Effects of Leucine Administration in Diamond-Blackfan Anemia Patients.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1686-1686
Author(s):  
Dagmar Pospisilova ◽  
Jana Cmejlova ◽  
Tomas Adam ◽  
Radek Cmejla

Abstract Diamond-Blackfan anemia (DBA) attracts much attention, since the symptoms of the disease are associated with mutations in ribosomal protein (RP) S19 in 25% of patients and in RPS17 and RPS24 in other DBA patients, indicating a possible relationship between ribosomal function, translation level and erythropoiesis. Indeed, translational efficiency has been found to be lowered in most DBA patients, and the amino acid leucine was tested in vitro as a potential modulator of protein synthesis with promising results. We therefore decided to evaluate the effects of leucine administration in several DBA patients. For leucine therapy, 4 patients with the lowest levels of translation (patients 1, 2, 4 and 6; see Table) and 2 others were selected from the Czech DBA registry. Due to iron overload, all patients were receiving iron chelation therapy at the start of the leucine therapy. A total dose of 2000 mg/m2/day of L-leucine was administered orally in three subdoses in the form of a capsule prepared by the hospital pharmacy. The doses were based on the leucine content in sports dietary protein supplements, and reduced according to each patient’s body surface area. Two and 4 hours after administration, serum leucine levels doubled, but did not exceed normal values. Changes in other amino acids serum levels were not observed. After 8 weeks of leucine supplementation, all patients reported a noticeable increase in appetite and weight gain. Over a period of 6 months of follow-up, a gradual improvement in reticulocyte counts, hemoglobin levels and a reduction of serum ferritin levels were observed in all patients (see Table). One patient became transfusion independent, and is currently still in remission (>5 months); in two other transfusion dependent patients, the inter-transfusion period doubled; in steroid-dependent patients, the steroid dose could be reduced. The patient with the RPS17 mutation significantly improved in weight and well-being, and the iron chelation therapy was stopped. Our results thus show for the first time that leucine administration can greatly improve the quality of life of DBA patients in at least two ways - it can reduce the need for iron chelation; and it can gradually enhance erythropoiesis, reducing the steroid dose or the frequency of transfusions. Patients’ characteristics Patient No. Age (y) / Sex Status before Leu Level of translation (% of controls)* Duration of Leu administration (mo) Serum ferritin level before Leu/current (μg/l) Reticulocyte count before Leu/current (%) Effect of Leu administration MUT: mutation in RPS17; NM: no mutation in RPS17, RPS19 or RPS24; TD: transfusion dependent; HDS: high dose steroid treatment; LDS: low dose steroid treatment; ND: not done; PTP: prolongation of the transfusion period (before Leu/ current); *: Haematologica91:1456(2006) 1 NM 7 / F TD 21 12 1220 / 381 0.1 / 3.3 Remission 2 NM 8 / M TD 47 9 1311 / 492 0.1 / 0.4 PTP (3 / 6 weeks) 3 NM 11 / F TD ND 2 1950 / ND 0.1 / ND Increased appetite 4 MUT 31 / M LDS 39 8 860 / 496 1.1 / 1.5 Steroid dose reduction 5 NM 13 / M TD 77 6 1427 / 1110 0.6 / 1.4 PTP (4 / 8 weeks) 6 NM 18 / M HDS 42 12 1605 / 862 0.4 / 0.8 Steroid dose reduction

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3078-3078
Author(s):  
Jonathan de Wilde ◽  
Birgit van Dooijeweert ◽  
Elise Huisman ◽  
Frans Smiers ◽  
Eduard J. Van Beers ◽  
...  

