Enhanced Platelet Aggregation and Thrombogenic Tendency in Adiponectin-Deficient Mice.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 800-800 ◽  
Author(s):  
Hisashi Kato ◽  
Hirokazu Kashiwagi ◽  
Masamichi Shiraga ◽  
Shigenori Honda ◽  
Shigeki Miyata ◽  
...  

Abstract Adiponectin is a 30 kDa protein secreted specifically from adipocytes and structurally composed of two distinct domains, C-terminal collagen-like domain and N-terminal complement C1q-like globular domain. Adiponectin is abundantly present in plasma at high concentration ranging from 2 to 30 μg/ml. The plasma levels of adiponectin decreased in patients with obesity and diabetes. Recently it has been demonstrated that adiponectin has an anti-atherogenic activity. Hypoadiponectinemia is an independent risk factor for coronary artery disease in men. However, the role of adiponectin in hemostasis and thrombosis still remains obscure. In this study, we examined its role in hemostasis and thrombosis using adiponectin-deficient (APN-KO) mice (Nat. Med. 2002 Maeda et al.). APN-KO mice were fed by normal chaw and studied at 8–12 weeks old. There were no differences in platelet counts, PT, APTT and plasma fibrinogen levels between APN-KO and Wild-Type mice. Neither Wild-Type nor APN-KO mice showed detectable atherosclerotic lesion in carotid artery as well as whole aorta. We examined tail-bleeding times as a measure of primary hemostasis. The tail bleeding time was 96.9 ± 34.9 seconds in APN-KO mice, which was shorter than that in wild type mice (130.9 ± 52.1 seconds, n=30, p<0.05). We next studied thrombus formation in mice carotid artery using He-Ne laser induced in vivo thrombus formation model. Thrombus formation was induced by the interaction of irradiated He-Ne laser with evans blue dye injected into blood flow. The thrombus volumes formed during 10 minutes were significantly larger in APN-KO mice (6.74 ± 2.87 x 107 arbitrary units for wild-type v.s. 13.4 ± 4.25 x 107 arbitrary units for APN-KO mice, n=10, p<0.01). Adenovirus-mediated supplement of adiponectin compensated for the thrombotic tendency in APN-KO mice. In order to clarify the effects of adiponectin on platelet functon, we performed ex vivo experiments. In platelet aggregation studies under stirring conditions using platelet-rich plasma, platelet aggregation induced by low concentrations of agonists (ADP 2.5μM, collagen 2.5μg/ml, PAR4 peptide 75μM) was enhanced in APN-KO mice. Again the adenovirus-mediated supplement of adiponectin compensated for the enhancement of platelet aggregation. We next studied the thrombus formation on collagen coated surface under flow conditions. The thrombus formation was enhanced in APN-KO mice under shear rate at 250s−1. Our data provide a first evidence that adiponectin plays a role in hemostasis and thrombosis as a negative modulator of platelet function.

1998 ◽  
Vol 80 (09) ◽  
pp. 512-518 ◽  
Author(s):  
Frédérique Dol ◽  
André Bernat ◽  
Robert Falotico ◽  
Alain Lalé ◽  
Pierre Savi ◽  
...  

SummaryIt is unknown whether the addition of aspirin might increase both the efficacy and the potency of clopidogrel, a potent and selective ADP blocker. For that purpose, the efficacy of clopidogrel (1–20 mg/kg, p.o.) administered orally to rabbits alone or in combination with aspirin (0.1–10 mg/kg, p.o.) was determined in several experimental models. A potent synergistic effect of the clopidogrel/aspirin association was demonstrated with regard to collagen-induced platelet aggregation measured ex vivo. Similarly, aspirin potentiated the antithrombotic activity of clopidogrel measured with regard to experimental thrombosis induced by a silk thread or on stents placed in an arteriovenous shunt, thrombus formation following electrical stimulation of the rabbit carotid artery and with regard to 111In-labeled platelet deposition on a stent implanted in an arteriovenous shunt or on the subendothelium following air drying injury of the rabbit carotid artery. A similar potentiating effect of aspirin was obtained with regard to myointimal proliferation (restenosis) in the femoral arteries of atherosclerotic rabbits which occurred as a consequence of stent placement. The clopidogrel/aspirin combination showed only additive-type effects on bleeding time prolongation induced by ear transection in the rabbit, therefore showing that combined inhibition of cyclooxygenase and ADP‘s effects provide a marked enhanced antithrombotic efficacy. Such a combination may provide substantial protection against platelet aggregation leading to thrombotic occlusion at sites of endothelial injuries and coronary artery stenosis in humans.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1875-1875 ◽  
Author(s):  
Yoshiyasu Ogihara ◽  
Sumie Muramatsu ◽  
Yuki Kaneda ◽  
Takako Iijima ◽  
Tomoko Shibutani ◽  
...  

