Cytochrome b5 Reductase T116S Mutation and Hemolysis in Sickle Cell Disease.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 903-903 ◽  
Author(s):  
Mehdi Nouraie ◽  
Noel S. Reading ◽  
Andrew Campbell ◽  
Caterina Minniti ◽  
Sohail R Rana ◽  
...  

Abstract Abstract 903 Abstract Background: Deficiency of NADH-cytochrome b5 reductase (cytb5r, EC 1.6.2.2) is responsible for congenital methemoglobinemia. This enzyme exists in soluble and membrane-bound forms. The soluble erythrocytic cytb5r isoenzyme is involved in cytochrome b5 reduction and in erythrocyte methemoglobin reduction; the membrane-bound microsomal enzyme participates in a fatty acid desaturation complex and in drug metabolism. The cytb5r isoforms are the product of a single gene locus, DIA1 (or CYB5R3), on chromosome 22. More then 40 mutations which cause methemoglobinemia have been reported to date; the majority are missense mutations and are associated with mild type I methemoglobinemia. The CYBR5 T116S mutation is the most common genetic polymorphism among African Americans known (gene frequency as high as 20%) and it has not yet been detected in other ethnic and racial groups. This polymorphism is not associated with methemoglobinemia and its functional significance is not yet known. We studied the relationship of CYBR5 T116S with the degree of hemolysis and the tricuspid regurgitation velocity (which correlates with systolic pulmonary artery pressure) in patients with sickle cell disease. Methods: Two hundred sixty one children and adolescents with hemoglobin SS were recruited at three tertiary medical centers and studied at steady state. Patients with other sickle genotypes were excluded from this analysis of CYBR5 T116S. Principal component analysis was used to develop a hemolytic component from reticulocyte count and concentrations of lactate dehydrogenase, aspartate aminotransferase and bilirubin. PCR was used to determine the presence of the CYBR5 T116S mutation. Multivariate models were employed to determine the independent effects of this genotype on degree of hemolysis and tricuspid regurgitation velocity. Results: Ninety-eight of the patients (38%) were CYBR5 T116S heterozygotes and 26 (10%) were homozygotes, consistent with Hardy-Weinberg equilibrium. Both heterozygosity (beta = -0.4) and homozygosity (beta = -0.5) were associated with reduction in the hemolytic component (N = 261; P for trend = 0.002) (Figure 1). This relationship persisted after adjusting for α-thalassemia, hemoglobin F percent and hydroxyurea treatment in a subset of 113 patients with all of this information available (P for trend = 0.037) and it also persisted in a subset of 87 patients with no α-globin gene deletion who were not being treated with hydroxyurea (P for trend = 0.029). In none of these analyses did G6PD-202/-376 have an effect on hemolysis. Both heterozygosity (beta = -0.04) and homozygosity (beta = -0.14) for the CYBR5 T116S mutation were also associated with lower tricuspid regurgitation velocity (P for trend = 0.024). Conclusions: CYBR5 T116S is a common polymorphism among patients with sickle cell disease that appears to be associated with less hemolysis and lower tricuspid regurgitation velocity. We speculate that this polymorphism may be related to a previously reported subpopulation of African Americans with increased cytochrome b5 reductase activity, and that increased anti-oxidant activity may explain the polymorphism's hemolysis-reducing effect. Functional studies to investigate this possibility are planned. Disclosures: No relevant conflicts of interest to declare.

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Katherine C Wood ◽  
Heidi M Schmidt ◽  
Scott Hahn ◽  
Mehdi Nouraie ◽  
Mara Carreno ◽  
...  

