scholarly journals Requirement for antiapoptotic MCL-1 during early erythropoiesis

Blood ◽  
2021 ◽  
Vol 137 (14) ◽  
pp. 1945-1958
Author(s):  
Meghan E. Turnis ◽  
Ewa Kaminska ◽  
Kaitlyn H. Smith ◽  
Brittany J. Kartchner ◽  
Peter Vogel ◽  
...  

Abstract Although BCL-xL is critical to the survival of mature erythrocytes, it is still unclear whether other antiapoptotic molecules mediate survival during earlier stages of erythropoiesis. Here, we demonstrate that erythroid-specific Mcl1 deletion results in embryonic lethality beyond embryonic day 13.5 as a result of severe anemia caused by a lack of mature red blood cells (RBCs). Mcl1-deleted embryos exhibit stunted growth, ischemic necrosis, and decreased RBCs in the blood. Furthermore, we demonstrate that MCL-1 is only required during early definitive erythropoiesis; during later stages, developing erythrocytes become MCL-1 independent and upregulate the expression of BCL-xL. Functionally, MCL-1 relies upon its ability to prevent apoptosis to promote erythroid development because codeletion of the proapoptotic effectors Bax and Bak can overcome the requirement for MCL-1 expression. Furthermore, ectopic expression of human BCL2 in erythroid progenitors can compensate for Mcl1 deletion, indicating redundancy between these 2 antiapoptotic family members. These data clearly demonstrate a requirement for MCL-1 in promoting survival of early erythroid progenitors.

2020 ◽  
Author(s):  
Meghan E. Turnis ◽  
Ewa Kaminska ◽  
Kaitlyn H. Smith ◽  
Brittany J. Kartchner ◽  
Peter Vogel ◽  
...  

AbstractMature erythrocytes are under tight homeostatic control with the need for constant replacement from progenitors to replace damaged or obsolete red blood cells (RBCs). This process is regulated largely by erythropoietin (Epo) which promotes the survival of erythroid progenitors and facilitates their differentiation and proliferation. Ablation of Bcl2l1 (which encodes BCL-xL) results in embryonic lethality with a lack of mature erythrocytes but does not perturb erythroid progenitors. Similarly, conditional Bcl2l1-deletion results in severe anemia with the death of late erythroid progenitors and induction of extramedullary erythropoiesis. While BCL-xL is critical to the survival of mature erythrocytes, it is still unclear whether other anti-apoptotic molecules mediate survival during earlier stages of erythropoiesis. Here, we demonstrate that erythroid-specific Mcl1-deletion results in embryonic lethality due to severe anemia caused by a lack of mature RBCs. Mcl1-deleted embryos exhibit stunted growth, ischemic necrosis, and decreased RBCs in the blood. Furthermore, we demonstrate that the dependence on MCL-1 is only during early erythropoiesis, whereas during later stages the cells become MCL-1-independent and upregulate the expression of BCL-xL. Functionally, MCL-1 relies upon its ability to prevent apoptosis to promote erythroid development since co-deletion of the pro-apoptotic effectors Bax and Bak can overcome the requirement for MCL-1 expression. Furthermore, ectopic expression of human BCL2 in erythroid progenitors can compensate for Mcl1 deletion, indicating redundancy between these two anti-apoptotic family members. These data clearly demonstrate a requirement for MCL-1 in promoting survival of early erythroid progenitors.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 428-428
Author(s):  
Federica Quattrone ◽  
Riem Gawish ◽  
Rui Martins ◽  
Anna-Dorothea Gorki ◽  
Martin Watzenboeck ◽  
...  