Abstract Introduction: Bleeding risk accompanied with anti-platelet drugs is an ultimate dilemma in the treatment of thrombosis patient. Under high shear condition of blood flow, vWF- and collagen-induced signaling pathways are likely to trigger the platelet adhesion to the injured endothelium, which leads to the activation of platelets and arterial thrombus formation. Thus, the recent studies suggest that the selective inhibitor of these pathways is a new target of anti-platelet drugs with lower bleeding risk. We report here a pharmacological profile of DZ-697b, which selectively inhibits platelet aggregation evoked by ristocetin and collagen in vitro and ex vivo. Materials and methods: Human volunteers blood was processed platelet rich plasma (PRP) or washed platelets. PRP aggregation was induced by ristocetin and collagen. To reveal the selectivity, effect of DZ-697b on U46619 (TXA2 analogue), ADP, thrombin and TRAP induced aggregation in the washed platelets were examined. In guinea pigs and cynomolgus monkeys, effects of DZ-697b given orally were also examined on ex vivo PRP aggregation induced by collagen. To investigate the underlying mechanisms of DZ-697b, changes in phosphorylation of FcR γ chain, a common signaling pathway of both vWF- and collagen-induced platelet aggregation, were studied. Results: DZ-697b potently inhibited both ristocetin- and collagen-induced human PRP aggregation, the IC50 being 0.74 μM and 0.55 μM, respectively. In contrast, DZ-697b even at 50 μM did not show any influences on U46619, ADP, thrombin and TRAP induced platelet aggregation. DZ-697b did not affect ovine COX-1 and COX-2 activities at up to 300 μM. The bioavailability of this compound was more than 80% in monkeys. Oral administration of DZ-697b at 1–3 mg/kg significantly and persistently inhibited collagen induced PRP aggregation in monkeys and guinea pigs. Application of ristocetin, vWF, and collagen significantly increased the intensity of phosphorylation of FcR γ chain in washed platelets, which were inhibited by DZ-697b. Conclusion: DZ-697b is an orally active compound which selectively inhibits ristocetin- and collagen-induced platelet aggregation and seems to be promising as novel anti-platelet drug.


1987 ◽  
Author(s):  
P Hadvary ◽  
H R Baumgartner

Platelet activating factor (PAF) is a very potent excitatory agonist of blood platelets but the physiological importance of this mediator in platelet thrombus formation is not known. We investigated the effect of two chemically unrelated selective inhibitors of PAF-induced platelet aggregation on thrombogenesis induced by rabbit aorta subendothelium (SE) using an ex vivo perfusion system.Ro 19-3704 is a highly potent inhibitor structurally related to PAF. This compound inhibits PAF-induced aggregation of rabbit platelets in platelet rich plasma in vitro competitively. Against 4 nM PAF, a concentration resulting in submaximal platelet aggre-gregation velocity, the IC50 was 70 nM. Inhibition was highly selective for PAF-induced aggregation, since aggregation induced by collagen (HORM, 5 yg/ml), ADP (1 yM) or thrombin (0.4 U/ml) was not inhibited even at a concentration as high as 10 yM. Bro-tizolam, a triazolobenzodiazepine reported to be a selective inhibitor of PAF-induced platelet activation, had in our system an IC50 of 200 nM. The selective benzodiazepine antagonist Ro 151788 was without effect on inhibition of PAF-induced platelet activation by brotizolam.Ro 19-3704 was given intravenously to rabbits as a bolus of 0.2 mg/kg followed by constant infusion of 0.02 mg/kg/min. This dosage provoked ex vivo a constant right shift ratio of the dose response curve for PAF-induced aggregation (RSR[PAF]) by a factor of 25 to 35. Brotizolam was given orally at a dose of 100 mg/ kg together with 300 mg/kg of Ro 15-1788 (to antagonize the central effects) 90 minutes before starting the perfusion experiment, resulting in a RSR[PAF] of 35 to 135. ADP induced platelet aggregation was not impaired by either compound. SE was exposed to the non-anticoagulated blood withdrawn from the carotid artery for 3 min at 2600 s-1 and for 20 min at 200 s-1 shear rate. Quantitative morphometric evaluation showed that SE coverage by platelets and by fibrin, thrombus area and thrombus height were all unchanged by the PAF antagonists at low and at high shear rates despite a very substantial inhibition of PAF-induced platelet aggregation. Therefore a major role of PAF in SE-induced thrombogenesis seems unlikely.