Introduction: Stroke and silent infarcts are serious complications of sickle cell disease (SCD), occurring frequently in children. Decreased nitric oxide bioavailability and responsiveness contribute to neurovascular disease. Cytochrome b5 reductase 3 (Cyb5R3) is a heme iron reductase that reduces oxidized soluble guanylate cyclase heme iron (Fe 3+ --> Fe 2+ ) to preserve nitric oxide signaling. A loss-of-function Cyb5R3 missense variant (T117S) occurs with high frequency (0.23 minor allele) in persons of African ancestry. Hypothesis: We hypothesized that impaired reductase function of T117S Cyb5R3 exacerbates brain damage after ischemic stroke in SCD. Methods: Bone marrow transplant was used to create male SCD mice with wild type (SS/WT) or T117S (SS/T117S) Cyb5R3. Blood was sampled before and after middle cerebral artery occlusion (55 minutes occlusion, 48 hours reperfusion). Infarct volume (IV) was determined by 2,3,5-triphenyltetrazolium chloride. Intravascular hemolysis and correlation (Pearson’s R) of hematology changes with IV were determined. Baseline Walk-PHaSST (NCT00492531) data were analyzed for stroke occurrence. Results: Brain IV (63 vs 27 cm 3 , P=0.003) and mortality (3/6 vs 0/8) were greater in SS/T117S vs SS/WT. Red blood cells, hemoglobin and hematocrit declined as IV increased. Plasma oxyhemoglobin increased in parallel with IV (r = 0.74, P=0.09). There were different signatures to hematologic changes that occurred with IV in SCD. Relative to wild type, T117S contracted the erythroid compartment (red blood cell: -13% vs 13%, P=0.003; hematocrit: -20% vs 1%, P=0.008; hemoglobin: -18% vs 2%, P=0.007). Mean platelet volume correlated with IV in SS/T117S (r = 0.87, P=0.06), while the inverse occurred in SS/WT (r = -0.63, P=0.09) Monocytes increased in parallel with IV in SS/T117S (r = 0.73, P=0.16), but followed the opposite trajectory in SS/WT (r = -0.77, P=0.04). WalkPHaSST participants with T117S Cyb5R3 self-reported more ischemic stroke (7.4% vs 5.1%) relative to wild type. Conclusion: Cyb5R3 is an important modifier of the evolution and outcome of ischemic brain injury in SCD and its hematologic consequences. Our findings indicate a bidirectional relationship between stroke and anemia in SCD that may axially turn on Cyb5R3 activity.


Blood ◽  
2009 ◽  
Vol 114 (21) ◽  
pp. 4639-4644 ◽  
Author(s):  
Victor R. Gordeuk ◽  
Andrew Campbell ◽  
Sohail Rana ◽  
Mehdi Nouraie ◽  
Xiaomei Niu ◽  
...  

AbstractHydroxyurea and higher hemoglobin F improve the clinical course and survival in sickle cell disease, but their roles in protecting from pulmonary hypertension are not clear. We studied 399 children and adolescents with sickle cell disease at steady state; 38% were being treated with hydroxyurea. Patients on hydroxyurea had higher hemoglobin concentration and lower values for a hemolytic component derived from 4 markers of hemolysis (P ≤ .002) but no difference in tricuspid regurgitation velocity compared with those not receiving hydroxyurea; they also had higher hemoglobin F (P < .001) and erythropoietin (P = .012) levels. Hemoglobin F correlated positively with erythropoietin even after adjustment for hemoglobin concentration (P < .001). Greater hemoglobin F and erythropoietin each independently predicted higher regurgitation velocity in addition to the hemolytic component (P ≤ .023). In conclusion, increase in hemoglobin F in sickle cell disease may be associated with relatively lower tissue oxygen delivery as reflected in higher erythropoietin concentration. Greater levels of erythropoietin or hemoglobin F were independently associated with higher tricuspid regurgitation velocity after adjustment for degree of hemolysis, suggesting an independent relationship of hypoxia with higher systolic pulmonary artery pressure. The hemolysis-lowering and hemoglobin F–augmenting effects of hydroxyurea may exert countervailing influences on pulmonary blood pressure in sickle cell disease.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-18
Author(s):  
Katherine C Wood ◽  
Heidi M Schmidt ◽  
Scott Hahn ◽  
Subramaniam Sanker ◽  
Samit Ghosh ◽  
...  