Abstract Introduction: Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome (IBMFS) characterized by hypoplastic anemia, congenital malformations and an increased risk to develop malignancies.Until now, treatment of DBA consists of red blood cell (RBC) transfusions, glucocorticoids (GC) and allogeneic hematopoietic stem cell transplantation in a selection of patients. Whereas RBC transfusions are the main cause of IO, elevated iron parameters have also been reported in non-transfusion-dependent DBA patients. Here we investigated the incidence and severity of IO in a well-described cohort of transfusion-dependent and non-transfusion-dependent DBA patients in order to gain more insight in the regulation of iron metabolism in DBA, and to provide clinical guiding to improve the diagnosis and management of IO in DBA. Methods: In this retrospective, observational study we have included twenty-nine pediatric and adult DBA patients for whom at least one serum ferritin level and/or MRI result was available. Ten patients (34%) were classified as transfusion-dependent (TD) (ten or more transfusions during the twelve months prior to evaluation). Non-transfusion-dependent (NTD) patients (66%) were treated with either GC, incidental transfusions or received no treatment. Transfusion burden (transfusion history) was assessed via medical records. Serum ferritin levels ≥250 ng/mL in males and ≥150 ng/mL in females were considered to be elevated. Results of MRI were expressed as liver iron content (LIC) and as cardiac T2* in milliseconds (ms). LIC ≥3 mg/g indicates significant hepatic IO, and LIC ≥7 mg/g is associated with clinical morbidity. Cardiac T2* ≤20 ms indicates significant cardiac IO. Results: In 15/29 (52%) MRI analysis of IO was performed. Hepatic IO (LIC >3 mg/g) was present in 9/29 (31%) of DBA patients, of which 8/9 (89%) had moderate to severe IO (LIC>7mg/g), despite the fact that all but one were treated with chelation therapy. Overall serum ferritin levels and LIC correlated significantly (r=0.7907, p<0.001), and all TD patients with LIC ≥7 mg/g had serum ferritin levels ³400 ng/mL, however, none of the patients had a serum ferritin >1000 ng/mL (Figure 1A). Interestingly, in the NTD group, hepatic IO was present in 2/7 patients (29%), who both only had mildly elevated serum ferritin levels (263 ng/mL and 277 ng/mL) and were not treated with iron chelation therapy. Based on total transfusion burden since birth, patients were classified in distinct groups: nine patients who received ³10 transfusions during life (9/10) were diagnosed with hepatic IO, whilst none of the patients who received <10 transfusions were diagnosed with hepatic IO. Both mean serum ferritin levels and mean LIC values were significantly higher in patients with ³10 transfusions compared to all with <10 transfusions (Figure 1B-C). Discussion: We demonstrate that IO is common in DBA yet can be easily overlooked in NTD patients that were treated with transfusions in the past. While serum ferritin levels significantly correlated with LIC values, this parameter cannot be used exclusively to screen for IO or titrate iron chelation therapy. We conclude that in clinical practice, biochemical parameters in combination with transfusion history justify a low-threshold to perform an MRI-based evaluation of IO, and to start adequate chelation therapy. Figure 1 Figure 1. Disclosures Van Beers: Agios Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Research Funding; Novartis: Research Funding; RR Mechatronics: Research Funding. Wijk: Global Blood Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Axcella health: Research Funding; Agios Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5155-5155
Author(s):  
Stuart L Goldberg ◽  
Patricia Giardina ◽  
Joan Parkhurst Cain ◽  
Deborah Chirnomas ◽  
Jason Esposito ◽  
...  

