Is Hematopoiesis Clonal in Healthy Elderly Females?

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2223-2223
Author(s):  
Sabina Swierczek# ◽  
Neeraj Agarwal# ◽  
Gerald Rothstein ◽  
Roberto Nussenzveig ◽  
Josef Prchal

Abstract Clonality studies can establish the single cell origin of tumors and differentiate nonmalignant from malignant states. Detection of clonal cells may be genotype-based relying on somatic mutations to mark the clonal population (e.g. 9q+:22q– translocation in CML), or phenotype-based, where the clonal population is identified by expression of surrogate genes which facilitate tracking the clonal process. Methods for determining phenotypic clonality rely on the principle of X chromosome inactivation (XCIP), unique to women, and are based on differentiating transcriptionally active from inactive X-chromosomal genes. Detection of the polymorphic state of genes subjected to inactivation may be done by either: discrimination of DNA methylation status, detection of mRNA transcripts, or polymorphic isozyme protein products. Extreme skewing of X-chromosome allelic usage by methylation-based clonality assay has been reported in ∼30% of healthy elderly females precluding clonality studies in this population. In contrast, by X-chromosome quantitative transcriptional clonality assay (TCA), we previously reported a normal skewing range based on our determination of random X-chromosome inactivation in 8 progenitors of pluripotent hematopoietic stem cells at the time of inactivation during the blastocyst stage of development (J Exp Med, 183:748, 1996). Moreover, we have not observed clonal XCIP in TCA studies involving over 200 healthy heterozygous females, indicating the rarity of this phenomenon. However, we did not systematically study females >65 years old. Furthermore, our TCA protocol was laborious, technically demanding and required significant amounts of highly radioactive isotopes. In addition, due to susceptibility of DNA methylation to environmental factors we decided to re-investigate the issue of clonality in older females using a novel quantitative real time PCR assay based on a unique primer design, we previously reported for the JAK2V617F mutation (Exp Hematol. 2007;35(1):32–8). Females >65 years of age with no history of malignant disorders, unexplained anemia, or autoimmune disorders were recruited for our IRB approved study. Genomic DNA and total RNA was isolated from peripheral blood granulocytes, reticulocytes, and platelets where applicable. Clonality studies were performed using BTK, FHL1, IDS, G6PD, and MPP1 exonic polymorphisms (∼95% females are informative for at least one marker; Blood101:3294–301, 2003). Genomic DNA was used for genotyping exonic polymorphisms by TaqMan based allelic-discrimination assays. Thirteen elderly females (age range 65–92, mean 75.5, median 75) and 5 younger females (age range 30–40, median 36, mean 35), heterozygous for one or more markers, were identified. TCA was performed using total RNA on markers found to be informative. Neither clonal XCIP, nor extreme skewing XCIP was noted in any of the study subjects. Based on reported data, ∼30% elderly women were found to have extremely skewed XCIP; hence, we expected to find 4/13 elderly women with clonal XCIP in our study group. Statistical analysis, using an exact binomial test, indicates a low probability of false positive results by our assay (p=0.014, exact 95% CI [0,0.22]). In conclusion, hematopoiesis is not clonal in healthy elderly females. #equal contribution.

Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1411-1419 ◽  
Author(s):  
George L. Chen ◽  
Josef T. Prchal

Abstract Clonality often defines the diseased state in hematology. Clonal cells are genetically homogenous and derived from the same precursor; their detection is based on genotype or phenotype. Genotypic clonality relies on somatic mutations to mark the clonal population. Phenotypic clonality identifies the clonal population by the expression pattern of surrogate genes that track the clonal process. The most commonly used phenotypic clonality methods are based on the X-chromosome inactivation principle. Clonality detection based on X-chromosome inactivation patterns (XCIP) requires discrimination of the active from the inactive X chromosome and differentiation of each X chromosome's parental origin. Detection methods are based on detection of X-chromosome sequence polymorphisms identified by protein isoforms, transcribed mRNA, and methylation status. Errors in interpreting clonality tests arise from stochastic, genetic, and cell selection pressures on the mechanism of X inactivation. Progressive X-chromosome skewing has recently been suggested by XCIP clonality studies in aging hematopoietic cells. This has led to new insights into the pathophysiology of X-linked and autoimmune disorders. Other research applications include combining XCIP clonality testing with genetic clonality testing to identify clonal populations with yet-to-be-discovered genetic changes.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4566-4566
Author(s):  
Sabina Swierczek ◽  
Jaroslav Jelinek ◽  
Neeraj Agarwal ◽  
Andrew Wilson ◽  
Kimberly Hickman ◽  
...  

