Platelet Engraftment (PE) in AML Patients Receiving HLA Matched Sibling Donor Allogeneic Bone Marrow Transplant (ABMT) Correlates with Inhibitory HLA Ligand Groups for Killer Immunoglobulin-Like Receptors (KIRs).

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 836-836
Author(s):  
Ronald Sobecks ◽  
Edward J. Ball ◽  
Lisa Rybicki ◽  
Stacey Brown ◽  
Jaroslaw Maciejewski ◽  
...  

Abstract The interaction of KIRs with target cell HLA class I molecules regulates the activity of NK cells and some T cell populations. KIR interactions are reported to influence allogeneic hematopoietic stem cell transplant outcomes, particularly for AML. We have previously reported that AML pts homozygous for C1 or C2 have superior survival and lower relapse rates than do pts heterozygous for C1/C2. However, the influence of KIR matching on PE has not been well described. We therefore analyzed the KIR ligand phenotypes of 60 AML pts who received HLA identical sibling donor myeloablative ABMT from 4/9/97 – 11/5/03. The median age was 45 years (range, 8–62 yrs). At transplant a minority (40%) were in CR. All pts received a busulfan/cyclophosphamide based preparative regimen and T-cell replete bone marrow as their stem cell source. Patient HLA KIR ligands were categorized as: 1) HLA-Cw group C1- or C2 - homozygous vs C1/C2 heterozygous; and 2) HLA-Bw4 (positive or negative) (reviewed in Farag et al Blood100:1035, 2002). Kaplan Meier estimates of median time to PE >20 K/μL and >50 K/μL were 23 and 30 days, respectively. PE was next assessed in relation to the inhibitory HLA KIR ligand group expressed. PE >20 K/μL was superior for those C1 or C2 homozygous (n=26) compared to C1/C2 heterozygotes (n=34) (median 21 vs 26 days, p=0.049) and 31 Bw4 negative pts had superior PE compared to 29 Bw4+ pts (median 21 vs 30 days, p=0.012); these findings remained significant in multivariable analysis. A similar analysis performed for PE >50 K/μL found that Bw4 negative pts had superior PE compared to Bw4 + pts (median 26 vs 38 days, p=0.015); this remained significant in multivariable analysis. 57 cases had KIR genotyping performed for those KIRs with established HLA ligands and there were no cases in which the donor did not have at least one inhibitory KIR gene specific for expressed HLA ligands. Age at transplant, number of prior chemotherapy regimens, disease status at transplant and CMV status were not predictive of PE. Since both C1/C2 heterozygosity and Bw4+ status correlated with reduced early PE, the possible interaction of these two variables was next investigated. The analysis for PE >20 K/μL and >50 K/μL suggested an additive effect: pts lacking expression of both these variables had the most rapid PE, while those who expressed both variables had the slowest PE. Those who expressed only 1 of the variables had an intermediate time to PE as shown below: HLA KIR Ligand Status N Median CD34+ cell dose (x10^6/kg) Median Total Nucleated Cell Dose (x10^8/kg) Median time to PE>20K/μL Median time to PE >50K/μL C1/C2 and Bw4 negative 14 2.02 2.64 19 days 25 days C1/C2 positive and Bw4 negative OR C1/C2 negative and Bw4 positive 29 1.92 2.62 23 days 29 days C1/C2 and Bw4 positive 17 1.87 2.60 31 days 41 days p= 0.54 p=0.82 p=0.003 p=0.003 These results may suggest that donor NK cells control host effector cells that delay PE. When minimal opportunity for inhibitory KIR engagement exists (C1/C2 negative, Bw4 negative) maximal NK cell control is expected and rapid PE ensues. When maximal opportunity for inhibitory KIR engagement exists (C1/C2 positive, Bw4 positive) donor NK cell controlling activity would be reduced, leading to delayed PE.

2017 ◽  
Vol 1 (19) ◽  
pp. 1589-1597 ◽  
Author(s):  
Luke Maggs ◽  
Francesca Kinsella ◽  
Y. L. Tracey Chan ◽  
Suzy Eldershaw ◽  
Duncan Murray ◽  
...  