Abstract Abstract 5155 Introduction: Deferasirox (Exjade®, Novartis Pharmaceuticals) is an oral iron chelator indicated for the treatment of transfusional iron overload. The recommended mode of administration is to be taken on an empty stomach in water, apple juice or orange juice ≥30 minutes before food. However, there have been post-marketing reports of discontinuation or reduced compliance of deferasirox secondary to palatability and gastrointestinal adverse events. Registration trials with deferasirox did not evaluate different food combinations in an attempt to maintain predictable plasma levels. Early single dose studies suggested that the bioavailability of deferasirox is increased when administered with or before meals, and is positively influenced by fat content, but is not affected by degree of dispersion nor type of liquid. Long-term pharmacokinetic and tolerability studies involving a food effect have not been conducted to date, and the ability of alternate methods of administration to improve patient compliance with iron chelation therapy is unknown. Method: This is an ongoing single-arm, open-label, multi-center study designed to evaluate the palatability, safety, tolerability and pharmacokinetics of deferasirox when administered with food, dispersed in any liquid of choice, or crushed and added to food. The patient population includes patients with transfusional hemosiderosis (minimum entry serum ferritin ≥500 μ g/L) aged >2 years with thalassemia major, sickle cell disease (SCD), low or intermediate (INT-1) risk MDS or other anemias, who are on, starting, or resuming treatment with deferasirox. The study began with a 1-month run-in phase with deferasirox dosed according to prescribing information, then a 3-month assessment phase where subjects could choose each week from 5 general administration options including with or without meals, in the morning or evening, crushed and added to a soft food, or mixed in a liquid of choice. Subject diaries are used to record the meal and method of administration at the end of each week. Palatability is assessed with a modified facial hedonic scale, with additional directed questions capturing gastrointestinal side effects. This is a data analysis of the run-in phase. Result: Target enrollment has been met with 65 patients. Baseline data on the first 58 subjects include 8 in the 2 to <10 years of age group (median 7.5 years; range 3–9); 42 in the 10 to <60 years of age group (median 18.5 years; range 10–48); and 8 in the ≥60 years of age group (median 74 years; range71-83). Underlying hematologic diagnoses included SCD (41%), thalassemia major (29%), MDS (12%) and other anemias (17%). Sixty-nine percent of subjects were receiving deferasirox prior to entering the study. The median baseline serum ferritin level was 2405 μ g/L (range 560–8660) and was distributed as shown in Table 1. The most frequent adverse events were diarrhea (19%) and nausea (9%) (Table 2), which were more common in MDS (P=0.23 and P<0.01, respectively). Conclusion: This ongoing trial (NCT00845871) is evaluating whether alternative modes of administration improve palatability and tolerability while maintaining safety. Preliminary data from the assessment phase (deferasirox taken with meals, different liquids, or crushed and added to food) will be presented at the meeting. Disclosures: Goldberg: Novartis Oncology: Consultancy, Honoraria, Research Funding, Speakers Bureau. Off Label Use: Exjade, iron chelation therapy, off-label method of administration. Giardina:Novartis: Research Funding. Parkhurst Cain:Novartis: Research Funding. Chirnomas:Novartis: Research Funding. Esposito:Novartis: Employment. Paley:Novartis: Employment. Vichinsky:Novartis: Consultancy, Research Funding, Speakers Bureau; Hemaquest: Consultancy, Membership on an entity's Board of Directors or advisory committees; Apotex: Consultancy, Research Funding.


2020 ◽  
Vol 95 (9) ◽  
Author(s):  
Natalia Scaramellini ◽  
Dario Consonni ◽  
Elena Cassinerio ◽  
Carola Arighi ◽  
Alessia Marcon ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2685-2685 ◽  
Author(s):  
Lap Shu Alan Chan ◽  
Rena Buckstein ◽  
Marciano D. Reis ◽  
Alden Chesney ◽  
Adam Lam ◽  
...  

