The Inhibitory Receptor FcgRIIB Is Overexpressed, and Its Ligation by Anti- FcgRIIB Antibodies Suppresses IgM Production and Induces Apoptosis in Waldenstrom's Macroglobulinemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3736-3736 ◽  
Author(s):  
Guang Yang ◽  
Ping Gong ◽  
Lian Xu ◽  
Zachary Hunter ◽  
Jenny Sun ◽  
...  

Abstract Abstract 3736 Poster Board III-672 Introduction Waldenstrom's macroglobulinemia (WM) is a lymphoplasmacytic lymphoma characterized by overproduction of a monoclonal IgM paraprotein which can produce morbidity including hyperviscosity, as well as autoimmune related neuropathy, hemolysis, and thrombocytopenia. Therefore approaches aimed at both suppressing IgM production, as well as selectively inducing apoptosis of WM cells represent an ideal treatment strategy for WM. FcgRIIB is an inhibitory receptor that is expressed on B-cells, and whose expression we recently identified as highly over-expressed in WM. Importantly, FcgRIIB possesses an immunoreceptor tyrosine-based inhibitory motif (ITIM), and which becomes phosphorylated at Tyr 292 upon activation, and is then followed by inhibition of BCR signaling and induction of apoptosis. We therefore validated the expression of this receptor in WM, and examined the impact of its ligation on tumor cell killing, IgM secretion and downstream signaling events in WM cells. Patients and Methods Bone marrow lymphoplasmacytic cells (LPC) from 12 WM patients which were sorted for CD19+ and CD138+, and BCWM.1 WM cells were subjected to real-time PCR and flow cytometric analysis. Cells were then subjected to co-culture with anti- FcgRIIB (AT10, 7.3) or control antibodies for 24-48 hours, and their effects on survival, IgM production and downstream signaling were assessed. Results Real-time PCR and flow-cytometric analysis demonstrated strong expression of FcgRIIB in WM patient bone marrow CD19+ and CD138+ cells, thus confirming our recent microarray results. Importantly, the expression of FcgRIIB in WM LPC correlated with the memory B-cell marker CD27. Anti-FcgRIIB antibody treatment dramatically reduced constitutive, and/or IL-6 induced IgM production in CD19+ and CD138+ sorted primary WM LPC, as well as CD32hiCD138hi BCWM.1 cells. This effect was observed in some experiments at an early time point that had not effected survival. Among primary CD138+ WM LPC and CD32hiCD138hi expressing BCWM.1 cells, treatment with anti-FcgRIIB antibodies for 48 hours led to increased apoptosis in 10 of 12 patients, as assessed by Annexin V and PI staining which occurred despite blockade with a pan-caspase inhibitor, and was even more pronounced when anti-FcgRIIB antibodies were cross-linked. Western blot analysis revealed that treatment of CD32hiCD138hi expressing BCWM.1 cells with cross-linked anti- FcgRIIB antibodies led to phosphorylation of Tyr 292 of the FcgRIIB ITIM which was not observed in the absence of cross-linking. Binding of FcgRIIB by both the AT10 and 7.3 antibodies resulted in dephosphorylation of Akt, which was further reduced in the presence of cross-linking. Coincident with the above, the pro-apoptotic molecule JNK also underwent phosphorylation in the presence of anti-FcgRIIB binding. Conclusion Taken together, these studies validate our previous microarray data by showing that the inhibitory receptor FcgRIIB is strongly expressed on LPC from WM patients, and ligation thereof leads to suppression of IgM production and induction of apoptosis thereby identifying FcgRIIB as a novel therapeutic target in WM. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2494-2494
Author(s):  
Lauren C. Wallis ◽  
Matthew J. Streetly ◽  
Rebecca Auer ◽  
John Gribben ◽  
Dean Zhang ◽  
...  