1990 ◽  
Vol 64 (04) ◽  
pp. 576-581 ◽  
Author(s):  
Ronald J Shebuski ◽  
Denise R Ramjit ◽  
Gary R Sitko ◽  
Patricia K Lumma ◽  
Victor M Garsky

SummaryA model of acute, platelet-dependent canine coronary artery thrombosis was utilized to assess the antithrombotic effect of a synthetic, RGD-containing 49-residue protein termed echistatin. This protein is derived from the venom of the viper, Echis carinatus. In vitro, echistatin inhibited ADP (10 ΜM)-induced platelet aggregation with IC50 values in human and canine platelet-rich plasma of 101 ± 4 and 127 ± 32 nM, respectively. In vivo, in the dog, infusion of echistatin for 30 min at 20 pg kg−1 min−1 or 2.6 nM kg−1 min−1 resulted in total abolition of acute platelet-dependent coronary thrombus formation in all dogs tested (n = 5). Infusion of a lower dose (10 pg kg−1 min−1) was not effective in prevention of thrombus formation. Blood samples were taken before and after infusion of echistatin in order to determine ex vivo platelet aggregatory responses. Echistatin (20 pg kg−1 min−1, i.v.) attenuated ex vivo platelet aggregation elicited by ADP, U-46619 and collagen and increased bleeding time by 2.9 ± 0.5-fold over control. Thus, in the dog, echistatin is an effective antithrombotic agent inhibiting both platelet aggregation in vivo in the coronary artery as well as ex vivo with a concomitant increase in bleeding time. Furthermore, the effects of echistatin on platelet aggregation and bleeding time are reversible with restoration to control levels occurring 30-60 min after termination of the infusion.


1988 ◽  
Vol 59 (02) ◽  
pp. 236-239 ◽  
Author(s):  
Giovanna Barzaghi ◽  
Chiara Cerletti ◽  
Giovanni de Gaetano

SummaryWe studied the aggregating effect of different concentrations of phospholipase C (PLC) (extracted from Clostridium perfringens) on human platelet-rich plasma (PRP). PRP was preincubated with PLC for 3 min at 37° C and the platelet aggregation was followed for 10 min. The threshold aggregating concentration (TAG) of PLC was 3-4 U/ml.We also studied the potentiation of PLC with other stimuli on platelet aggregation. Potentiating stimuli, such as arachidonic acid (AA), ADP. Platelet Activating Factor (PAF) and U-46619 (a stable analogue of cyclic endoperoxides) were all used at subthreshold concentrations. We also studied the possible inhibitory effect of aspirin, apyrase, TMQ, a prostaglandin endoper- oxide/thromboxane receptor antagonist and BN-52021, a PAF receptor antagonist. Only aspirin and apyrase were able to reduce aggregation induced by PLC alone and PLC + AA and PLC + ADP respectively. TMQ and BN-52021 were inactive. In ex vivo experiments oral aspirin (500 mg) partially inhibited platelet aggregation induced by PLC alone, PLC + AA and PLC + ADP 2 and 24 h after administration. Aspirin 20 mg for 7 days also reduced aggregation induced by PLC + AA.


1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


1992 ◽  
Vol 67 (01) ◽  
pp. 126-130 ◽  
Author(s):  
Olivier Spertini ◽  
Jacques Hauert ◽  
Fedor Bachmann

SummaryPlatelet function defects observed in chronic alcoholics are not wholly explained by the inhibitory action of ethanol on platelet aggregation; they are not completely reproduced either in vivo by short-term ethanol perfusion into volunteers or in vitro by the addition of ethanol to platelet-rich plasma. As acetaldehyde (AcH) binds to many proteins and impairs cellular activities, we investigated the effect of this early degradation product of ethanol on platelets. AcH formed adducts with human platelets at neutral pH at 37° C which were stable to extensive washing, trichloracetic acid hydrolysis and heating at 100° C, and were not reduced by sodium borohydride. The amount of platelet adducts formed was a function of the incubation time and of the concentration of AcH in the reaction medium. At low AcH concentrations (<0.2 mM), platelet bound AcH was directly proportional to the concentration of AcH in the reaction medium. At higher concentrations (≥0.2 mM), AcH uptake by platelets tended to reach a plateau. The amount of adducts was also proportional to the number of exposures of platelets to pulses of 20 pM AcH.AcH adducts formation severely impaired platelet aggregation and shape change induced by ADP, collagen and thrombin. A positive correlation was established between platelet-bound AcH and inhibition of aggregation.SDS-PAGE analysis of AcH adducts at neutral pH demonstrated the binding of [14C]acetaldehyde to many platelet proteins. AcH adduct formation with membrane glycoproteins, cytoskeleton and enzymes might interfere with several steps of platelet activation and impair platelet aggregation.This in vitro study shows that AcH has a major inhibitory action on platelet aggregation and may account for the prolonged ex vivo inhibition of aggregation observed in chronic alcoholics even in the absence of alcoholemia.