Abstract Introduction: The biology of myelodysplastic syndrome (MDS) is poorly understood, and treatment options are limited. Thus, most MDS patients require chronic red blood cell transfusion, and many develop secondary iron overload. Although the pathophysiological consequences of iron overload to the heart, liver, and endocrine organs have been well characterized, its effects on haematopoiesis have not been studied. However, it has been observed that chelation therapy in iron-overloaded MDS patients may result in reduction of transfusion requirements, and recent studies have suggested a correlation between the use of iron chelation therapy and improvement in leukaemia-free survival in MDS. At the cellular level, iron toxicity is mediated in large part via the generation of reactive oxygen species (ROS). It has been shown in animal models that accumulation of ROS leads to senescence of haematopoietic stem cells, and that ROS cause DNA damage and promote the development of malignancy. These effects of ROS may be particularly important in MDS, in which haematopoiesis is already severely compromised and genetic instability is a striking feature. Hypothesis: We hypothesize that iron overload secondary to transfusion leads to increased levels of intracellular ROS in early haematopoeitic cells in MDS. The increase in intracellular ROS in MDS would be predicted to lead further impairment of haematopoiesis via stem cell exhaustion and while promoting accumulation of DNA damage by myelodysplastic stem cells and early progenitors, thus accelerating progression of MDS to acute leukaemia. Results: To test this hypothesis, we examined the relationship between transfusion-related iron overload and ROS content of CD34+ bone marrow cells in MDS. ROS content was measured in CD34+ cells by flow cytometry in bone marrow aspirates from 34 consecutive MDS patients (CMML=4, MDS/MPD=2, RA=4, RARS=3, RCMD=2, RAEB 1=6, RAEB 2=12, RAEB-t/AML=1). The patients represented a wide range of prior transfusion burden (0-&gt;300 units PRBC) and serum ferritin levels (11-&gt;10000 μg/L). ROS was strongly correlated with serum ferritin concentration for patients with iron overload (serum ferritin &gt;1000 μg/L; n=14, R=0.733, p&lt;0.005). The correlation between ROS and ferritin level was even stronger in the subset of patients with RAEB 1 or RAEB 2 and iron overload (n=11, R=0.838, p&lt;0.005). In contrast, no correlation between ROS and ferritin level was demonstrated for patients with serum ferritin &lt;1000 μg/L (n=20). Importantly, iron chelation therapy was associated with a reduction in CD34+ cell ROS content in one patient. To assess the effect of iron overload on normal stem cell and progenitor function, we established a mouse model of subacute bone marrow iron overload. B6D2F1 mice were loaded with iron dextran by intraperitoneal injection (150mg total iron load over 21 days), and sacrificed three days after the end of iron loading. Iron staining of tissue sections confirmed iron deposition in the bone marrow, liver, and myocardium. The development of splenomegaly was noted in iron-loaded animals. Flow cytometric analysis revealed increased apoptosis of bone marrow cells in iron loaded mice based on annexin V+/7 AAD-staining (6.26±0.96% versus 3.54±0.99% for control mice, paired student’s t-Test p&lt;0.005). However, ROS content in CD117+ progenitors of iron loaded mice was similar to control mice. Thus, subacute iron loading in mice increases apoptosis but does not alter the ROS content of HSCs; we postulate that chronic iron overload is required to achieve this effect. Conclusions: These results establish a relationship between CD34+ cell ROS content and serum ferritin concentration in MDS patients with iron overload, and indicate that iron chelation therapy in this patient population reverses this ROS accumulation. The physiological consequences of this relationship are currently being investigated in this patient set by haematopoietic colony assays and assessment of DNA damage in CD34+ cells. Nonethelesss, these data may have key implications for the deployment of iron chelation therapy in MDS patients, and may explain the association between the use of iron chelation and improved leukaemia-free survival in MDS.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3183-3183
Author(s):  
Vassilis Ladis ◽  
Marouso Drossou ◽  
Dimitria Vini ◽  
Ersi Voskaridou ◽  
Miranda Athanasiou-Metaxa ◽  
...  