Key Points A stem cell graft NK cell dose below 6.3 × 106 cells per kg associates with risk of disease relapse following T-cell–depleted allo-HSCT. Clinical outcomes of patients undergoing allo-HSCT may be improved by setting an NK cell threshold within donor stem cell grafts.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3244-3244
Author(s):  
Gabriele Multhoff ◽  
Catharina Gross ◽  
Anne Dickinson ◽  
Ernst Holler

Abstract Purpose: Hsp70 was frequently found on the plasma membrane of bone marrow-derived leukemic blasts, but not on normal bone marrow cells. Hsp70 membrane expression could be correlated with protection against therapy-induced apoptosis (Nylandsted et al 2004). In contrast, these tumor cells have been found to be highly sensitive to the cytolytic attack mediated by NK cells. In vitro, Hsp70-activated NK cells efficiently lysed autologous Hsp70 membrane-positive leukemic blasts (Gehrmann et al 2003). Granzyme B release served as a surrogate marker for estimating the cytolytic response of NK cells against Hsp70 membrane-positive tumor target cells (Gross et al 2003). Here, we studied the development of NK and T cells in AML patients (n=6) after allogeneic SCT at different time points (days 14–20, 45, 90, 180, 1 year) after allogeneic stem cell transplantation (SCT). Methods: HLA class I, HLA-E and Hsp70 surface expression was determined on all patient-derived leukemic blasts of the bone marrow by flow cytometry. The amount of NK and T cells was investigated by multicolor flow cytometry using CD3/ CD16 and CD56 and CD94/ CD56 antibody-combinations detecting NK cell specific markers. Effector cell function was tested in a granzyme B ELISPOT assay against patient-derived leukemic blasts and K562 cells. Results: All tested leukemic blasts were positive for HLA class I, HLA-E, and Hsp70. After induction therapy the amount of CD3-negative, CD56/CD94-positive NK cells was 28±16%, that of CD3-positive T cells was 58±3%. On days 14–21 after allogeneic SCT, 58±9% of the donor-derived peripheral blood lymphocytes (PBL) were CD3-negative, CD56/CD94-positive NK cells; the amount of CD3-positive T cells was 26±7.5%. On day 45, the amount of NK cells further increased up to 68±7.9%; that of T cells further decreased down to 16±5.6%. On day 90 and day 180 the amount of NK cells was still 41±10%; that of T cells was 29±12%. Interestingly, high NK cell counts correlated with an increased cytolytic response against leukemic blast and K562 cells. One year after allogeneic SCT, NK (20±1%) and T cell (52±18%) ratios were comparable to that of healthy human individuals. Conclusions: Between days 14 and 180 after allogeneic SCT, the amount of NK cells was significantly elevated if compared to that of T cells. Concomitantly, cytolytic function against leukemic blasts was significantly elevated. Normal levels, in the composition of NK and T cells were reached 1 year after SCT. Project funded by EU-TRANS-EUROPE grant QLK3-CT-2002-01936.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3025-3025 ◽  
Author(s):  
Leslie Kean ◽  
Kelly Hamby ◽  
Thomas Pearson ◽  
Christian Larsen

