Direct Binding of Grb2 Is Required for Efficient Induction of Myeloproliferative Disease in Mice by ETV6/FLT3.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2903-2903
Author(s):  
Kazuhisa Chonabayashi ◽  
Masakatsu Hishizawa ◽  
Shin Kawamata ◽  
Masashi Matsui ◽  
Tatsuharu Ohno ◽  
...  

Abstract Abstract 2903 Poster Board II-879 FMS-like tyrosine kinase 3 (FLT3), a class III receptor tyrosine kinase, is one of the most frequently mutated genes in hematological malignancies. The most common mutations of FLT3 are internal tandem duplications (ITDs) within the juxtamembrane domain: these mutations occur in 20% to 30% of patients with AML and are closely associated with a poor prognosis. In a small number of patients with myeloproliferative neoplasms (MPNs), FLT3 has been reported to fuse to ETV6 (TEL) and contribute to leukemogenesis, but the leukemogenic mechanism of ETV6/FLT3 remains unclear. We encountered a case of ETV6/FLT3 fusion in a patient with MPN complicated with T-cell lymphoblastic lymphoma. In this case, both myeloid and lymphoma cells shared the same chromosomal translocation, t(12;13)(p13;q12), and allogeneic hematopoietic stem cell transplantation led to complete remission for 3 years. Full-length ETV6/FLT3 fusion cDNA was cloned from the patient's bone marrow cells. Sequence analysis of the PCR product revealed that, in contrast to the finding of previously reported two cases of ETV6/FLT3-positive MPN, ETV6 exon 6 was fused to FLT3 exon 14 and that the fused portion of ETV6 contained 2 potential Grb2-binding sites (Vu et al., Leukemia 2006; Walz et al., Blood 2007a). The ETV6/FLT3 conferred IL-3-independent growth to Ba/F3 and 32Dcl3 cells. Using a dominant negative approach, we showed that both STAT5 and Ras played important roles in ETV6/FLT3-mediated transformation of the hematopoietic cell lines. To investigate the role of the ETV6/FLT3 fusion protein in vivo, we used a murine bone marrow transplant model. Retroviral transduction of the ETV6/FLT3 into primary murine bone marrow cells resulted in a CML-like myeloproliferative disease (MPD) with complete penetrance in the transplanted mice. The disease progressed to cause death at a median of 18 days after transplantation (n = 16). The transplanted mice developed severe leukocytosis (159 × 103 /μl to 417 × 103 /μl), splenomegaly, and extensive infiltration of myeloid cells in the bone marrow, spleen, liver, and peripheral blood. ETV6/FLT3-induced MPD was oligoclonal and only 2 of the 9 secondary transplant recipients developed similar MPD when 5 × 106 spleen cells from 3 independent diseased mice were used as donors. We assayed the mutant forms of the ETV6/FLT3 to test their ability to transform hematopoietic cells. Induction of MPD required the oligomerization domain of ETV6 and the tyrosine kinase activity of FLT3. Mice that received the double tyrosine-to-phenylalanine mutant of ETV6/FLT3 at sites 589 and 591 (Y589/591F) in the juxtamembrane domain of FLT3, which are critical for FLT3-ITD-induced MPD, also developed a similar MPD phenotype. Unlike FLT3-ITDs, Y589/591F mutation did not abrogate STAT5 activation in Ba/F3 and 32Dcl3 cells transformed by ETV6/FLT3. A recent study has shown that direct binding of Grb2 to tyrosine 768, 955, and 969 of FLT3 is important for FLT3-ITD-mediated proliferation and survival of hematopoietic cells. Tyrosine 314 in exon 5 of ETV6 has also been reported as the principal Grb2-binding site that contributes to leukemogenesis via oncogenic ETV6 fusion proteins such as ETV6/ABL. Thus, we next investigated the role of Grb2 binding in ETV6/FLT3-mediated leukemogenesis. Using coimmunoprecipitation assays, we demonstrated that Grb2 also binds to the tyrosine 314 and 354 of ETV6 of the ETV6/FLT3, in addition to the tyrosine 768, 955, and 969 of FLT3. Both ETV6/FLT3-Y314/354F and ETV6/FLT3-Y768/955/969F retained their interaction with Grb2 and induced rapidly fatal MPD when they were transduced into primary murine bone marrow cells. On the other hand, the ETV6/FLT3 mutant at all the binding sites of Grb2 (Y314/354/768/955/969F) significantly attenuated MPD development in mice. Simultaneous mutation of these 5 tyrosine residues completely abolished the binding of Grb2 and resulted in a marked decrease in the binding and phosphorylation of Gab2 and impaired activation of STAT5 and Akt in Ba/F3 cells. These results indicate that tyrosine 589 and 591 of FLT3 are dispensable for the ETV6/FLT3-induced MPD phenotype, and suggest that both ETV6 and FLT3 portions contribute to the ETV6/FLT3-mediated leukemogenesis by binding directly to Grb2. Our observations provide deep insights into the oncogenic signaling induced by active FLT3 mutants as well as provide a potential target for therapies. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1339-1345 ◽  
Author(s):  
Jennifer L. Rocnik ◽  
Rachel Okabe ◽  
Jin-Chen Yu ◽  
Benjamin H. Lee ◽  
Neill Giese ◽  
...  