1997 ◽  
Vol 77 (03) ◽  
pp. 562-567 ◽  
Author(s):  
Takehiro Kaida ◽  
Hiroyuki Matsuno ◽  
Masayuki Niwa ◽  
Osamu Kozawa ◽  
Hideo Miyata ◽  
...  

SummaryThe antithrombotic and restenosis-preventing effects of FK633, an inhibitor of platelet aggregation via binding to the glycoprotein (GP) Ilb/IIIa receptor, were studied. IC50 value of FK633 against platelet aggregation ex vivo induced by 2.5 |iM adenosine diphosphate (ADP) was 5.4 X 10"7 M as determined using hamster platelet rich plasma. The inhibitory effect was also investigated in vivo on thrombus formation at the carotid arterial wall injured by a modified catheter. As a control, the left carotid artery was injured and the time required to develop a thrombotic occlusion (3.9 ±1.1 min, mean ± S.E.M., n = 18) was determined. Then, the right carotid artery of the same animal was injured while a continuous intravenous (i.v.) infusion of FK633 was administered at doses of 0 (saline), 0.1,0.3 or 1.0 mg/kg/h. The time to occlusion was dose-dependently prolonged. In a separate experiment, 10% of the total tPA dose (0.52 mg/kg) was injected into the injured artery as a bolus and the remaining was infused i.v. at a constant rate for 30 min. When FK633 (0.3 or 1.0 mg/kg/h) was infused together with tPA, late patency of the reperfused artery was much improved as compared with that of treatment with tPA alone. Bleeding time, measured at the end of the tPA infusion, was markedly prolonged when the higher dose of FK633 (1.0 mg/kg/h) was coadministered, however coadministration of the lower dose of FK633 (0.3 mg/kg/h) was almost without prolongation on the bleeding time, despite a significant effect on the vascular patency after thrombolysis. Next, neointima formation was evaluated 2 weeks after the vascular injury. When FK633 (0.3 mg/kg/h) was continuously infused i. v. by an implanted osmotic pump for 3,7 or 14 days after the vascular injury, the neointimal area formation was significantly suppressed in the treatment groups for 7 or 14 days. These findings suggest that FK633 inhibits platelet activation in the injured artery and improves vascular patency after thrombolysis with tPA with a concomitant suppression of neointima formation.


1983 ◽  
Vol 50 (04) ◽  
pp. 852-856 ◽  
Author(s):  
P Gresele ◽  
C Zoja ◽  
H Deckmyn ◽  
J Arnout ◽  
J Vermylen ◽  
...  

SummaryDipyridamole possesses antithrombotic properties in the animal and in man but it does not inhibit platelet aggregation in plasma. We evaluated the effect of dipyridamole ex vivo and in vitro on platelet aggregation induced by collagen and adenosine- 5’-diphosphate (ADP) in human whole blood with an impedance aggregometer. Two hundred mg dipyridamole induced a significant inhibition of both ADP- and collagen-induced aggregation in human blood samples taken 2 hr after oral drug intake. Administration of the drug for four days, 400 mg/day, further increased the antiplatelet effect. A significant negative correlation was found between collagen-induced platelet aggregation in whole blood and dipyridamole levels in plasma (p <0.001). A statistically significant inhibition of both collagen (p <0.0025) and ADP-induced (p <0.005) platelet aggregation was also obtained by incubating whole blood in vitro for 2 min at 37° C with dipyridamole (3.9 μM). No such effects were seen in platelet-rich plasma, even after enrichment with leukocytes. Low-dose adenosine enhanced in vitro inhibition in whole blood.Our results demonstrate that dipyridamole impedes platelet aggregation in whole blood by an interaction with red blood cells, probably involving adenosine.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


Sign in / Sign up

Export Citation Format

Share Document