Introduction. Stroke and silent infarcts are serious complications of sickle cell disease (SCD), occurring frequently in children between 3 and 14 years old. A vast amount of clinical and experimental evidence has concluded that decreased nitric oxide (NO) bioavailability and/or NO responsiveness, as is seen in SCD, is a major contributing factor in the pathogenesis of neurovascular disease. NO responsiveness, which occurs via NO-induced activation of soluble guanylate cyclase (sGC), requires reduced heme iron (Fe2+) in the sGC active site. We recently identified cytochrome b5 reductase 3 (Cyb5R3) as an sGC heme iron reductase in vascular smooth muscle (VSM), where it reverses the oxidized heme iron of sGC (Fe3+ --&gt; Fe2+) to preserve NO sensing/signaling under conditions of oxidative stress. In a mouse model of SCD we have shown that knockdown of Cyb5R3 in VSM accelerates the development of pulmonary hypertension and cardiac remodeling. A missense variant of Cyb5R3 (T117S) that results in loss-of-function methemoglobin reductase activity occurs at a high frequency in persons of African ancestry (0.23 minor allele frequency). Unpublished baseline data from the Walk-PHaSSt trial (NCT00492531) reveals that persons with SCD who carry the T117S variant are at increased risk of ischemic stroke; these individuals self-reported almost 50% more (74 vs 51 cases per 1000 individuals) ischemic stroke than those with wild-type (WT) Cyb5R3. Hypothesis. We hypothesized that impaired reductase function of Cyb5R3 T117S leads to sustained sGC heme oxidation, which drives cerebral vascular dysfunction and exacerbates brain damage after ischemic stroke in SCD. Methods. Bone marrow transplant was used to create SCD mice with global expression of WT or T117S Cyb5R3, hereafter referred to as SS/WT or SS/T117S, respectively. All mice were male, C57Bl/6 background, and &gt;85% engrafted with SS Hb for 12 weeks. Ischemic stroke was induced using transient middle cerebral artery occlusion (MCAO: 55 min occlusion, 48 hr reperfusion), after which brains were stained with 2,3,5-triphenyltetrazolium chloride (TTC,1%) to determine infarct volume. Blood was sampled before and after MCAO to assess effects of brain infarct on hematological parameters. Student's t-test was used for analysis of 2 groups and Pearson's R used for correlation analyses of brain infarct volume with hematology changes [(post-pre/pre) * 100]. Results. Global expression of T117S Cyb5R3 in SCD caused increased cerebral infarct volume (62.9 vs 26.7 cm3, P=0.003) and mortality (3/6 vs 0/6) relative to WT Cyb5R3. WT and T117S Cyb5R3 mice with SCD were similar in that both showed declining red blood cells (RBC), hemoglobin (Hgb) and hematocrit (Hct) as infarct volumes increased. In the SS/T117S group, the anemia was more severe in keeping with larger infarct volumes. There were different signatures to the hematologic changes that occurred with cerebral infarct in SCD. When compared to WT Cyb5R3, T117S caused the erythroid compartment to contract (RBC: -12.97% vs 13.41%, P=0.01; Hct: -19.75% vs 0.31%, P=0.025; Hgb: -17.93% vs 2.78%, P=0.017). In SS/WT mice platelet numbers increased more relative to SS/T117S (17.5 vs 9.7 * 103 cells/uL); and MPV, a measure of platelet activation, inversely correlated with brain infarct volume (r = -0.94, P=0.006), the opposite of what was seen in SS/T117S (r = 0.87, P=0.056). Monocytes seem to play an important role in the volume of brain infarct in SS/T117S as their numbers increased in parallel with infarct volume (r = 0.73, P=0.16), but followed the opposite trajectory in SS/WT mice (r = -0.75, P=0.14). Conclusion. These results indicate that Cyb5R3 is an important modifying factor in the evolution and outcome of ischemic brain injury in SCD. Our findings also raise questions on just how cerebral infarct modifies the anemia of SCD, as well as the role played by Cyb5R3 in the dynamics of that relationship. To what extent is the sGC-cGMP-PKG pathway involved at the cerebrovascular and erythropoietic levels? Does Cyb5R3 contribute resilience to ischemic stroke in SCD? The development and application of targeted therapies for effectively preventing and treating cerebrovascular disease in SCD rely on finding the answers to these questions. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Brenda W. Dyal ◽  
Khulud Abudawood ◽  
Tasha M. Schoppee ◽  
Stacy Jean ◽  
Valandrea M. Smith ◽  
...  

Author(s):  
Alexandra Szabova ◽  
Kenneth R Goldschneider

0.2% of African-Americans have sickle cell anemia while, with 8% to 10% have sickle cell trait. This chapter provides an overiew of the etiology, pathophysiology, and treatment of sickle cell anemia as they affect anesthetic management—before, during, and after surgery.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1648-1648
Author(s):  
Emmanuel Okocha ◽  
Melanie Garrett ◽  
Karen Soldano ◽  
Laura M. De Castro ◽  
Jude Jonassaint ◽  
...  