Abstract Introduction: Immunologic tolerance remains an elusive goal of transplantation. In mice, mixed-chimerism and donor-specific tolerance can be induced by blocking the CD28/CD40L T-cell costimulatory pathways after bone marrow transplant (BMT). However, large doses of marrow (~1x109 cells/kg) are required, and these regimens have not yet been successfully translated to clinical practice. There is a growing body of evidence that NK cells may play a central role in the failure of low doses of donor bone marrow to engraft, but the mechanisms underlying NK alloreactivity remain to be determined. Methods: (1) BMT in the presence of CD28/CD40L T cell costimulation blockade was performed using C57BL/6 (B6) recipients and Balb/C donor bone marrow. The role of host-anti-donor NK alloreactivity in preventing engraftment was determined by specifically depleting B6 NK cells. The contribution of the NK cell-surface receptor, LFA1 to NK alloreactivity was determined with the anti-LFA1 blocking antibody M17/5.2. (2) An in vivo NK alloreactivity assay was developed that should allow the investigation of the mechanism of NK alloreactivity and the molecular mediators of this process. In this assay, CFSE-labeled B6 splenocytes were adoptively transferred into B6xBalbC F1 progeny. As such, alloreactivity was specifically mediated by NK cells. NK alloreactivity was measured flow-cytometrically by the disappearance of the CFSE-labeled B6 population. Results: Transient depletion of recipient NK cells resulted in increased donor stem cell survival and the induction of stable mixed-chimerism and tolerance despite BMT with low doses (≤2x106 cells) of donor bone marrow. This effect was specific to allogeneic donor cells: depletion of NK cells did not increase engraftment of syngeneic bone marrow. Blocking the adhesion molecule, LFA-1 recapitulated the effects of whole-scale NK depletion. Newly emergent NK cells exhibited significantly lower expression of the donor-specific activating receptor, Ly49D, and these NK cells did not exhibit in vivo alloreactivity. These results suggest that the NK repertoire in the mixed-chimeric setting exhibited donor-specific tolerance. Using the in vivo hybrid resistance NK alloreactivity assay, we measured 80% NK-specific target killing 8 days after adoptive transfer. Significantly less killing occurred at 2, 4, and 6 days. Pre-sensitizing the recipient for 4 days increased the efficiency of killing—from 50% to 80%, suggesting a potent activation phenomenon required for efficient NK allorecognition and/or cytotoxicity. Implications: These results reveal the importance of NK alloreactivity in the acquisition of mixed-chimerism after BMT at limiting stem cell doses, and suggest that clinical approaches to tolerance-induction transplantation may require mechanisms to control NK alloreactivity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2338-2338
Author(s):  
Julia Zorn ◽  
Hans Jochem Kolb

Abstract Graft-versus-host disease (GvHD) is the major obstacle of allogeneic stem cell transplantation. Depletion of T-cells from the graft reduces the risk of GvHD, but results in a higher risk of leukemia relapse. Adoptive immunotherapy with donor lymphocyte transfusion (DLT) has been shown to control leukemia in patients after T-cell depleted allogeneic stem cell transplantation. However, GvHD may occur, if DLT is given too early after transplantation. In canine models of DLA-identical and DLA-haploidentical bone marrow transplantation, we compared different methods of T-cell depletion (TCD) and investigated the potential of DLT at different times after transplantation to induce GvHD. T-cell depletion was performed either with absorbed anti-thymocyte globuline (aATG) or with a combination of CD6-antibody and baby rabbit complement. ATG was absorbed with erythrocytes, liver, kidney and spleen for eliminating antibodies against stem cells. CD6-antibody (M-T606) and rabbit complement depleted T-cells effectively without affecting hematopoietic progenitor cells. Unlike aATG, monoclonal CD6-antibody spares natural killer (NK) cells and some CD8-positive cells. Treatment of bone marrow with aATG prevented GvHD in 9 dogs following DLA-identical transplantation. DLT on days 1 and 2 or 21 and 22 induced fatal GvHD in two dogs each. However, it did not induce GvHD when given on days 61 and 62 and later. In DLA-haploidentical bone marrow recipients, non-manipulated marrow produced fatal GvHD in all dogs (n=7), whereas marrow treated with aATG (vol:vol 1:100 and 1:200) produced fatal GvHD in 5 out of 16 dogs only. CD6-depletion prevented GvHD in 3 of 3 DLA-haploidentically transplanted dogs. DLT produced fatal GvHD in one dog each, when given on day 3, 7 or 14 after CD6-depleted haploidentical bone marrow transplantation. However, it produced fatal GvHD in only 2 of 4 dogs transfused on day 20 post grafting. Thus, DLT could be given earlier in DLA-haploidentical animals transplanted with CD6-depleted marrow than in DLA-identical animals transplanted with aATG treated marrow without producing GvHD. These findings support the hypothesis that graft-versus-host tolerance can be induced earlier with grafts not depleted of NK cells. NK cells in the graft may inactivate host dendritic cells necessary for the induction of GvHD. In grafts depleted with aATG, NK cells are depleted as well, because aATG still retains broad specificity despite extensive absorptions. This leaves host DCs unaffected. Transfused donor T-cells encountering this environment will thus be activated which results in severe GvHD. In contrast, monoclonal CD6-antibody spares NK cells, so that donor lymphocytes cannot be activated by host DCs at the time of DLT and thus won’t trigger GvHD. CD6-depletion is the preferred method if adoptive immunotherapy with DLT is planned.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4557-4557 ◽  
Author(s):  
Isabel Gonzalez-Gascon y Marin ◽  
Ana Maria Perez-Corral ◽  
Jorge Gayoso ◽  
Javier Anguita ◽  
Cristina Pascual ◽  
...  

