The Etiology of Hemophilia Hiding Deep Inside the F8 Intronic Sequence

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1223-1223
Author(s):  
Hiroshi Inaba ◽  
Keiko Shinozawa ◽  
Takeshi Hagiwara ◽  
Kagehiro Amano ◽  
Katsuyuki Fukutake

Abstract Abstract 1223 Introduction/Background: Hemophilia A is a congenital X-linked bleeding disorder caused by various mutations in the coagulation factor VIII gene (F8). However, recent studies have described that no genetic mutation could be found in the F8 of about 2% of hemophilia A patients, even after nucleotide sequencing including the entire coding region, exon/intron boundaries, and the 5'- and 3'-untranslated region (Vidal et al, 2001; Klopp et al, 2002). Factor VIII deficient mechanisms underlying this phenomenon remain unexplained. To further elucidate the mechanisms causing hemophilia A in these patients, we performed a detailed analysis of F8 mRNA. Materials and methods: F8 mRNA from a Japanese hemophilia A patient with undetectable mutations was analyzed. Total RNA was isolated from peripheral blood cells using a QIAamp® RNA Blood Mini Kit (Qiagen) or PAXgene® Blood RNA Kit (Qiagen). Both preparations were performed following the manufacturer's instructions. In order to analyze the F8 mRNA, we performed the cDNA-amplification in two rounds of PCR using the nested approach reported by El-Maarri et al (2005). The nucleotide sequences of primer used followed those of their report. OneStep RT-PCR Kit (Qiagen) and TaKaRa LA Taq ™ (TaKaRa) were used for first and second round PCR amplification, respectively. Ectopic F8 mRNA expression level was relatively quantified by a real-time PCR technique using 4 TaqMan gene expression assays (Hs00240767_m1 amplify exon 1–2 boundary, Hs01109548_m1 amplify exon 6–7 boundary, Hs01109541_m1 amplify exon 14–15 boundary, Hs01109543_m1 amplify exon 20–21 boundary; Applied Biosystems). Results: Because the size of the F8 mRNA is very large ∼9kb, the entire F8 cDNA was divided into four different regions: exons 1–8 (region A); exons 8–14 (region B); exons 14–22 (region C); and exons 19–26 (region D) and amplified in the first round. Then, each of four regions were further divided into two different regions (a total of 8 overlapping regions; region 1–8), and amplified in the second round. An abnormality was observed in the amplification. Although the PCR products of regions 1 and 2, (region A), were obtained, the products remaining in all later regions (regions 3–8) were not. A similar phenomenon was also confirmed in the semi-quantification of the mRNA. Though we were able to quantify the mRNA by using both exon 1–2 and 5–6 boundary amplifications, we were not able to quantify the mRNA using the 14–15 and 20–21 boundaries. These results suggested that the quantity of the mRNA decrease remarkably in the vicinity of exon 8 as a boundary. Further analysis of the mRNA showed that quantity of the mRNA is normal from exon 1 through 9. Nucleotide sequencing of intron 9 revealed a single nucleotide substitution, adenine to guanine transition, at 602bp downstream from the 3' end of exon 9. This transition has not been registered in any international database as a mutation or a polymorphism and was not found in the F8 from 124 Japanese. These results strongly suggest that the transition is very rare and may be involved in factor VIII deficiency in these patients. Analysis of the nucleotide sequence of the substitution by splicing site prediction software predicted the formation of a new acceptor splice site. This result suggested the existence of splice abnormality. However, further characterization is needed to elucidate the mechanism that causes the decrease in mRNA in the middle of the gene. Conclusion: The mechanism behind factor VIII deficiency in hemophilia A patients with undetectable mutations is very interesting and various possibilities are conceivable. This study provides the possibility that some causative genetic abnormality remains in a further unanalyzed F8 region, most likely deep inside the intron, of these patients. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3787-3787
Author(s):  
Pete Lollar ◽  
Ernest T. Parker ◽  
John F. Healey ◽  
Christopher B. Doering

Abstract Inhibitory polyclonal IgG antibodies (inhibitors) to factor VIII (fVIII) represent the most significant complication in patients with congenital hemophilia A. FVIII also is the most frequently targeted coagulation factor in autoimmunity. Antibodies recognizing epitopes in the fVIII A2 and C2 domains are present in most inhibitor patients. In the current study, we characterized the hydrodynamic properties of fVIII immune complexes formed by murine anti-human anti-A2 and anti-C2 fVIII monoclonal antibodies (MAbs) 4A4 and 3D12. 4A4 is representative of the most frequently identified group of anti-A2 MAbs identified in the murine hemophilia A immune response to human fVIII. 3D12 is a classical anti-C2 MAb that inhibits the binding of fVIII to von Willebrand factor (VWF) and phospholipid membranes. Velocity sedimentation of immune complexes formed by varying ratios of 4A4 and 3D12 with a high-expression fVIII construct designated ET3 was conducted at 55,000g and 20 °C by measuring protein absorbance at 280 nm in a Beckman XL-I analytical ultracentrifuge. Sedimentation coefficient (s20,w) distributions of fVIII, MAbs and immune complexes were determined using SEDFIT. The sedimentation coefficients of fVIII in the absence of MAbs and of the MAbs in the absence of fVIII were 7.7 S and 6.4 S, respectively. Under conditions of excess MAb (equimolar 4A4 and 3D12 each in five-fold molar excess over fVIII), a 10.3 S immune complex was observed, representing singly-ligated MAbs (Figure, red trace). Under conditions of excess fVIII (fVIII in four-fold molar excess over equimolar 4A4 and 3D12), 11.9 S doubly-ligated MAb complexes were observed (Figure, green trace). A mixture containing equimolar fVIII and 4A4/3D12 MAb binding sites produced a dominant 14.0 S species and a minor 18.8 S species, indicative of cross-linked 3D12-fVIII-4A4 immune complexes (Figure, blue trace). Indefinite association or immunoprecipitation was not observed. These results demonstrate that a biclonal, bivalent anti-fVIII antibody population can form higher-order immune complexes. These complexes may be a driving factor in the immune response to fVIII by promoting B cell activation and/or antigen presentation. Additionally, these results indicate that analytical ultracentrifugation is a useful tool to characterize fVIII immune complexes. Figure Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1124-1124
Author(s):  
Philip M Zakas ◽  
Shannon L. Meeks ◽  
Christopher B Doering

