our knowledge, this analysis is the largest pediatric cohort of patients, treated with GO in a very advanced disease. The results of this retrospective trial indicate efficacy of GO, while having an acceptable toxicity profile, even in heavily pretreated patients. It can induce blast reduction and even survival in patients, who have no further conventional treatment options. Further randomized studies are necessary to learn more about efficacy and side effects in a relapse setting, especially for therapeutic implications in future. Disclosures Rasche: Jazz Pharma: Other: Travel accomodation. Zwaan:Pfizer: Research Funding; Pfizer: Consultancy. Reinhardt:Pfizer: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Boehringer Ingelheim: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Jazz Pharma: Other: Travel Accomodation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4433-4433
Author(s):  
Sandrine Niyongere ◽  
Vu H. Duong ◽  
Dominique R Bollino ◽  
Rena G. Lapidus ◽  
Erin T. Strovel ◽  
...  

Abstract Background: Despite new therapeutic advances, acute myeloid leukemia (AML) still has poor outcomes, especially in patients with relapsed or refractory (R/R) disease with complex karyotype (CK) and/or TP53 mutation. Venetoclax (Ven), an oral BCL-2 inhibitor, in combination with DNA methyltransferase inhibitors (DNMTIs) has been approved by the FDA for treatment of newly diagnosed AML in adults who are unfit for intensive therapy with encouraging results, but the combination has been found to be less effective in patients with R/R AML. AML cells have been shown to be sensitive to extracellular glutamine depletion or manipulation of intracellular glutamine metabolism. Asparaginase converts asparagine and glutamine to aspartate and glutamate, decreasing plasma concentrations of asparagine and glutamine, with anti-leukemia activity. We previously published that crisantaspase produced complete plasma glutamine depletion in patients without dose-limiting toxicities and was associated with anti-leukemic activity in R/R AML (Emadi et al. Cancer Chemother Pharmacol 2018). In preclinical studies, we found that Pegcrisantaspase (PegC), a long-acting crisantaspase, not only had potent single-agent anti-AML activity, but also synergized with Ven in CK-AML cell lines and primary cells in vitro and in vivo (Emadi et al. Leukemia 2021). Ven-PegC targets the mTOR-eIF4E-driven ribosomal translational protein synthesis apparatus in AML. With no standardized treatment and poor outcomes for R/R AML, there is an unmet need for effective treatment options. Trial Design: We present an ongoing, non-randomized, open-label Phase 1 clinical trial evaluating Ven administered orally daily in combination with PegC administered intravenously every 14 days in 28-day treatment cycles in adults patients with R/R AML. The trial consists of two phases: dose escalation (four cohorts) and dose expansion at the final recommended phase 2 doses (RP2Ds). Adult patients with a pathologically confirmed diagnosis of AML whose disease has relapsed or is refractory to at least one line of AML therapy and with adequate organ function and no prior history of pancreatitis or ≥ Grade 3 thrombohemorrhagic events are eligible for this trial. All patients with FLT3, IDH1 or IDH2 mutation must have received at least one line of therapy with an available FLT3/IDH1/IDH2 inhibitor to be eligible for this trial. The study will include CK-AML and TP53-mutated AML. The primary objectives of the trial are to evaluate the safety and tolerability of Ven-PegC and estimate the maximum tolerated doses (MTDs) and/or biologically active doses (e.g. RP2D) of Ven-PegC in patients with R/R AML. The primary endpoints of the trial are incidences of regimen-limiting toxicities (RLTs) and treatment-emergent adverse events (TEAEs). The secondary endpoints include the rates of complete remission (CR) and composite complete remission (CR+CRh+CRi), event-free survival, overall survival, the rate of conversion from transfusion dependence to transfusion independence, and achievement of MRD &lt;0.02% within 2 cycles of treatment with Ven-PegC. If a patient does not achieve at least hematologic improvement within 3 cycles of treatment, the patient will be taken off study. Responding patients can continue with the assigned doses until progression. The study uses a 3+3 design. Up to 24 subjects will be enrolled during dose escalation (in case exactly one RLT occurs in the first three patients enrolled at each of the four dose levels). Another 10 subjects will be enrolled at the final RP2D in an expansion cohort, for a total of 16 patients treated at the RP2D. The study is currently open at the University of Maryland Greenebaum Comprehensive Cancer Center. ClinicalTrials.gov Identifier is NCT04666649. Figure 1 Figure 1. Disclosures Emadi: Jazz Pharmaceuticals: Research Funding; NewLink Genetics: Research Funding; Servier: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Servier: Membership on an entity's Board of Directors or advisory committees; Secura Bio.: Consultancy; KinaRx, Inc.: Membership on an entity's Board of Directors or advisory committees, Other: Co-founder.


Sign in / Sign up

Export Citation Format

Share Document