Abstract Abstract 3183 Background: The introduction of iron chelation treatment has led to a significant improvement in morbidity and overall survival in patients with transfusion-dependent anemias. Deferasirox is a once-daily, oral iron chelator approved for the treatment of transfusional iron overload in both adult and pediatric patients. The efficacy and safety of deferasirox in a variety of transfusion-dependent anemias has been established in numerous Phase II/III clinical trials. Since most patients with transfusion-dependent anemias require lifelong iron chelation therapy, there is a need to assess the long-term safety of deferasirox in both adult and pediatric patients. Aim: To assess the safety profile of deferasirox in patients with transfusional iron overload in a real-world clinical setting. To further investigate the safety profile of deferasirox in patients with congenital erythrocyte disorders and transfusional iron overload, with ferritin levels <4000 ng/ml and without severe cardiac siderosis. Methods: Between July 2009 and September 2010, 85 patients with transfusion-induced iron overload treated with deferasirox as per the approved product labeling were enrolled in the study. These data represent the 24-week planned interim analysis of a 12-month observational study on deferasirox safety profile in the treatment of pediatric and adult patients with transfusion-dependent anemias who were newly-treated with deferasirox. Safety was evaluated through the monitoring and recording of all adverse events and serious adverse events, as well as routine laboratory testing, including hematology, blood chemistry and hepatic function assessments. Results: The population had a median age of 37.6 years (range: 5.3–61.4) and a female to male ratio of 1.3. Beta-thalassemia (67.1%) was the most common transfusion-dependent anemia, followed by thalassemia intermedia requiring periodic transfusions (20.0%) and sickle cell anemia (12.9%). Mean baseline ferritin levels were 1502.1±870.5 (pediatric group: 1480.2±522.8 and adult group: 1503.6±891.4), while 53 out of the 85 patients (62.4%) had serum ferritin level above 1000 ng/ml. Mean baseline liver T2* value was 10.4±9.7 ms; 44.4% of patients demonstrated minimal liver iron deposition (MRI T2* > 6.3 ms), 51.4% had mild to moderate liver iron overload (T2* ≤ 6.3 ms), and 4.2% had severe liver iron overload (T2*<1.4 ms). 54 (63.5%) of patients analysed had been pre-treated with iron chelators and 31 (36.5%) were chelation-naïve. The initial average daily dose of deferasirox was 25.9±4.8 mg/kg, and 70.6% of patients had no dose modification during the 24-week follow-up period. A statistical significant decrease in median serum ferritin levels was observed by Week 24 (mean absolute change from baseline:-214.5 ng/mL; p=0.009) [Figure 1]. No statistically significant changes were observed in creatitine levels, creatinine clearance and transaminases by Week 24 [Figure 1]. 37 ADRs were reported by 17 patients (20%) over the 24-week period. Among the most frequently observed ADRs (>5%) were epigastralgia reported by 7.1% of patients (6/85) and loose stools/diarrhoea by 5.9% of patients (5/85). The majority of ADRs reported (nevents=25; 67.6%) were graded as mild in severity, while 21.6% (nevents=8) were graded as moderate and 10.8% (nevents=4) as severe. Most ADRs (nevents=31; 83.8%) resulted in full recovery by Week 24. The overall incidence of SADRs was as low as 1.2% (in particular one patient experienced severe epigastralgia and upper extremity pain which resulted in her withdrawal from the study after four months of treatment). The all-cause discontinuation rate was 9.4% (8/85), while only two patients (2.4%) discontinued the study therapy due to ADR; 1 patient due to increased transaminase levels and 1 patient due to the aforementioned SADR. Conclusions: These data highlight the safety profile of deferasirox in both adult and pediatric patients; the regular monitoring of serum ferritin levels as well as other iron-overload parameters and transfusion requirements play a major role in determining and optimizing the outcome of iron chelation therapy. Disclosures: Ladis: Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Drossou:Novartis Pharmaceuticals: Investigator participating in a trial sponsored by Novartis. Vini:Novartis Pharmaceuticals: Investigator participating in a trial sponsored by Novartis. Athanasiou-Metaxa:Novartis Hellas S.A.C.I.: Research Funding. Oikonomou:Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Vlachaki:Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Tigka:Novartis Hellas S.A.C.I.: Employment. Tzavelas:Novartis Hellas S.A.C.I.: Employment. Liakopoulou:Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Adamopoulos:Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Kattamis:Novartis Hellas S.A.C.I.: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5165-5165
Author(s):  
Christian Junghanss ◽  
Rudolf Schlag ◽  
Bernd Gaede ◽  
Matthias Moelle ◽  
Steffen Doerfel ◽  
...  