Abstract Abstract 4557 BACKGROUND: Natural killer (NK) cells are innate immune effectors that directly lyse virally infected or malignant cells. There are 2 different subsets of NK cells with distinct phenotypic and functional characteristics: the CD56dim subset, which composes 90% of peripheral blood NK cells and has a cytotoxic function, and the CD56bright subset, which cooperates with dendritic cells and T cells in lymph nodes to secrete interferon and promote adaptive immune responses. NK cells are the first donor-derived lymphocyte subset to reconstitute after hematopoietic stem cell transplantation, reaching normal levels after 1 month. Nearly all phenotyping studies of NK subsets after haploidentical hematopoietic stem cell transplantation (HHSCT) reveal a rapid reconstitution of NK cells towards the CD56bright subset. In addition, Y.-J. Chang et al found the highest 2-year survival in patients with a high number of CD56bright NK cells after unmanipulated HHSCT. We analyzed reconstitution of the NK compartment between days 90 and 180 after unmanipulated bone marrow HHSCT with reduced intensity conditioning (RIC). METHODS: Six adults received unmanipulated bone marrow HHSCT after RIC (fludarabine 30 mg/m2 [day –6 to –2], cyclophosphamide 14.5 mg/kg [day –6 and –5], and busulfan i.v. 3.2mg/kg [day –3]) at our institution between July 2007 and July 2010. Prophylaxis for acute graft-versus-host disease (GvHD) consisted of cyclophosphamide 50mg/kg (days +3 and +4) and cyclosporine A and mycophenolate mofetil from day +5 onwards. We monitored the reconstitution kinetics of circulating NK cells (CD56+, CD3–), and the CD56bright and CD56dim subsets by multiparametric flow cytometry (FC 500 Beckman® Coulter) at day +90 and day +180 after transplantation. Patient characteristics and clinical outcomes are shown in Table 1. 6 patients who underwent allogeneic HLA-identical sibling HSCT with RIC during the same period were used as controls. RESULTS: After HHSCT, NK cells reached normal levels in all patients but one at day +90, with a median number of NK cells of 111/mm3 (range, 25–195/mm3). At day +180 the median number of NK cells was 92/mm3 (range, 4–272/mm3). When we analyzed the absolute number of CD56bright and CD56dim subsets at day +90, we observed 2 patterns: Two patients showed skewed NK cell reconstitution towards CD56bright (Patient no. 3: 54 CD56bright/mm3; 11 CD56dim/mm3. Patient no. 4: 70 CD56bright/mm3; 17 CD56dim/mm3). Three patients reconstituted with a CD56dim/CD56bright ratio towards the CD56dim cell subset, similar to that of healthy adults (Patient no. 1: 17 CD56bright/mm3; 178 CD56dim/mm3. Patient no. 5: 9 CD56brigh/mm3; 135 CD56dim/mm3. Patient no. 6: 20 CD56bright/mm3; 116 CD56dim/mm3). One patient did not achieve adequate NK cell reconstitution (Patient no. 2: 15 CD56bright/mm3; 10 CD56dim/mm3). In contrast, in the control group, an increase in the CD56bright NK cell subset was not observed in any of the patients at any point. It is worth noting that 2 of the 3 patients with better clinical outcome (no GvHD, no relapse), namely patients no. 3 and no. 4 were the ones with skewed NK cell reconstitution towards the CD56bright NK cell subset. The other patient with a better clinical outcome (patient no. 6) had a normal CD56dim/CD56bright ratio at day +90. However, he showed an early CD56bright reconstitution (363 CD56bright/mm3; 34 CD56dim/mm3) in an additional determination on day +30. NK cell subsets reconstitution kinetics is shown in Figure 1. CONCLUSIONS: In our experience, NK cell reconstitution is adequate after RIC unmanipulated bone marrow HHSCT. Some patients recovered with a high proportion of CD56bright NK cells, as previously reported in other studies on HHSCT. Although limited by the sample size, our results are consistent with the previously observed survival advantage of patients with high early levels of CD56bright NK cells after unmanipulated haploidentical transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3781-3781
Author(s):  
Eolia Brissot ◽  
Sawa Ito ◽  
Kit Lu ◽  
Carly Cantilena ◽  
B. Douglas Smith ◽  
...  