Abstract Acquired mutations in the FLT3 receptor tyrosine kinase are common in acute myeloid leukemia and result in constitutive activation. The most frequent mechanism of activation is disruption of the juxtamembrane autoregulatory domain by internal tandem duplications (ITDs). FLT3-ITDs confer factor-independent growth to hematopoietic cells and induce a myeloproliferative syndrome in murine bone marrow transplant models. We and others have observed that FLT3-ITD activates STAT5 and its downstream effectors, whereas ligand-stimulated wild-type FLT3 (FLT3WT) does not. In vitro mapping of tyrosine phosphorylation sites in FLT3-ITD identified 2 candidate STAT5 docking sites within the juxtamembrane domain that are disrupted by the ITD. Tyrosine to phenylalanine substitution of residues 589 and 591 in the context of the FLT3-ITD did not affect tyrosine kinase activity, but abrogated STAT5 activation. Furthermore, FLT3-ITD–Y589/591F was incapable of inducing a myeloproliferative phenotype when transduced into primary murine bone marrow cells, whereas FLT3-ITD induced myeloproliferative disease with a median latency of 50 days. Thus, the conformational change in the FLT3 juxtamembrane domain induced by the ITD activates the kinase through dysregulation of autoinhibition and results in qualitative differences in signal transduction through STAT5 that are essential for the transforming potential of FLT3-ITD in vivo.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3973-3973
Author(s):  
◽  
Srinivasa Rao Bandi ◽  
Marion Rensinghoff ◽  
Rebekka Grundler ◽  
Lara Tickenbrock ◽  
...  

Abstract Abstract 3973 Poster Board III-909 Purpose Somatic mutations of Kit have been found in leukemias and gastrointestinal stromal tumors. The proto-oncogene c-Cbl negatively regulates Kit and Flt3 by its E3 ligase activity and acts as a scaffold for several signaling adaptor molecules. We recently identified the first c-Cbl mutation in human disease in an AML patient, called Cbl-R420Q. Results We transduced primary murine bone marrow retrovirally with c-Cbl mutants and transplanted it into lethally irradiated mice. Almost all recipients of bone marrow cells transduced with Cbl mutants developed a lethal hematologic disorder with a mean latency of 341 days in the Cbl-R420Q group and 395 days in the Cbl-70Z group. Eleven out of 13 mice and 8 out of 11 mice died in the Cbl-R420Q group and Cbl-70Z group, respectively. Two animals succumbed to a myeloid leukemia, the other mice developed a myeloproliferative disease. The leukemic mice showed a leukocytosis of up to 140.000/μL. They developed a splenomegaly with massive expansion of myeloid cells in liver and spleen. Histology sections of spleen, liver and bone marrow and FACS analyses of spleen, bone marrow and peripheral blood showed extensive infiltration of myeloid cells. Conclusion Thus, transplantation of bone marrow cells expressing Cbl mutants leads to a myeloid leukemia or to a myeloproliferative disease with long latency and high penetrance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4194-4194
Author(s):  
Tobias Berg ◽  
Michael Heuser ◽  
Florian Kuchenbauer ◽  
Gyeongsin Park ◽  
Stephen Fung ◽  
...  