Abstract Abstract 5165 Background: Progressive anaemia is highly prevalent amongst many malignant diseases leading to RBC transfusion-dependency. Therefore transfusion-related iron overload (IOL) is common in these patients (pts) and can result in multiple organ failure. Iron chelation therapy prevents organ failure, reduces the risk of infections and can improve hematopoesis in some diseases. The once-daily oral iron chelator deferasirox has been shown to reduce iron overload in pts with various transfusion-dependent anaemias assessed by serum ferritin (SF). Despite extensive knowledge of iron chelation in MDS or beta-thalassemia pts, data in pts with other anaemias is limited. Here, we present data from a subgroup of transfusion-related IOL pts that were included two non-interventional studies (EXTEND, EXJANGE) performed in Germany and who suffered from diseases other than MDS or beta thalassemia. Methods: 130 pts with various malignant diseases such as myeloproliferative disorders (43 pts, including 31 pts particular specified as myelofibrosis), acute myeloid leukaemia (14 pts), sickle cell anaemia (6 pts), aplastic anaemia (11), congenital aplastic anaemia (5) or Non-Hodgkin's lymphoma (6 pts) were treated with deferasirox in the daily-routine setting of office-based physicians and included in either the EXTEND or EXJANGE study. Patient with MDS or beta-thalassemia were also included in the studies, but are excluded from this analysis. Analysis is based on 1-year pooled data of these two, multicenter, non-interventional observational studies. Transfusion-dependent pts with IOL with or without prior chelation were enrolled and received the iron chelator deferasirox. Prescription of deferasirox, just as inclusion and exclusion criteria was in accordance with the terms of Exjade marketing authorization in the EU. Efficacy and safety parameters, including serum ferritin and adverse events (AEs), were collected in 2-monthly intervals. Results: 98 pts had no prior chelation therapy (51 M, 45 F, 2 missing; mean age 63.3, range 3.2–91.9 yrs) and a median baseline SF of 2,968 (range 561–11, 423) ng/mL. 32 pts had prior received prior chelation therapy (mainly with desferal; 17 M, 15 F; mean age 50.1, range 3.5–80.9 yrs) and a median baseline SF of 2,635 (range 539–19, 540) ng/mL. The mean number of prior red blood cell transfusions was 55. The mean prescribed daily dose of deferasirox at the first visit was 16.3 mg/kg/d rising up to 18.1 mg/kg/d after 12 months. During treatment, median SF levels clearly decreased from first to final visit [-806 ng/mL; p<0.0001 (explorative analysis)] in the chelation-naïve and also in the pre-chelated population [-300 ng/ml; p = 0.1705 (explorative analysis)]. The median observation period and days on therapy was 349 and 343 days, respectively. At final visit 74 pts (56.9%) were still on deferasirox therapy. Reasons for discontinuation by the final visit included 19 AEs (35.2%). 45 pts (34.6%) experienced an investigator assessed drug-related AE. The most common drug-related AEs were diarrhea (n=17; 37.8%), nausea (n=11; 24.4%) and blood creatinine increased (n=6; 13.3%). As in previous clinical trials, serum creatinine clearances showed a minor decrease over the study period (median decrease until final visit: 4 ml/min). Conclusion: Our analysis confirmed that deferasirox is effective and well tolerated in chelation-naïve as well as in previously chelated pts with transfusion-related IOL and diseases other than MDS or beta thalassemia. As baseline serum ferritin values were >2,500 ng/mL even in pts with prior chelation therapy, adequate chelation treatment should be considered earlier at a serum ferritin >1,000 ng/mL in pts with transfusion-dependent IOL for adequate iron chelation therapy. Disclosures: Junghanss: Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Haus:Novartis Pharma: Employment. Junkes:Novartis: Employment. Leismann:Novartis: Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4558-4558
Author(s):  
Lisette Del Corso ◽  
Elisa Molinari ◽  
Andrea Bellodi ◽  
Riccardo Ghio ◽  
Andrea Bacigalupo ◽  
...  