Abstract Adult acute lymphoblastic leukemia (ALL) remains a therapeutic challenge with less than 40% long term survival. There is growing evidence that malignant diseases exert an “immune editing” effect which blocks antitumor immunity and permits tumor growth through immune evasion. Such tumor escape represents an obstacle for anticancer immunotherapy. In ALL such immune escape mechanisms are not well characterized. We therefore profiled cellular immunity in ALL, by characterizing the subsets of T cells, regulatory T cells (Treg), natural killers (NK) cells and γd T cells, using various functional markers including T cell exhaustion and NK cell activating or inhibitory molecules. Forty ALL patients were included in the study. The median age was 39 y (range, 18-75). Thirty-six presented with B-lineage ALL and 4 with T-lineage ALL. Mononuclear cells were isolated from blood (n=19) or bone marrow (n=21) at the onset of leukemia or at relapse. The median infiltration of blasts was 85% (range 24-96%). Healthy donor peripheral blood (n=12) and bone marrow (n=9), from age and gender matched population, were simultaneously analyzed as controls. Extra-and intra cellular staining were performed using using antibodies directed against CD3, CD4, CD8, CD45, CD45, CD45RA, CD45RO, CCR7, CD95, CD27, CD19, CD14, CD127, CD25, Foxp3, Helios, αβTCR, HLA-DR, CD117, CD20, CD10, CD22, CD34, LAG3, PD1, PDL1, CD56, NKG2A, NKG2C, NKG2D, KIR2DL1, KIR2DL3, CD57, CD33, CD11b, CD15, CD38 and CD24. Data were acquired on a BD LSRFORTESSA flow cytometer. The expression of programmed cell death 1 (PD-1, CD279) receptor on CD8+T cells was significantly increased in blood and bone marrow of ALL patients compared to healthy donors (p<0.0001 and p=0.004, respectively) (Fig. 1). Focusing on the different subsets, CD8+ effector memory T cells significantly over-expressed PD-1 in blood and bone marrow of ALL patients compared to healthy donors (p=0.008 and p=0.04, respectively). Moreover, there was a significant positive correlation between PD-1 expression on CD8+ effector memory T cells and blast infiltration (R2=0.23, 95%CI 0.026-0.76, p=0.04). Expression of the co-inhibitory receptor lymphocyte-activation gene 3 (LAG-3, CD223) was similar in ALL patients compared to healthy donors. A significantly higher frequency of T regulators (CD25+, CD127 low, Foxp3+) was found in bone marrow microenvironment in ALL patients (4.3% versus 1.6%, p=0.02). Concerning γd T cells, frequency was similar in blood and bone marrow of ALL patients compared with healthy donors. There was a significantly lower frequency of CD56dimNKG2A+KIR-CD57- (p=0.02) in the bone marrow of ALL patients indicating a maturation arrest. Interestingly, expression of the activating receptor NKG2D which plays an important role in triggering the NK cell–mediated tumor cell lysis was significantly reduced in NK cells of ALL patients while no difference in NK cell expression of NKG2C was found(Fig. 2). Adult patients with ALL show evidence of immune-editing of T cells and NK cells. This global immunosuppressive mechanism may contribute to the eventual escape of ALL from immune control. PD-1, overexpression, described in acute myeloid leukemia and chronic myeloid leukemia has been implicated in T-cell exhaustion and subsequent tumor immune evasion. Our data suggests similar immune escape mechanisms pertain in ALL. Effective antileukemia immunotherapy will require targeting one or more of these immunosuppressive pathways to achieve optimum results. Disclosures Fathi: Seattle Genetics, Inc.: Consultancy, Research Funding; Takeda pharmaceuticals International Co.: Research Funding; Exelixis: Research Funding; Ariad: Consultancy.