Abstract Abstract 4194 Cytogenetically normal acute myeloid leukemia (CN-AML) patients with high BAALC or MN1 expression have a poor prognosis. Whereas the oncogenic function of MN1 is well established, the functional role of BAALC in hematopoiesis is not known. We therefore compared the expression of BAALC and MN1 in 140 CN-AML patients by quantitative PCR. To further assess the impact of BAALC on leukemogenesis we used retroviral gene transfer into primary murine bone marrow cells and cells immortalized with NUP98-HOXD13 (ND13) and HOXA9. Transduced cells were assessed in vitro by colony forming assays and for their sensitivity to treatment with all-trans retinoic acid (ATRA). They were also evaluated by in vivo transplantation into lethally-irradiated mice. In the 140 CN-AML patients analyzed, the expression of BAALC and MN1 was highly correlated (R=0.71). Retroviral overexpression of MN1 or BAALC in the Hox gene-immortalized bone marrow cells did not cause upregulation of the other gene, suggesting that these genes do not regulate each other. In murine bone marrow cells BAALC did not immortalize the cells in vitro as assessed by serial replating of transduced cells in methylcellulose assays. Transplantation of transduced cells resulted in negligible engraftment of approximately 1 percent at 4 weeks after transplantation. However, co-transduction of BAALC into NUP98-HOXD13 cells (which are very sensitive to the treatment with all-trans retinoic acid) increased the 50 percent inhibitory concentration (IC50) of ATRA by 4.3-fold, suggesting a negative impact of BAALC on myeloid differentiation. We next evaluated whether the differentiation inhibiting effects of BAALC may cooperate with the self renewal-promoting effects of HOXA9 to induce leukemia in mice. Mice receiving transplants of murine bone marrow cells transduced with BAALC and HOXA9 developed myeloid leukemias with a median latency of 139.5 days that were characterized by leukocytosis, massively enlarged spleens (up to 1.02 g), anemia and thrombocytopenia. Infiltrations of myeloid cells were also found in liver, spleen, and kidney. The disease was transplantable into secondary animals. By Southern blot analysis we found one to two BAALC viral integrations per mouse, suggesting that clonal disease had developed from BAALC-transduced cells. We demonstrate for the first time that BAALC blocks myeloid differentiation and promotes leukemogenesis when combined with the self-renewal promoting oncogene HOXA9. Due to its prognostic and functional effects BAALC may become a valuable therapeutic target in leukemia patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (7) ◽  
pp. 1406-1415 ◽  
Author(s):  
Michael G. Kharas ◽  
Rachel Okabe ◽  
Jared J. Ganis ◽  
Maricel Gozo ◽  
Tulasi Khandan ◽  
...  

Abstract Human cancers, including acute myeloid leukemia (AML), commonly display constitutive phosphoinositide 3-kinase (PI3K) AKT signaling. However, the exact role of AKT activation in leukemia and its effects on hematopoietic stem cells (HSCs) are poorly understood. Several members of the PI3K pathway, phosphatase and tensin homolog (Pten), the forkhead box, subgroup O (FOXO) transcription factors, and TSC1, have demonstrated functions in normal and leukemic stem cells but are rarely mutated in leukemia. We developed an activated allele of AKT1 that models increased signaling in normal and leukemic stem cells. In our murine bone marrow transplantation model using a myristoylated AKT1 (myr-AKT), recipients develop myeloproliferative disease, T-cell lymphoma, or AML. Analysis of the HSCs in myr-AKT mice reveals transient expansion and increased cycling, associated with impaired engraftment. myr-AKT–expressing bone marrow cells are unable to form cobblestones in long-term cocultures. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) rescues cobblestone formation in myr-AKT–expressing bone marrow cells and increases the survival of myr-AKT mice. This study demonstrates that enhanced AKT activation is an important mechanism of transformation in AML and that HSCs are highly sensitive to excess AKT/mTOR signaling.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 664-670 ◽  
Author(s):  
Ryan P. Million ◽  
Richard A. Van Etten