Abstract BACKGROUND: Iron overload from chronic transfusion therapy can be extremely toxic and most patients (pts) do not receive adequate iron chelation therapy (ICT) despite evidence of transfusional iron overload (IOL). Deferasirox (DFX) is the principal option currently available for ICT in the management of IOL due to transfusion dependent anemia, such as in MDS pts. The most common adverse events (AEs) are gastrointestinal disorders, skin rash, elevations in liver enzymes levels and non-progressive transient increases in serum creatinine also in MDS pts, most of whom are elderly with significant comorbidities and side effects of other concomitant therapies. In order to achieve effective ICT with minimal toxicity in individual pts, regular monitoring to assess IOL and adverse effects of DFX treatment is essential. METHODS: The safety and efficacy of DFX were examined in a retrospective multicenter observational study of transfusion-dependent (TD) MDS pts with International Prognostic Scoring System (IPSS) low-or Int-1-risk. We included all pts treated with DFX up to 12 months, divided into two groups; the first one (group A) not under a multidisciplinary assessment, including pts not adequately treated, in terms of dosing and discontinuation of ICT and the second one (group B) with pts under multidisciplinary control. The DFX starting dosing was 10 mg/kg/die in all pts. The aim of our retrospective analysis was to assess the effectiveness of ICT in relation of dosing and right management of AEs. RESULT: We evaluated 45 MDS pts (12F/33M); 27 belonging to the group A and 18 to group B. The age was 74.2±8.8 and 77.3±4.8 respectively. The ECOG 0-1 was 85,1% in group A and 88,9% in group B. The transfusion episodes prior starting DFX were22.1±12.1 and 24.5±35.4 in the first and in the second group, respectively. The serum ferritin level at baseline was respectively 1285.1±489.6 ng/mL and 1452.6±748.1 ng/mL. The mean serum ferritin level increased from 1285.1+489.6 ng/mL to 1412.1+842.8 ng/mL in group A while decreased from 1452.6+748.1 ng/mL to 1166.1+ 723.4 ng/mL in group B. The rate of inadequate therapy, in terms of dosing and/or discontinuation ICT, was 85% in group A compared to 60% in group B (p= 0.086).The rate of severe SAE observed in all pts was 10%.The most common AEs were diarrhea, nausea, upper abdominal pain, serum creatinine increase. The positive hematological response rate was observed in 15% of all pts. CONCLUSIONS: The study showed that group B obtained advantage in terms of efficacy and toxicity. The difference between the two groups derived from the ability to manage comorbidities, concomitant therapies and AEs, in particular the rise in serum creatinine, the most common cause DFX discontinuation or dosing reduction. In this setting, the most important specialist was the nephrologist. In our multidisciplinary group experts in management of ICT were hematologist, internist, immune-hematologist and nephrologist. We shared how we monitored kidney function and managed a possible nephrotoxicity (table.2), in order to ensure DFX efficacy. Positive hematological responses were observed, and a subset of pts achieved transfusion independence. The timing of future multidisciplinary evaluation is set on 24 and 36 months, time in which we expect the best response to DFX therapy. Table 1. Ferritin trend group A (n27) group B (n18) Ferritin N mean±SD Median (range) N mean±SD Median (range) Baseline 27 1285.1±489.6 1134 (388-2099) 18 1452.6±748.1 1515 (160-3018) 3 months 22 1451.5±720.5 1247.5 (529-2791) 13 1312.7±909.8 1064 (521-3859) 6 months 23 1850.5±1079.1 1419 (374-4185) 11 1168.4±648.4 1300 (160-2409) 12 months 17 1412.1±842.8 1372 (111-3127) 9 1166.1±723.4 930 (277-2536) Table 2. Management of renal changes during therapy with DFX Creatinine and urine examination:1) in two successive determinations prior to initiation of therapy, then every month 2) in pts with other risk factors for kidney disease, every week for 1 month after start of DFX or dose increase and, subsequently, every month Changes in creatinine:1) increased by 33% in two successive determinations: reduce DFX dose of 5 mg/kg 2) progressive increase of creatinine: interrupt DFX and then re-challenge it at a lower dose with gradual increase if the clinical benefits outweigh the risks Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4834-4834
Author(s):  
Guillermo Garcia-Manero ◽  
Billie J. Marek ◽  
Roger M. Lyons ◽  
Noelia Martinez-Lopez ◽  
Carole Paley ◽  
...  