Blood ◽  
2010 ◽  
Vol 116 (2) ◽  
pp. 183-192 ◽  
Author(s):  
Hojjatollah Nozad Charoudeh ◽  
Yanjuan Tang ◽  
Min Cheng ◽  
Corrado M. Cilio ◽  
Sten Eirik W. Jacobsen ◽  
...  

Abstract Although bone marrow (BM) is the main site of natural killer (NK)–cell development in adult mice, recent studies have identified a distinct thymic-dependent NK pathway, implicating a possible close link between NK- and T-cell development in adult hematopoiesis. To investigate whether a potential NK-/T-lineage restriction of multipotent progenitors might take place already in the BM, we tested the full lineage potentials of NK-cell progenitors in adult BM. Notably, although Lin−CD122+NK1.1−DX5− NK-cell progenitors failed to commit to the B and myeloid lineages, they sustained a combined NK- and T-cell potential in vivo and in vitro at the single-cell level. Whereas T-cell development from NK/T progenitors is Notch-dependent, their contribution to thymic and BM NK cells remains Notch-independent. These findings demonstrate the existence of bipotent NK-/T-cell progenitors in adult BM.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 378-378
Author(s):  
Jianbiao Zhou ◽  
Jonathan Adam Scolnick ◽  
Stacy Xu ◽  
Melissa Ooi ◽  
Priscella Shirley Chia ◽  
...  