Abstract The BCR/ABL oncogene results from a balanced translocation between chromosomes 9 and 22 and is found in patients with chronic myeloid leukemia (CML) and in some patients with acute B-lymphoid leukemia. The Bcr/Abl fusion protein is a constitutively active tyrosine kinase that stimulates several intracellular signaling pathways, including activation of Ras through direct binding of the SH2-containing adapter protein Grb2 to Bcr tyrosine 177. A tyrosine-to-phenylalanine mutation (Y177F) at this site blocks the co-association of Bcr/Abl and Grb2 in vivo and impairs focus formation by Bcr/Abl in fibroblasts. However, the Bcr/Abl Y177F mutant can transform hematopoietic cell lines and primary bone marrow cells in vitro, so the importance of the Bcr/Abl–Grb2 interaction to myeloid and lymphoid leukemogenesis in vivo is unclear. We have recently demonstrated the efficient induction of CML-like myeloproliferative disease by BCR/ABL in a murine bone marrow transduction/transplantation model system. The Y177F mutation greatly attenuates the myeloproliferative disease induced by BCR/ABL, with mice developing B- and T-lymphoid leukemias of longer latency. In addition, the v-abl oncogene of Abelson murine leukemia virus, whose protein product lacks interaction with Grb2, is completely defective for the induction of CML-like disease. These results suggest that direct binding of Grb2 is required for the efficient induction of CML-like myeloproliferative disease by oncogenic Abl proteins.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1911-1919 ◽  
Author(s):  
Hideshi Yoshikawa ◽  
Toshiko Sakihama ◽  
Yasuo Nakajima ◽  
Kachio Tasaka

Abstract The interleukin-3 (IL-3)–dependent murine bone marrow–derived cell line FDC-P2/185-4 (185-4) undergoes apoptosis when IL-3 is withdrawn from culture medium. Previous results from our studies indicated that a high concentration of aggregated mouse IgG prevented apoptosis of 185-4 cells through FcγRIII by an autocrine mechanism, producing IL-3. But after 24 hours, 185-4 cells expressed CD95 (Fas/Apo-1) on their surfaces on stimulation via FcγRIII. In addition, this CD95 was functional and apoptosis was induced by anti-CD95 monoclonal antibody (MoAb). We investigated how these conflicting effects were induced by FcγRIII stimulation within the context of cell survival and death. The results showed that IL-3 was induced by calcium ionophore and that the IL-3 induced by FcγRIII stimulation was blocked by EGTA or FK506, but not by staurosporine (protein kinase C [PKC] inhibitor), indicating the important role of calcium-calcineurin in this system. On the other hand, the CD95 expression induced by FcγRIII stimulation was blocked by staurosporine, but not by EGTA or FK506, and phorbol myristate acetate (PMA) induced CD95 expression in the same manner as FcγRIII, indicating the involvement of PKC in the CD95 expression induced by FcγRIII stimulation. Thus, FcγRIII-mediated stimulation even while promoting immediate survival of the bone marrow cells, also triggers mechanisms that will facilitate their eventual deletion at the end of the response. These results suggest that a balance between cell survival and death is maintained to avoid unlimited cell growth caused by FcγRIII-ligand interaction in hematopoiesis during inflammation.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 664-670 ◽  
Author(s):  
Ryan P. Million ◽  
Richard A. Van Etten