Abstract Abstract 1648 Background: Renal failure occurs in 5–18% of sickle cell disease (SCD) patients and is a major risk factor for early mortality. However, there is no established method of identifying SCD patients that are at high risk of developing this outcome prior to the appearance of proteinuria, and its pathobiology is not well understood. The non-muscle myosin heavy chain ll-A (MYH9) gene, which encodes the heavy chain of myosin II-A in the podocyte cytoskeleton, has been identified as driving the high risk of focal segmental glomerulosclerosis (FSGS) and end-stage renal disease in African Americans. Methods: We genotyped 26 single nucleotide polymorphisms (SNPs) in the MYH9 gene in 521 unrelated adult (18 – 83 years) SCD patients who had been screened for proteinuria. Logistic regression was used to determine if the SNPs predicted risk for proteinuria among the patients. Results: Of 521 adult SCD patients studied, 140 had proteinuria, while 381 did not. On average, subjects with proteinuria were 6 years older than subjects without proteinuria (p<0.0001). The odds of having proteinuria increased by 1.04 (4.2%) for every one year increase in age, starting at age 18. We found association with proteinuria for 8 SNPs in MYH9, with nominal p values ranging from 0.025 to 0.0001. Two of these SNPs (rs5756129 and rs1005570) had been previously associated with FSGS in African-Americans without SCD (Kopp et al., 2008). Five SNPs remained significant after correcting for multiple testing (p < 0.003) using the method described by Li and Ji (2005), and a risk haplotype significantly associated with proteinuria (p=0.001) was identified. The frequency of proteinuria among individuals who were homozygous for the risk genotype ranged from 40–50% for each of the five SNPs remaining significant after adjusting for multiple testing, while the risk of proteinuria for individuals who did not have that genotype ranged from 20–30%. Glomerular filtration rate was negatively correlated with proteinuria (r = -0.25, p < 0.0001) but was not itself associated with MYH9 SNPs. Although we tested for association of proteinuria with the two most significant BMPR1B SNPs found by Nolan et al. (2007), neither were associated with proteinuria or GFR in age-adjusted analysis of our cohort, although we did observe nominal evidence for association of a different BMPR1B SNP with proteinuria in our data set (rs1434536, p=0.004, age adjusted). To further investigate a possible connection between BMPR1B and MYH9, we performed regression analyses including BMPR1B SNPs (rs1434536, rs2240036 and rs4145993) and the MYH9 haplotype in the models and controlled for age. In these analyses, the MYH9 risk haplotype remained a significant predictor of proteinuria and was only borderline associated with GFR. None of the BMPR1B SNPs were associated with proteinuria or GFR when the MYH9 haplotype was included in the model, suggesting that MYH9 is likely the more important contributor to these processes in our data set. Conclusion: Our data provide additional support for the role of MYH9 in renal dysfunction among African Americans. A specific haplotype appears to be associated with increased risk for proteinuria among patients with SCD. The association of MYH9 with renal dysfunction in SCD provides insight into the pathophysiology of this process and may lead to early identification of patients at risk and, ultimately, to new modes of therapeutic intervention. Disclosures: De Castro: GlycoMimetics: . Telen:GlycoMimetics: Consultancy, clinical trial sponsorship.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 201-201
Author(s):  
Namita Kumari ◽  
Tatiana Ammosova ◽  
Sharmeen Diaz ◽  
Xionghao Lin ◽  
Xiaomei Niu ◽  
...  