Abstract Background: Approximately 20% of AML patients do not respond to induction chemotherapy (primary resistance) and 40-60% of patients develop secondary resistance, eventually leading to relapse followed by refractory disease (RR-AML). Diversified molecular mechanisms have been proposed for drug resistance and RR phenotype. However, we still cannot predict when relapse will occur, nor which patients will become resistant to therapy. Single-cell multi-omic (ScMo) profiling may provide new insights into our understanding of hematopoietic stem cell (HSC) differentiation trajectories, tumor heterogeneity and clonal evolution. Here we applied ScMo to profile bone marrow (BM) from AML patients and healthy controls. Methods: AML samples were collected at diagnosis with institutional IRB approval. Cells were stained with a panel of 62 DNA barcoded antibodies and 10x Genomics Single Cell 3' Library Kit v3 was used to generate ScMo data. After normalization, clusters were identified using Uniform Manifold Approximation and Projection (UMAP) and annotated using MapCell (Koh and Hoon, 2019). We analyzed 23,933 cells from 4 adult AML BM samples, and 39,522 cells from 2 healthy adults and 3 sorted CD34+ normal BM samples. Gene set enrichment analysis (GSEA) and Enrichr program were used to examine underlying pathways among differentially expressed genes between healthy and AML samples. Results: We identified 16 cell types between the AML and normal samples (Fig 1a) amongst 45 clusters in the UMAP projection (Fig 1b). Comparative analysis of the T cell clusters in AML samples with healthy BM cells identified an "AML T-cell signature" with over-expression of genes such as granzymes, NK/T cell markers, chemokine and cytokine, proteinase and proteinase inhibitor (Fig 2a). Among them, IL32 is known to be involved in activation-induced cell death in T cells and has immunosuppressive role, while CD8+ GZMB+ and CD8+ GZMK+ cells are considered as dysfunctional or pre-dysfunctional T cells. Indeed, Enrichr analysis showed the top rank of phenotype term - "decreased cytotoxic T cell cytolysis". We next examined whether NK cells, are similarly dysfunctional in the AML ecosystem. The "AML NK cell signature" includes Fc Fragment family, IFN-stimulated genes (ISGs), the effector protein-encoding genes and other genes when compared to normal NK cells (Fig 2b). GSEA analysis revealed "PD-1 signalling" among the top 5 ranked pathways in AML-NK cells, though no increase in PD-1 protein nor PDCD1 gene were identified in these cells. Inhibitory receptor CD160 was expressed higher in AML samples along with exhaustion (dysfunction) associated genes TIGIT, PRF1 and GZMB (Fig 2c). Enrichr analysis uncovered enrichment of "abnormal NK cell physiology and "impaired natural killer cell mediated cytotoxicity". Similarly, the "AML monocyte signature" was significantly enriched with genes in "Tumor Infiltrating Macrophages in Cancer Progression and Immune Escape" and "Myeloid Derived Suppressor Cells in Cancer Immune Escape". We also analyzed HSPC component in one pair of cytogenetically matched, untreated complete remission (CR) /RR AML pair (Fig 2d). Notably, half of the 10 genes overexpressed in RR-AML, CXCR4, LGALS1, S100A8, S100A9, SRGN (Serglycin), regulate cell-matrix interaction and play pivotal roles in leukemic cells homing bone marrow niche. The first 4 of these genes have been demonstrated as prognostic indicators of poor survival and associated with chemo-resistance and anti-apoptotic function. Furthermore, single-cell trajectory analysis of this CR/RR pair illustrated a change in differentiation pattern of HSPCs in CR-AML to monocytes in RR-AML. We are currently analyzing more AML samples to validate these findings. Conclusions: Our ScMo analysis demonstrates that the immune cells are systematically reprogrammed and functionally comprised in the AML ecosystem. Upregulation of BM niche factors could be the underlying mechanism for RR-AML. Thus, reversing the inhibited immune system is an important strategy for AML therapy and targeting leukemic cell-BM niche interaction should be considered for cases with high expression of these molecules on AML HSPCs. Note: J.Z. and J.A.S. share co-first authorship. Figure 1 Figure 1. Disclosures Scolnick: Proteona Pte Ltd: Current holder of individual stocks in a privately-held company. Xu: Proteona Pte Ltd: Current Employment. Ooi: Jansen: Honoraria; Teva Pharmaceuticals: Honoraria; GSK: Honoraria; Abbvie: Honoraria; Amgen: Honoraria. Lovci: Proteona Pte Ltd: Current Employment. Chng: Aslan: Research Funding; Takeda: Honoraria; Johnson & Johnson: Honoraria, Research Funding; BMS/Celgene: Honoraria, Research Funding; Amgen: Honoraria; Novartis: Honoraria, Research Funding; Antengene: Honoraria; Pfizer: Honoraria; Sanofi: Honoraria; AbbVie: Honoraria.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1774-1774
Author(s):  
Antonella Isgrò ◽  
Buket Erer ◽  
Pietro Sodani ◽  
Paola Polchi ◽  
Marco Marziali ◽  
...  