Red blood cells (RBCs) comprise 84% of our body's cells and have the essential function of transporting oxygen from the lungs to all organs. The daily production rate of RBCs is enormous and the pathways mediating this process are quite complex. One important aspect hereby is the synthesis of hemoglobin and heme, the iron-containing prosthetic group that enables hemoglobin to bind oxygen.RBCs differentiate within the erythropoietic niche, which consists of erythroid precursors and specialized macrophages. These so-called nursing macrophages provide nutrients and iron, a fundamental component of heme. The precise mechanisms of heme transport within a cell and the potential of heme transfer between cells is not completely understood. To get insights into heme transport we took advantage of the cytotoxic capacity of heme and performed a CRISPR-Cas9 loss of function screen by focusing on SLC transporters. We identified SLC20A1 as an essential protein mediating heme toxicity and verified that intracellular heme levels as well as heme-induced downstream gene inductions were reduced in the absence of Slc20a1. Based on these evidences we hypothesized that SLC20A1 might be involved in the trafficking of heme, possibly important during erythropoiesis, since mice lacking Slc20a1 exhibit embryonic lethality due to liver apoptosis and anemia (Beck L. et al., PLoS One 2013). To test the biological role of Slc20a1 in adult mice, we conditionally deleted Slc20a1 using tamoxifen in ERT2-Cre Slc20a1fl animals and observed the spontaneous development of severe anemia and splenomegaly within 2 weeks after tamoxifen administration. We further discovered that the anemia-related expansion of red pulp macrophages (RPM) consisted predominantly of non-recombined wild type cells, whereas successfully recombined (Slc20a1 deficient) cells seemed stuck in the monocytic stage. These data suggest that Slc20a1 might be involved in the differentiation and maturation of monocytes to RPMs. When we performed a specific Slc20a1 deletion in nursing macrophages (CD169 Cre), mice neither showed signs of anemia, nor experienced impaired recovery upon anemia induction following phlebotomy or induction of hemolysis. However, deleting Sc20a1 specifically in the erythroid compartment using Slc20a1fl mice crossed to erythropoietin receptor-cre (EpoR-Cre) animals, resulted in embryonic lethality. Mice died around E12.5 due to severe anemia. Analysis of E11.5 animals disclosed erythroid precursors to be arrested in the pro-erythroblast stage.These data suggest that SLC20A1 is a protein involved in heme-mediated toxicity and possibly in the trafficking of heme with strong impact on fetal and adult erythropoiesis. Disclosures No relevant conflicts of interest to declare.


1976 ◽  
Vol 54 (5) ◽  
pp. 634-643 ◽  
Author(s):  
Sherwin S. Desser ◽  
Andrée K. Ryckman

The development of Leucocytozoon simondi was studied in naturally and experimentally infected Branta canadensis maxima, Branta canadensis interior, and Anser domesticus. The number of mature round gametocytes in the peripheral blood of the Canada geese increased between days 9 and 15 post exposure (PE) and decreased rapidly thereafter. Mean peak parasitemias recorded on day 13 PE were (per 1000 red blood cells (RBC)): 8 gametocytes in B.c. maxima, 16 gametocytes in B.c. interior, and 17 gametocytes in A. domesticus. About 3 weeks PE, gametocytes disappeared from the peripheral circulation and were not observed again during the autumn, winter, and spring in birds kept in the laboratory.Haematocrit determinations in the Canada geese revealed a low fluctuating anemia during the primary infection which subsided by day 21 PE. A more severe anemia was recorded in A. domesticus with a mean low packed RBC value of about 18% on day 11 PE. Immature and mature hepatic schizonts were observed in the Canada and domestic geese between days 3 and 8 PE. Neither megaloschizonts nor elongate gametocytes were seen. Clinical signs, pathology, and mortality commonly associated with L. simondi infection in ducks were not observed. Hypotheses are advanced to explain reports of severe pathogenesis associated with L. simondi infections in Canada geese in other localities.


1926 ◽  
Vol 43 (1) ◽  
pp. 111-106
Author(s):  
Hobart A. Reimann ◽  
Louis A. Julianelle

A study has been made of the variation in number of the blood platelets, and the red and white blood cells of white mice injected with pneumococcus extract. The blood platelets were greatly diminished after the injection, the greatest decrease usually occurring after 24 hours. Purpuric lesions usually developed when the number of blood platelets became less than 500,000 per c.mm. Regeneration of the platelets was accomplished by the 4th to the 9th day but there was an overregeneration and the return to normal did not take place until 2 weeks had elapsed. The red cells were also greatly reduced in number, but the rate of their destruction and regeneration was somewhat slower than that of the platelets. The leucocytes were slightly if at all influenced by the pneumococcus extract. Pneumococcus extracts were shown to be thrombolytic and hemolytic. Heat destroyed the activity of both the lysins in vitro. Heated extract produced purpura in mice but did not cause a severe anemia. Extracts adsorbed with either blood platelets or red blood cells showed a marked diminution in their thrombolytic and hemolytic activity in vitro. Such extracts, however, produced purpura as well as severe anemia and thrombopenia in mice.