Abstract Abstract 4834 Introduction Despite recent improvements in therapies for patients with myelodysplastic syndromes (MDS), 60–80% will require continuing packed red cell blood (pRBC) transfusions for prolonged periods. Complications resulting from the iron burden may, therefore, become clinically significant for many patients during the course of their disease. Patients with lower-risk MDS have a greater chance of developing the long-term toxicity of iron overload because of their prolonged survival, and are more likely to benefit from effective iron chelation therapy. This report describes data from a registry designed to study the impact of iron overload and iron chelation therapy on organ function and survival in patients with lower-risk MDS. Methods This is an ongoing, prospective, non-interventional, multicenter 5-year registry in 107 US centers, enrolling 600 patients (aged ≥18 years) with lower-risk MDS (by WHO, FAB and/or IPSS criteria) and transfusional iron overload (defined as serum ferritin ≥1000 μg/L and/or having received ≤20 cumulative pRBC units and/or an ongoing transfusion requirement ≥6 units every 12 weeks). Follow-up will be performed at least every 6 months for a maximum of 60 months or until death. Recommended assessments include serum ferritin, creatinine, calculated creatinine clearance, echocardiograms, and endocrine and hematological status. Results As of May 31 2009, 391 patients have enrolled in the registry. Demographic data are available from 389 patients. Median age: 74.4 years (range 21–99); male: 218, female: 171; ethnicity: 331 Caucasian (85%), 25 African-American (6%), 24 Hispanic (6%), five Asian (1%), two Native American (0.5%), and two other (0.5%). The median time since diagnosis (n=385) was <3 years in 217 patients (56%); ≥3–<5 years in 72 (19%); ≥5–<7 years in 48 (12%); and ≥7 years in 48 (12%). The MDS classification of the patients by WHO, FAB and IPSS, as well as patients' serum ferritin and transfusion burden, are summarized in the table. The most frequent concomitant conditions classified by organ (n=384 patients) were: 205 (53%) patients with vascular, 160 (42%) endocrine, and 171 (45%) cardiac dysfunction. At registry entry, 249 patients were receiving erythropoietin; 61 granulocyte colony stimulating factor; seven hydroxyurea; 25 thalidomide (Thalomid); 147 5-azacytidine (Vidaza); 95 lenalidomide (Revlimid) and 90 decitabine (Dacogen). 137 of 391 (35%) patients were on iron chelation therapy at study entry: 34 (9%) received deferoxamine for mean and median treatment durations of 803 and 383 (range 1–4386) days, respectively, while 117 (30%) received deferasirox for mean and median durations of 488 and 396 (9–1269) days, respectively. Calculated creatinine clearance was normal (>80 mL/min) in 37 (9%) patients; mildly abnormal (51–80 mL/min) in 30 (8%); and moderately abnormal (30–50 mL/min) in nine (2%) patients. Conclusions These baseline data indicate the demographic distribution as well as the co-morbidities associated with lower-risk MDS patients. In spite of recent guidelines, fewer than 50% of iron-overloaded patients are receiving any iron chelation treatment, despite the presence of cardiac, vascular and endocrine concomitant conditions in 40-54% of patients. Recent retrospective data highlights the impact of chelation on mortality in lower-risk MDS patients. This ongoing registry will prospectively assess the impact of iron chelation on survival and organ function in iron-overloaded patients with lower-risk MDS. Disclosures Lyons: Novartis: Research Funding; GlaxoSmithKline: Consultancy, Research Funding; Johnson & Johnson: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Genzyme: Research Funding. Martinez-Lopez:Novartis Pharmaceuticals: Employment. Paley:Novartis Pharmaceuticals: Employment, Equity Ownership. Greenberg:Amgen: Consultancy, Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document