Abstract Background. We evaluated haematological and immunological characteristics of four thalassemia patients after T-cell-depleted HLA-haploidentical stem cell transplantation Methods. We evaluated the clonogenic capability by the colony forming cell assay (CFC) and the long term culture-initiating cell (LTC-IC) assay at baseline and 20 days after transplant. Stromal cells were obtained from long term culture of bone marrow mononuclear cells (BMMCs) and analysed by immunohystochemistry. Lymphocyte subsets were studied by flow cytometry; and stromal IL-7 production by BMMCs was analysed by ELISA. Results. At baseline, no significant differences were observed in haematological and in immunological parameters in thalassemia patients when compared with a group of normal subjects Day + 20 after transplant, a reduced clonogenic capability was observed (4 ± 2 vs. 41 ± 40 CFU-E, 17 ± 9 vs. 109 ± 22 BFU-E, 3 ± 1 vs. 9 ± 6 CFU-GEMM and 16 ± 10 vs. 66 ± 23 CFU-GM). The number of primitive bone marrow (BM) progenitor cells was also decreased (1.8 ± 1.4 vs. 15.4 ± 3.6 LTC-CFC/106 BMMCs). In addition, stromal cells secreted lower IL-7 levels (0.3 + 0.1 pg/mL vs. 0.8 + 0.1 pg/mL, in controls) and displayed by immunohistochemistry an altered phenotype. Upon light microscopy examination, the majority (75%) of these cells appeared as moderately large cells, frequently rounded, with abundant cytoplasm, whereas in control subjects about 90% of the stromal cells exhibited a different morphology characterized by irregular or spindle shape and branching cytoplasmic processes (fibroblast-like). Compared with normal subjects, thalassemia patients showed: reduction of naïve CD4+ T-cells (2 ± 0.5% vs 50 ± 10%), reduction of thymic naïve CD4+ T-cells (1 ± 0.2% vs 40 ± 12%,) and a significant increase of CD4+ cells activation markers (CD95, HLA-DR and CCR5). IL-7 receptor (CD127) expression was also significantly decreased on CD4+ T-cells and on naïve CD4+ T-cells (CD4+/CD45RA+CD62L+/CD127+). NK cells were among the first lymphocytes to repopulate the peripheral blood, and up to 70% of these cells were CD56 brigh whereas CD16+ NK cells were decreased. Conclusions. Twenty days post transplant, an impaired growth and differentiation capacity of stem/progenitor cells were observed in thalassemia patients, in parallel with an altered homeostasis of T-cells and a reduction of T-cell naïve compartment. We hypothesize that the damage of T cell compartment may be at least partially due to an altered production of new T cells starting from the haematopoietic stem/progenitor cells. CD56+ NK cells develop more rapidly than other lymphocytes, but CD16+ NK cells (with cytotoxic potential) require more prolonged exposure to maturation factors (IL-2) in the bone marrow. An IL7/IL7R pathway dysregulation has been also observed, possibly involving bone marrow stromal cells. In vitro studies are ongoing about the use of cytokines (IL-2, IL-7, IL-2 plus IL-7) supporting T cell development.


1998 ◽  
Vol 187 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Marie-Josée Guimond ◽  
Baoping Wang ◽  
B. Anne Croy

A large, transient population of natural killer (NK) cells appears in the murine uterine mesometrial triangle during pregnancy. Depletion of uterine (u) NK cells, recently achieved using gene-ablated and transgenic mice, results in pathology. Pregnancies from matings of homozygous NK and T cell–deficient tgε26 mice have &lt;1% of normal uNK cell frequency, no development of an implantation site–associated metrial gland, and an edematous decidua with vascular pathology that includes abnormally high vessel walls/lumens ratios. Fetal loss of 64% occurs midgestation and placentae are small. None of these features are seen in pregnant T cell–deficient mice. To confirm the role of the NK cell deficiency in these reproductive deficits, transplantation of tgε26 females was undertaken using bone marrow from B and T cell–deficient scid/scid donors. Engrafted pregnant females have restoration of the uNK cell population, induced metrial gland differentiation, reduced anomalies in the decidua and decidual blood vessels, increased placental sizes, and restoration of fetal viability at all gestational days studied (days 10, 12, and 14). Thus, uNK cells appear to have critical functions in pregnancy that promote decidual health, the appropriate vascularization of implantation sites, and placental size.


Sign in / Sign up

Export Citation Format

Share Document