JAMA ◽  
2015 ◽  
Vol 314 (23) ◽  
pp. 2514 ◽  
Author(s):  
Aggrey Dhabangi ◽  
Brenda Ainomugisha ◽  
Christine Cserti-Gazdewich ◽  
Henry Ddungu ◽  
Dorothy Kyeyune ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2224-2224
Author(s):  
Benjamin J. Van Handel ◽  
Sacha Prashad ◽  
Andy Huang ◽  
Eija Hamalainen ◽  
Angela Chen ◽  
...  

Abstract Embryonic hematopoiesis occurs in multiple anatomic sites and is generally divided into two waves, primitive and definitive. The primitive wave produces mostly red blood cells in the yolk sac, while the definitive wave generates hematopoietic stem cells (HSCs) that provide lifelong blood homeostasis. Definitive erythropoiesis, occurring first in the fetal liver and eventually the bone marrow, is an orchestrated process in which erythroblasts cluster around a central macrophage. These functional units, termed erythroblast islands, facilitate the maturation of nucleated erythroblasts to enucleated erythrocytes. It has long been thought that primitive red cells maintain their nucleus until undergoing apoptosis; however, the enucleation of primitive erythroblasts has been recently documented in mice, although the site at which this occurs is unknown. We have recently identified the placenta as a major hematopoietic organ that promotes the development of HSCs in mice; preliminary data suggests that the first trimester human placenta also supports definitive hematopoiesis. Surprisingly, our most recent findings indicate a novel, unexpected role for the human placenta in primitive hematopoiesis: the promotion of terminal maturation of primitive erythroblasts. Analysis of placental sections revealed a striking tendency of primitive red blood cells to extravasate from blood vessels in the villi and migrate out into the stroma. Furthermore, once out in the stroma, primitive erythroblasts mature: they lose expression of CD43 and enucleate. The finding that human primitive red blood cells enucleate is undocumented; interestingly, the developmental timing of erythroblast enucleation in humans parallels that in mice. At three weeks, nascent vessels in the placenta are empty, but starting at about 4 weeks, placental circulation begins and fills these vessels with large, nucleated primitive erythroblasts generated in the yolk sac. The migration of primitive erythroblasts into the stroma occurs between 4.5 and 7 weeks. Enucleation mirrors this process, with a large enrichment of enucleated cells in the stroma versus in the vessels at early developmental ages, suggesting that primitive erythroblasts enucleate in the placental stroma. This phenomenon is restricted to placental villi and does not occur in the chorionic plate. Strikingly, extravasated erythroblasts are often in close proximity to placental macrophages, reminiscent of the macrophage-erythroblast associations seen in fetal liver and bone marrow erythropoiesis at later developmental stages. Fetal liver-derived definitive erythrocytes enter circulation at around 8 weeks. After 9–10 weeks, most red blood cells can be observed in vessels, and almost all are enucleated. The concerted processes of extravasation and maturation of primitive erythroblasts in placental stroma nominate the placenta as an important site in primitive hematopoiesis. Furthermore, the association between placental macrophages and primitive erythroblasts suggests that primitive and definitive erythropoiesis share common mechanisms of terminal maturation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1988-1988
Author(s):  
Jadwiga Gasiorek ◽  
Gregory Chevillard ◽  
Zaynab Nouhi ◽  
Volker Blank