Abstract Conventional techniques for assessing drug response and apoptosis induction rely on static assessment of cellular changes at predetermined time points (e.g. detection of exposed membrane phospholipids by Annexin V). The Kinetics of Optical Response assay (KOR) is a new technique that detects induction of apoptosis dynamically. It employs a spectrophotometric methodology to detect changes in optical density associated with membrane blebbing related to growth and death, allowing detection of apoptosis in real time. The KOR assay has already predicted the response to cytotoxic agents of AML cell lines and primary samples. This study uses the KOR assay in lymphoid malignancy and shows sensitivity to apoptosis induction by conventional and novel agents including bortezomib. The lymphoma cell line DOHH2 (t(14;18)), U266 (myeloma), K562 (CML) and primary CLL cells were used in this study with HL60 (AML) as a control. Cells were seeded in 96 well plates and treated with a variety of drugs alone or in combination (cytarabine, fludarabine, doxorubicin, daunorubicin, etoposide, melphalan, bortezomib) at multiple concentrations. Measurements were made at 5 min. intervals for up to 48 hrs and analysed using KORSoft™ software to generate apoptotic response curves. To validate this approach conventional techniques were used for comparison (Alamar Blue for cytotoxicity and flow cytometric analysis of cell cycle and apoptosis using propidium iodide and Annexin V staining respectively). The KOR assay can show changes in growth characteristics, induction of apoptosis and necrosis in response to drugs permitting a continuous analysis for maximum sensitivity (Smax). DOHH2 was found to be dose responsive to four of the drugs used, with the Smax for 10μM daunorubicin at 6 hours (48%), 1μM doxorubicin at 8 hours (38%), 100μM etoposide at 8 hours (52%), and minimally to 100μM cytarabine at 16 hours (21%). There was no effect from fludarabine. The addition of bortezomib increased Smax to 89% with etoposide and to a lesser degree with the other cytotoxic drugs. U266 showed a similar spectrum of results with greatest Smax with 100μM melphalan at 9 hours (57%) enhanced to 78% with the addition of bortezomib. There was minimal response to cytarabine and fludarabine. Parallel flow cytometric analysis using Annexin V and PI showed similar results to those from the KOR assay confirming the assessment of apoptosis to be valid. Cell cycle analysis showed an increased sub-G1 peak in keeping with apoptosis at times of Smax assessed by the KOR assay. The Alamar Blue cytotoxicity assay showed a dose dependent decrease in cell proliferation in response to increasing drug dose again paralleling other apoptosis measurements implying an apoptotic effect due to drug action and correlate well with those from the KOR assay. Primary CLL samples following CD19 selection were cultured with and without IL4 and exposed to the KOR assay with cytotoxics and bortezomib. Culture with IL4 alone gave good growth characteristics and revealed the combination of etoposide and bortezomib to provide the best induction of apoptosis (Smax 82%) compared to etoposide (26%) or bortezomib (32%) alone. The KOR assay is a microtitre approach to the assessment in real time of apoptosis. This study suggests the combination of bortezomib and etoposide is effective for lymphoma. Such approaches can accelerate the development of effective clinical trials.


2004 ◽  
Vol 50 (2) ◽  
pp. 306-312 ◽  
Author(s):  
Stefan S Biel ◽  
Andreas Nitsche ◽  
Andreas Kurth ◽  
Wolfgang Siegert ◽  
Muhsin Özel ◽  
...  

Abstract Background: We studied electron microscopy (EM) as an appropriate test system for the detection of polyomavirus in urine samples from bone marrow transplant patients. Methods: We evaluated direct EM, ultracentrifugation (UC) before EM, and solid-phase immuno-EM (SPIEM). The diagnostic accuracy of EM was studied by comparison with a real-time PCR assay on 531 clinical samples. Results: The detection rate of EM was increased by UC and SPIEM. On 531 clinical urine samples, the diagnostic sensitivity of EM was 47% (70 of 149) with a specificity of 100%. We observed a linear relationship between viral genome concentration and the proportion of urine samples positive by EM, with a 50% probability for a positive EM result for urine samples with a polyomavirus concentration of 106 genome-equivalents (GE)/mL; the probability of a positive EM result was 0% for urine samples with <103 GE/mL and 100% for urine samples containing 109 GE/mL. Conclusions: UC/EM is rapid and highly specific for polyomavirus in urine. Unlike real-time PCR, EM has low sensitivity and cannot quantify the viral load.


Cytometry ◽  
1991 ◽  
Vol 12 (1) ◽  
pp. 50-63 ◽  
Author(s):  
Dirk R. Van Bockstaele ◽  
Jar Lan ◽  
Hans-W. Snoeck ◽  
Marcel L. Korthout ◽  
Robrecht F. De Bock ◽  
...  

Author(s):  
Masakuni Furusato ◽  
William C. Allsbrook ◽  
Hiroyuki Kato ◽  
Hiroyuki Takahashi ◽  
Yuri Miyasaka ◽  
...  

2010 ◽  
Vol 4 (08) ◽  
pp. 511-516 ◽  
Author(s):  
Parisa Badiee ◽  
Abdolvahab Alborzi

Introduction:  Invasive aspergillosis is a severe complication of cytotoxic chemotherapies and bone marrow transplantation (BMT). The aim of this study was to assess the utility of a real-time PCR assay for the early diagnosis of Aspergillus species in blood samples from BMT patients. Methodology: Blood specimens (n = 993) from patients (n = 82) scheduled for BMT were collected prior to transplant and for 100 days post transplantation.  The specimens were later tested using an Aspergillus-specific real-time PCR assay. Cultures of clinical samples, along with sonography and computerized tomographic scans, were performed as standard of care. Results: Aspergillus DNA was positive in 94 sequential blood samples from 13 patients with clinical and radiological signs of infection. Samples from three of these patients were PCR-positive for Aspergillus in the first week of admission, prior to transplantation. Four patients with aspergillosis were cured with antifungal agents and nine died. An additional 12 patients without clinical signs of infection were PCR-positive on one occasion each, while two patients with clinical signs of infection were PCR-negative. Compared to routine methods of aspergillosis diagnosis, the respective sensitivity, specificity, negative, and positive predictive values of the PCR method by patient were 86.6%, 82%, 96.5% and 52%. Conclusions: The results show that Aspergillus infections in the blood of bone marrow transplant patients can be dectected by PCR methods. Early detection of Aspergillus infections by PCR has the potential to positively impact patient mortality rate and provide cost savings to hospitals.


Sign in / Sign up

Export Citation Format

Share Document