High Levels of Acetylated Low Density Lipoprotein Uptake and Low Tie2 Promoter Activity Distinguishes Sinusoids from Other Vessel Types in the Murine Bone Marrow

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5465-5465
Author(s):  
Xiaomiao Li ◽  
Zhongbo Hu ◽  
Marda Jorgenson ◽  
William Slayton

Abstract Background: The bone marrow contains a variety of blood vessels that have different functions in maintaining the bone marrow as the major blood producing organ in adulthood. For instance, arterioles function to control the flow of blood into bone marrow compartments, and the sinusoids serve as a conduit to the blood stream and niches for megakaryocyte development. Most current studies of the bone marrow vasculature, including studies quantifying changes in the marrow vascular by microvascular density, do not differentiate between different types of marrow vessels. Recognizing the changes in different types of blood vessels has important physiologic implications. Here we report a new method to distinguish sinusoids from arterioles in the murine bone marrow. Methods and Results: We used transgenic mice with GFP expressed downstream of the Tie-2 promoter, combined with in vivo acetylated low-density lipoprotein (Ac-LDL) uptake method to differentiate sinusoids from arterioles. We found that Ac-LDL was specifically endocytosed by sinusoids, and Tie-2 expression was more pronounced in the arteries, arterioles, and transitional capillaries. Combining these two functional endothelial markers and using confocal microscopy to obtain three dimensional images, we identified transitional zones where arterioles emptied into the sinusoids. Conclusions: These results demonstrate that the marrow vasculature and specific endothelial cell types are functionally heterogeneous. Methods to study changes in the marrow vasculature and particularly the vascular niche, a function of sinusoids, need to take into account this heterogeneity.

1996 ◽  
Vol 314 (2) ◽  
pp. 563-568 ◽  
Author(s):  
Wendy L. HENDRIKS ◽  
Hans van der BOOM ◽  
Leonie C. van VARK ◽  
Louis M. HAVEKES

Lipoprotein lipase (LPL) stimulates the uptake of low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) in different cell types, including macrophages, through bridging of LPL between lipoproteins and extracellular heparan sulphate proteoglycans (HSPG). Because macrophages produce LPL and because modified lipoproteins are present in the arterial wall in vivo, we wondered whether LPL also enhances the uptake of oxidized LDL by J774 macrophages. LDL samples with different degrees of oxidation, as evaluated by relative electrophoretic mobility (REM) as compared with native LDL are used, as well as native and acetylated LDL. Addition of 5 μg/ml LPL to the J774 cell culture medium stimulated the binding of both native LDL and moderately oxidized LDL (REM < 3.5) 50–100-fold, and their uptake was stimulated approx. 20-fold. The LPL-mediated binding of native LDL and moderately oxidized LDL was dose-dependent. Preincubation of the cells with heparinase (2.4 units/ml) inhibited the stimulatory effect of LPL, indicating that this LPL-mediated stimulation was due to bridging between the lipoproteins and HSPG. The binding to J774 macrophages of severely oxidized LDL (REM = 4.3) was stimulated less than 3-fold by LPL, whereas its uptake was not stimulated significantly. The binding and uptake of acetylated LDL (AcLDL) were not stimulated by LPL, although the LPL-molecule itself does bind to AcLDL. Measurements of the cellular lipid content showed that addition of LPL also stimulated the accumulation in the cells of cholesteryl ester derived from both native LDL and moderately oxidized LDL in a dose-dependent manner. We conclude that our results present experimental evidence for the hypothesis that LPL serves as an atherogenic component in the vessel wall.


1984 ◽  
Vol 224 (1) ◽  
pp. 21-27 ◽  
Author(s):  
L Harkes ◽  
J C Van Berkel

In order to assess the relative importance of the receptor for low-density lipoprotein (LDL) (apo-B,E receptor) in the various liver cell types for the catabolism of lipoproteins in vivo, human LDL was labelled with [14C]sucrose. Up to 4.5h after intravenous injection, [14C]sucrose becomes associated with liver almost linearly with time. During this time the liver is responsible for 70-80% of the removal of LDL from blood. A comparison of the uptake of [14C]sucrose-labelled LDL and reductive-methylated [14C]sucrose-labelled LDL ([14C]sucrose-labelled Me-LDL) by the liver shows that methylation leads to a 65% decrease of the LDL uptake. This indicated that 65% of the LDL uptake by liver is mediated by a specific apo-B,E receptor. Parenchymal and non-parenchymal liver cells were isolated at various times after intravenous injection of [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL. Non-parenchymal liver cells accumulate at least 60 times as much [14C]sucrose-labelled LDL than do parenchymal cells accumulate at least 60 times as much [14C]sucrose-labelled LDL than do parenchymal cells when expressed per mg of cell protein. This factor is independent of the time after injection of LDL. Taking into account the relative protein contribution of the various liver cell types to the total liver, it can be calculated that non-parenchymal cells are responsible for 71% of the total liver uptake of [14C]sucrose-labelled LDL. A comparison of the cellular uptake of [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL after 4.5h circulation indicates that 79% of the uptake of LDL by non-parenchymal cells is receptor-dependent. With parenchymal cells no significant difference in uptake between [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL was found. A further separation of the nonparenchymal cells into Kupffer and endothelial cells by centrifugal elutriation shows that within the non-parenchymal-cell preparation solely the Kupffer cells are responsible for the receptor-dependent uptake of LDL. It is concluded that in rats the Kupffer cell is the main cell type responsible for the receptor-dependent catabolism of lipoproteins containing only apolipoprotein B.


Circulation ◽  
1996 ◽  
Vol 94 (7) ◽  
pp. 1698-1704 ◽  
Author(s):  
Klaus Juul ◽  
Lars B. Nielsen ◽  
Klaus Munkholm ◽  
Steen Stender ◽  
Børge G. Nordestgaard

1986 ◽  
Vol 234 (1) ◽  
pp. 245-248 ◽  
Author(s):  
W Jessup ◽  
G Jurgens ◽  
J Lang ◽  
H Esterbauer ◽  
R T Dean

The incorporation of the lipid peroxidation product 4-hydroxynonenal into low-density lipoprotein (LDL) increases the negative charge of the particle, and decreases its affinity for the fibroblast LDL receptor. It is suggested that this modification may occur in vivo, and might promote atherogenesis.


1994 ◽  
Vol 35 (4) ◽  
pp. 669-677
Author(s):  
H.N. Hodis ◽  
D.M. Kramsch ◽  
P. Avogaro ◽  
G. Bittolo-Bon ◽  
G. Cazzolato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document