Abstract Abstract 4566 Even in the absence of a disease specific chromosomal marker, clonality can be assessed in somatic tissues of female origin by using assays based on the pattern of X-chromosome inactivation. The most widely used technique for quantifying X-chromosome inactivation is the HUMARA method that is based on the putative role of DNA methylation at CpG sites close to trinucleotide repeats in exon 1 in silencing of the AR locus. However, using the HUMARA method, we and others have observed that approximately 30% of healthy elderly volunteers appear to have clonal hematopoiesis. This observation is at odds with the concept that normal hematopoiesis is a polyclonal process, suggesting that the finding of monoclonality or oligoclonality in a high percentage of healthy volunteers by using the HUMARA method, is a technical artifact. To address this issue, we developed a clonality assay based on gene expression of five X-linked polymorphic genes and found no evidence of clonal hematopoiesis in healthy elderly volunteers, although we confirmed extreme skewing of X inactivation (consistent with monoallelic methylation of AR) in 30% of the study subject when analyzed by HUMARA (Swierczek et al., Blood 2008). In the present studies, we have validated the accuracy and reproducibility of our quantitative transcription-based clonality assay (qTCA) using two different methods for quantifying gene expression and compared the results with those obtained using the HUMARA method. DNA and RNA were extracted from peripheral blood samples from 31 healthy female volunteers (age in years as follows: range, 22-55; mean, 35; median, 34). RNA was reverse transcribed (RT) and analyzed by using our qTCA in which expression of three polymorphic genes (MPP1, IDS and FHL1), that are subject to X inactivation, is quantified by allele-specific, real-time RT-PCR. Based on DNA analysis, 25 of the 31 (80%) volunteers were polymorphic for at least one of the test genes. Results are reported as the percentage of each of the two single nucleotide polymorphisms (SNPs) that is present in the sample (e. g., 60% A; 40% G). PCR primers are designed to provide maximum discrimination between SNPs with >13 PCR cycles (i. e., 13 log2) separating true-positive from false-positive amplification. Aliquots of the isolated RNA from the test samples were sent to an independent investigator (JJ), at a separate institution, who was blinded to the results of our qTCA, and the allele ratio was determined by using a different technique (quantitative pyrosequencing). Comparison of the results, confirmed the accuracy and reproducibility of the two methods with coefficients of correlation for each gene as follows: (MPP1, r=0.9385; IDS, r=0.8565; FHL1, r=0.8657). One of the 25 informative females (4%) showed extreme skewing (SNP ratio >75%:25%) of X inactivation by both methods. Based on allelic differences in the number of CAG repeats, 29/31 participants were informative in the HUMARA. Among most of the samples, a good correlation was observed between the pattern of X chromosome inactivation as determined by HUMARA and that determined by both qTCA and quantitative pyrosequencing, however, 8/29 (27%) samples analyzed by the HUMARA showed extreme skewing of allele methylation (ratio >75%:25%). Of the 8 subjects with extreme skewing, 3 were homozygous (i. e., non-informative) for all of the X-chromosome polymorphic genes used in the qTCA. Samples from the 5 informative participants were analyzed by using the qTCA, and, in contrast to the HUMARA results, only one subject showed extreme skewing of the SNP ratio (the same subject as identified in the original qTCA). We also quantified HUMARA gene expression using the difference in the number of exon 1 CAG repeats between the two AR alleles as the polymorphic marker. These experiments showed that, of the 8 volunteers with skewing of X inactivation based on HUMARA, 5 had skewing of AR allele expression and 3 had expression of both AR alleles, indicating that the correlation between DNA methylation at the AR locus and AR mRNA transcription is inconsistent. In conclusion, we found a good correlation between the HUMARA and qTCA in some females; however, this was not the case in many healthy females both elderly and young. These experiments demonstrate the accuracy and reproducibility of the qTCA and confirmed that this technique is not subject to the artifact of aberrant skewing of X-inactivation due to monoallelic methylation of AR that limits the applicability and value of the HUMARA. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 2 (9) ◽  
pp. e113 ◽  
Author(s):  
Zhong Wang ◽  
Huntington F Willard ◽  
Sayan Mukherjee ◽  
Terrence S Furey

Changing DNA methylation patterns during embryonic development are discussed in relation to differential gene expression, changes in X-chromosome activity and genomic imprinting. Sperm DNA is more methylated than oocyte DNA, both overall and for specific sequences. The methylation difference between the gametes could be one of the mechanisms (along with chromatin structure) regulating initial differences in expression of parental alleles in early development. There is a loss of methylation during development from the morula to the blastocyst and a marked decrease in methylase activity. De novo methylation becomes apparent around the time of implantation and occurs to a lesser extent in extra-embryonic tissue DNA. In embryonic DNA, de novo methylation begins at the time of random X-chromosome inactivation but it continues to occur after X-chromosome inactivation and may be a mechanism that irreversibly fixes specific patterns of gene expression and X-chromosome inactivity in the female. The germ line is probably delineated before extensive de novo methylation and hence escapes this process. The marked undermethylation of the germ line DNA may be a prerequisite for X-chromosome reactivation. The process underlying reactivation and removal of parent-specific patterns of gene expression may be changes in chromatin configuration associated with meiosis and a general reprogramming of the germ line to developmental totipotency.