Abstract Sickle cell disease (SCD) is a characterized by hemolysis, vaso-occlusion and ischemia. Several previous studies pointed to a possibility that SCD patients might be protected from HIV-1 infection. These studies described low prevalence of anti-HIV-1 antibodies in SCD patients transfused with potentially HIV-1 infected blood;1 higher number of long-term non-progressors among HIV-1 infected SCD patients, 2 and a lower frequency of HIV diagnosis among SCD patients (odds ratio 0.33).3 This study aims to decipher a mechanism of HIV-1 restriction in PBMC from SCD patient infected with HIV-1 ex vivo. HIV-1 replication in SCD PBMC was inhibited at the level of reverse transcription and transcription implicating the involvement of post-entry and transcription restriction factors. SAM domain and HD domain-containing protein 1 (SAMHD1) restricts HIV-1 infection in in myeloid cells. 4,5 by reducing intracellular nucleotide pool and blocking reverse transcription. SAMHD1 phosphorylation on Thr-592 by CDK2 or CDK1 inactivates it and prevents HIV-1 inhibition. We showed that SAMHD1 phosphorylation was reduced in SCD PBMCs and in hemin-treated promonocytic THP-1 cells. Moreover, knock-down of SAMHD1 prevent hemin-mediated inhibition of HIV-1 in THP-1 cells. We also detected a reduction of CDK2 activity in SCD PBMCs and in hemin-treated THP-1 cells which can explain reduced SAMHD1 phosphorylation. Previously, we showed that CDK2 activity is inhibited when intracellular iron levels are depleted by iron chelators. We observed reduced intracellular labile iron levels and increased expression of iron export protein, ferroportin and HIF-1α in SCD PBMCs. Importantly, treatment of SCD PBMCs with hepcidin alleviated HIV-1 inhibition. Unaltered hepcidin levels in plasma of SCD patients suggest that ferroportin expression is sustained in SCD PBMC. Our study points out to ferroportin as upstream regulator of SAMHD1 and links a reduction in iron levels, inhibition of CDK2 activity and a decrease in SAMHD1 phosphorylation to the inhibition of HIV-1 infection in SCD. Acknowledgments. This work was supported by NIH Research Grants 1P50HL118006, 1R01HL125005 and 5G12MD007597. The content is solely the responsibility of the authors and does not necessarily represent the official view of NHLBI, NIMHD or NIH. Literature 1. Castro O, Saxinger C, Barnes S, Alexander S, Flagg R, Frederick W. Prevalence of antibodies to human immunodeficiency virus and to human T cell leukemia virus type I in transfused sickle cell disease patients. J Infect Dis. 1990;162(3):743-745. 2. Bagasra O, Steiner RM, Ballas SK, et al. Viral burden and disease progression in HIV-1-infected patients with sickle cell anemia. Am J Hematol. 1998;59(3):199-207. 3. Nouraie M, Nekhai S, Gordeuk VR. Sickle cell disease is associated with decreased HIV but higher HBV and HCV comorbidities in US hospital discharge records: a cross-sectional study. Sex Transm Infect. 2012. 4. Hrecka K, Hao C, Gierszewska M, et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature. 2011;474(7353):658-661. 5. Laguette N, Sobhian B, Casartelli N, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474(7353):654-657. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 08 (02) ◽  
pp. 541-559 ◽  
Author(s):  
Brandi Pernell ◽  
Michael DeBaun ◽  
Kathleen Becker ◽  
Mark Rodeghier ◽  
Valencia Bryant ◽  
...  

SummaryIntroduction: Sickle cell disease (SCD) is a childhood and adult disease that primarily affects African Americans, characterized by life threatening sequelae mitigated by medications. One-way and two-way short message service (SMS) medication reminders have differing efficacy in chronic diseases. There is limited literature about SMS medication reminders in SCD.Objective: The goal of this study was to test the feasibility, defined by recruitment/acceptance, retention/attrition, and technology utilization, of two-way SMS medication reminders in individuals with SCD with and without asthma.Materials and Methods: Participants were randomly allocated to standard care or reminders. Two-way SMS reminders were automated using Research Electronic Data Capture (REDCap) for hydroxyurea, fluticasone, budesonide and montelukast. Adherence was measured using the Morisky Medication Adherence Scale-8 (MMAS-8). Asthma control was assessed using the Childhood and Adult-Asthma Control Tests (ACT). Participants were enrolled 28 to 60 days with a common termination date.Results: The recruitment rate was 95% (47/49) and 82.9% completed the study. Among the 47 study participants enrolled, 51.1% were male, 61.7% were adults, median age was 20 (range: 3 to 59), and 98% were African Americans. Of the 26 participants receiving messages, 20% responded on over 95% of the days and usage varied with an average response rate of 33%, ranging from 21% to 46%. Medication adherence scores improved significantly in the intervention group (3.42 before, 5.46 after; p=0.002), but not in the control group (3.90 before, 4.75 after; p=0.080). Childhood-ACT scores improved in the intervention group (19.20 before, 24.25 after). Adult-ACT scores within the intervention arm were unchanged (21.0 before, 22.0 after. ACT scores did not improve significantly.Conclusion: This study demonstrated the feasibility for two-way SMS medication reminders to improve medication adherence in a high-risk population where daily medication adherence is critical to health outcomes and quality of life.Citation: Pernell BM, DeBaun MR, Becker K, Rodeghier M, Bryant V, Cronin RM. Improving medication adherence with two-way short message service reminders in sickle cell disease and asthma: A feasibility randomized controlled trial. Appl Clin Inform 2017; 8: 541–559 https://doi.org/10.4338/ACI-2016-12-RA-0203


Sign in / Sign up

Export Citation Format

Share Document