Abstract Abstract 1988 Poster Board I-1010 The NF-E2 transcription factor is a heterodimer composed of a large hematopoietic-specific subunit called p45 and widely expressed 18 to 20-kDa small Maf subunits. In MEL (mouse erythroleukemia) cells, a model of erythroid differentiatin, the absence of p45 is inhibiting chemically induced differentiation, including induction of globin genes. In vivo, p45 knockout mice were reported to show splenomegaly, severe thrompocytopenia and mild erythroid abnormalities. Most of the mice die shortly after birth due to haemorrhages. The animals that survive display increased bone, especially in bony sites of hematopoiesis. We confirmed that femurs of p45 deficient mice are filled with bone, thus limiting the space for cells. Hence, we observed a decrease in the number of hematopoietic cells in the bone marrow of 3 months old mice. In order to analyze erythroid progenitor populations we performed flow cytometry using the markers Ter119 and CD71. We found that p45 deficient mice have an increased proportion of early erythroid progenitors (proerythroblasts) and a decreased proportion of late stage differentiated red blood cells (orthochromatic erythroblasts and reticulocytes) in the spleen, when compared to wild-type mice. We showed that the liver of p45 knockout adult mice is also becoming a site of red blood cell production. The use of secondary sites, such as the spleen and liver, suggests stress erythropoiesis, likely compensating for the decreased production of red blood cells in bone marrow. In accordance with those observations, we observed about 2 fold increased levels of erythropoietin in the serum of p45 knockout mice.Overall, our data suggest that p45 NF-E2 is required for proper functioning of the erythroid compartment in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3162-3162
Author(s):  
Kyle Miller ◽  
Michael Silvey ◽  
Derek Logsdon ◽  
Frederick Balch ◽  
Ndona Nsumu ◽  
...  

Abstract Abstract 3162 The Xla (X-linked anemia) mutant mouse was generated by N-ethyl-N-nitrosourea (ENU) mutagenesis and results in a severe and transient neonatal anemia. Xla/+ females exhibit severe anemia with 50% the level of red blood cell number, hematocrit and hemoglobin. Male Xla mice die in utero at 10.5 days gestation. The neonatal anemia observed in Xla/+ female pups is resolved by weaning age at 3 weeks by which time the mice present with a normal hematological phenotype. It is unknown how the neonatal anemia in Xla/+ females is alleviated. Previously, we mapped the Xla locus to the proximal end of the X chromosome near candidate gene Gata1 which showed no change in the coding sequence of GATA1 protein. Now we report the identification of a Gata1 mutation in Xla mice that results in an mRNA splicing defect. A nucleotide change (G to A) was identified 5 base pairs downstream of Exon 1E in intron 1 of the Xla Gata1 gene and results in the lack of incorporation of Exon 1E in the Gata1 mRNA expressed from the mutant locus. Therefore, in some erythroid lineage cells in Xla/+ mice, the normal 1E exon of Gata1 mRNA is replaced by Exon 1Eb/c which is known not to impact erythropoeisis since no GATA1 protein is made by this mRNA due to its inability to bind to ribosomes. These data show the Xla mouse results from a single nucleotide change impacting the normal splicing of the Gata1 gene. A second goal of this study was to understand why Xla/+ mice exhibit the neonatal transient anemia. A contributing factor is X chromosome inactivation which occurs in female mice during development. The short-term anemia in Xla mice was thought to be due to clonal selection of erythroid lineage cells characterized by the expression of GATA1 protein from the active X chromosome expressing only from the wild type Gata1 locus. Using an X-linked gene expressed in red blood cells (Pgk1, phosphoglycerate kinase 1) that varies between Xla mice and a wild derived strain, CAST/Ei, we examined the active state of the X chromosomes based on the expression of Pgk1 RNA in reticulocytes from hybrid Xla mice generated by breeding of these different strains. Examining expression of the X-linked Pgk1 SNP variant in the RNA of reticulocytes from hybrid Xla/+ mice reveals red blood cells are generated from two types of erythroid lineage cells. Pgk1 SNP RT-PCR analysis reveals that red blood cells not only derive from erythroid progenitors with the active X chromosome carrying the wild type Gata1 gene but also red blood cells are produced by erythroid lineage cells expressing the Xla mutant Gata1 mRNA on the active X chromosome (which does not make GATA1 protein). Therefore, some Xla erythroid cells derive from progenitors which express Gata1 transcripts using Exon 1Eb/c that does not stimulate erythropoiesis due to lack of GATA1 protein. The question is how these erythroid precursors generate normal red blood cells without the production of GATA1 protein. We hypothesize there is a developmentally expressed compensatory gene or pathway replacing GATA1 expression in GATA1-lacking erythroid precursors and required for the production of red blood cells in Xla mice. Analysis is underway to identify a potential novel gene or pathway impacting erythropoiesis in these mutant mice. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document