Aging ◽  
2015 ◽  
Vol 7 (8) ◽  
pp. 568-578 ◽  
Author(s):  
Davide Gentilini ◽  
Paolo Garagnani ◽  
Serena Pisoni ◽  
Maria Giulia Bacalini ◽  
Luciano Calzari ◽  
...  

2004 ◽  
Vol 2 (1) ◽  
pp. 27-37
Author(s):  
Anna A Pendina ◽  
Vera V Grinkevich ◽  
Tatyana V Kuznetsova ◽  
Vladislav S Baranov

 DNA methylation is one of the main mechanisms of epigenetic inheritance in eukaryotes. In this review we looked through the ways of 5-methylcytosin origin, it's distribution in genome, the mechanism of gene repression via hypermetilation, the role of metylation in genomic imprinting and in X-chromosome inactivation, in embryogenesis of mammals, in the processes of oncogenesis and in etiology of some common human inherited diseases


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bradley P. Balaton ◽  
Carolyn J. Brown

Abstract Background X-chromosome inactivation (XCI) is the epigenetic inactivation of one of two X chromosomes in XX eutherian mammals. The inactive X chromosome is the result of multiple silencing pathways that act in concert to deposit chromatin changes, including DNA methylation and histone modifications. Yet over 15% of genes escape or variably escape from inactivation and continue to be expressed from the otherwise inactive X chromosome. To the extent that they have been studied, epigenetic marks correlate with this expression. Results Using publicly available data, we compared XCI status calls with DNA methylation, H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3. At genes subject to XCI we found heterochromatic marks enriched, and euchromatic marks depleted on the inactive X when compared to the active X. Genes escaping XCI were more similar between the active and inactive X. Using sample-specific XCI status calls, we found some marks differed significantly with variable XCI status, but which marks were significant was not consistent between genes. A model trained to predict XCI status from these epigenetic marks obtained over 75% accuracy for genes escaping and over 90% for genes subject to XCI. This model made novel XCI status calls for genes without allelic differences or CpG islands required for other methods. Examining these calls across a domain of variably escaping genes, we saw XCI status vary across individual genes rather than at the domain level. Lastly, we compared XCI status calls to genetic polymorphisms, finding multiple loci associated with XCI status changes at variably escaping genes, but none individually sufficient to induce an XCI status change. Conclusion The control of expression from the inactive X chromosome is multifaceted, but ultimately regulated at the individual gene level with detectable but limited impact of distant polymorphisms. On the inactive X, at silenced genes euchromatic marks are depleted while heterochromatic marks are enriched. Genes escaping inactivation show a less significant enrichment of heterochromatic marks and depletion of H3K27ac. Combining all examined marks improved XCI status prediction, particularly for genes without CpG islands or polymorphisms, as no single feature is a consistent feature of silenced or expressed genes.


2020 ◽  
Vol 48 (5) ◽  
pp. 2372-2387 ◽  
Author(s):  
Julian A N M Halmai ◽  
Peter Deng ◽  
Casiana E Gonzalez ◽  
Nicole B Coggins ◽  
David Cameron ◽  
...  

Abstract A significant number of X-linked genes escape from X chromosome inactivation and are associated with a distinct epigenetic signature. One epigenetic modification that strongly correlates with X-escape is reduced DNA methylation in promoter regions. Here, we created an artificial escape by editing DNA methylation on the promoter of CDKL5, a gene causative for an infantile epilepsy, from the silenced X-chromosomal allele in human neuronal-like cells. We identify that a fusion of the catalytic domain of TET1 to dCas9 targeted to the CDKL5 promoter using three guide RNAs causes significant reactivation of the inactive allele in combination with removal of methyl groups from CpG dinucleotides. Strikingly, we demonstrate that co-expression of TET1 and a VP64 transactivator have a synergistic effect on the reactivation of the inactive allele to levels >60% of the active allele. We further used a multi-omics assessment to determine potential off-targets on the transcriptome and methylome. We find that synergistic delivery of dCas9 effectors is highly selective for the target site. Our findings further elucidate a causal role for reduced DNA methylation associated with escape from X chromosome inactivation. Understanding the epigenetics associated with escape from X chromosome inactivation has potential for those suffering from X-linked disorders.


1990 ◽  
Vol 10 (9) ◽  
pp. 4987-4989 ◽  
Author(s):  
J Singer-Sam ◽  
M Grant ◽  
J M LeBon ◽  
K Okuyama ◽  
V Chapman ◽  
...  

A HpaII-PCR assay was used to study DNA methylation in individual mouse embryos. It was found that HpaII site H-7 in the CpG island of the X-chromosome-linked Pgk-1 gene is less than or equal to 10% methylated in oocytes and male embryos but becomes 40% methylated in female embryos at 6.5 days; about the time of X-chromosome inactivation of the inner cell mass.


Sign in / Sign up

Export Citation Format

Share Document