The BCR/ABL oncogene results from a balanced translocation between chromosomes 9 and 22 and is found in patients with chronic myeloid leukemia (CML) and in some patients with acute B-lymphoid leukemia. The Bcr/Abl fusion protein is a constitutively active tyrosine kinase that stimulates several intracellular signaling pathways, including activation of Ras through direct binding of the SH2-containing adapter protein Grb2 to Bcr tyrosine 177. A tyrosine-to-phenylalanine mutation (Y177F) at this site blocks the co-association of Bcr/Abl and Grb2 in vivo and impairs focus formation by Bcr/Abl in fibroblasts. However, the Bcr/Abl Y177F mutant can transform hematopoietic cell lines and primary bone marrow cells in vitro, so the importance of the Bcr/Abl–Grb2 interaction to myeloid and lymphoid leukemogenesis in vivo is unclear. We have recently demonstrated the efficient induction of CML-like myeloproliferative disease by BCR/ABL in a murine bone marrow transduction/transplantation model system. The Y177F mutation greatly attenuates the myeloproliferative disease induced by BCR/ABL, with mice developing B- and T-lymphoid leukemias of longer latency. In addition, the v-abl oncogene of Abelson murine leukemia virus, whose protein product lacks interaction with Grb2, is completely defective for the induction of CML-like disease. These results suggest that direct binding of Grb2 is required for the efficient induction of CML-like myeloproliferative disease by oncogenic Abl proteins.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1716-1716
Author(s):  
Shannon Elf ◽  
Tae-Wook Chung ◽  
Dean P. Blevins ◽  
Ifor Williams ◽  
H. Jean Khoury ◽  
...  

Abstract Abstract 1716 p90 ribosomal S6 kinase 2 (p90RSK2) is a serine/threonine kinase that plays an active role in diverse cellular processes, including gene expression, cell proliferation, and survival. We previously demonstrated that RSK2 signaling plays a key role in the pathogenesis and disease progression of leukemogenic FGFR3 associated hematopoietic malignancies, including FGFR3-expressing t(4;14) multiple myeloma and TEL-FGFR3-expressing t(4;12)(p16;p13) peripheral T cell lymphoma. In this study, we found that p90RSK2 is commonly activated in diverse leukemia cell lines expressing different leukemogenic tyrosine kinases, including K562 (BCR-ABL), Molm14 and Mv4;11 (FLT3-ITD), HEL (JAK2 V617F), and EOL-1(FIP1L1-PDGFR alpha). We next examined the role of RSK2 in myeloid transformation induced by BCR-ABL and FLT3-ITD due to their high frequency of occurrence in CML and AML, respectively. Interestingly, although RSK2 is activated by BCR-ABL in both stably transduced Ba/F3 cells and K562 human leukemia cells, we found that genetic deficiency of RSK2 does not affect the pathogenesis or disease progression of myeloproliferative disease induced by BCR-ABL in a murine bone marrow transplant (BMT) model using wild type or RSK2-/- donor bone marrow cells. This finding suggests that RSK2 is dispensable for BCR-ABL induced myeloproliferative disease. Moreover, targeting RSK2 by treatment with potent and highly specific RSK inhibitor fmk did not effectively induce apoptosis in K562 human leukemia cells expressing BCR-ABL, or in primary leukemia cells from BCR-ABL positive CML patients. In contrast, we found that targeting RSK2 may represent an effective therapy to treat patients with FLT3-ITD positive AML. Treatment with fmk induced significant apoptotic cell death in Molm14 and Mv4;11 human leukemia cells expressing FLT3-ITD, as well as in primary leukemia cells from FLT3-ITD positive AML patients. In consonance with these results, FLT3-ITD induced T-cell lymphoma in a BMT assay using RSK2-/- donor bone marrow cells, phenotypically distinct from the myeloproliferative disease induced by FLT3-ITD using wild type donor bone marrow cells. These results suggest that RSK2 is required for FLT3-ITD induced hematopoietic transformation, likely playing a role in pathogenesis and lineage determination. Together these findings suggest that the role of RSK2 in hematopoietic transformation may depend on different upstream oncogenic signals mediated by different leukemogenic tyrosine kinases. Our data also demonstrate that RSK2 may represent an alternative therapeutic target in the treatment of FLT3-ITD positive leukemia. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 42 (2) ◽  
pp. 155-159
Author(s):  
Yufang Cui ◽  
Pingkun Zhou ◽  
Brian I. Lord ◽  
Jolyon H. Hendry

Sign in / Sign up

Export Citation Format

Share Document