Abstract Abstract 1124 Hemophilia A is an X-linked recessive disorder caused by deficiencies or functional defects in coagulation factor VIII (fVIII). Approximately 20–30% of patients with severe hemophilia A develop antibodies against fVIII (inhibitors) following fVIII replacement therapy, which presents significant complication to the control of subsequent bleeding episodes. State of the art treatment options for patients with inhibitors include fVIII-bypassing agents such as recombinant factor VIIa or activated prothrombin-complex concentrate. Previously, plasma-derived porcine fVIII was a treatment option for inhibitor patients and was effective due to the reduced antigenicity of porcine fVIII toward anti-human fVIII inhibitors. However due to concerns regarding viral contamination, the plasma-derived porcine fVIII products were discontinued and no alternative fVIII products have been made available to patients with inhibitors. Presently, a recombinant porcine fVIII product (OBI-1, Inspiration Biopharmaceuticals) is being investigated in two phase 3 clinical trials for congenital and acquired hemophilia A. Rationale for the development of such a product consists of the prior success of plasma-derived porcine fVIII and the concept that the most effective and lowest risk treatment for fVIII deficiency, even in the presence of inhibitors, remains a fVIII product. Recently, a line of hemophilia A sheep was reestablished from banked frozen sperm and the ovine fVIII (ofVIII) gene, causal mutation, and protein were genetically and biochemically characterized. B-domain deleted (BDD) ovine fVIII shares 86% identity to human fVIII at the amino acid level and confers phenotypic correction, in vivo, to hemophilia A mice using a tail transaction bleeding model. Recombinant ofVIII was expressed in baby-hamster kidney cells and purified to > 95% homogeneity using a two-step ion exchange chromatography procedure. Highly purified ofVIII displays a specific activity of 18,300 units/mg, which is approximately twice that of recombinant BDD human fVIII. Furthermore, the decay of ofVIII activity following thrombin activation is slower than BDD human fVIII suggesting prolonged activity in vivo. Lastly, ofVIII demonstrates equivalent binding to human von Willebrand factor at physiological concentrations in vitro. A translational aim of the present study was to test the hypothesis that unique sequences within ofVIII confer differential antigenicity compared to human and/or porcine fVIII in congenital and acquired inhibitor patient plasmas. To address this hypothesis, the reactivity of 28 samples (22 congenital patient samples designated 1–22, and 6 acquired hemophilia A patient samples designated A1-A6) from the Emory IRB approved inhibitor bank towards recombinant BDD human, porcine, and ovine fVIII were assessed by enzyme-linked immunosorbant assay (Figure 1). When normalized to the reactivity towards human fVIII, the data revealed reduced reactivity towards ofVIII in 27 of 28 total samples. In only one patient was the reactivity towards ofVIII greater than that towards human fVIII and, in this sample, the reactivity towards porcine fVIII also was greater than 100%. Furthermore, plasma reactivity to ovine fVIII was significantly reduced compared to porcine fVIII (P = 0.025; Mann-Whitney U Test). Median values of the relative cross reactivity towards porcine and ovine fVIII were 54 and 38%, respectively. Preliminary inhibitor analysis (Bethesda assay) of three samples shown to contain titers against human fVIII of 25, 19, and 68 BU/ml, revealed undetectable inhibitor titers towards ofVIII in 2 samples, and a titer of 5 BU/ml in the third, respectively. These results suggest that additional orthologous recombinant fVIII molecules may be enabling to the treatment of patients harboring pathogenic inhibitors to human fVIII. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3361-3361
Author(s):  
Anja Naumann ◽  
Jörg Kahle ◽  
Nadia Reiss ◽  
Dirk Schwabe ◽  
Christine Heller ◽  
...  

Abstract Abstract 3361 The development of neutralizing allo-antibodies against coagulation factor VIII (FVIII) is currently the most serious complication for hemophilia A patients that undergo FVIII replacement therapy. Non-hemophiliacs can spontaneously develop inhibitory auto-antibodies to FVIII, which results in a condition called acquired hemophilia A. The control of the allo- or autoimmune response to FVIII apparently includes the elicitation of an anti-idiotypic immune response. Immune tolerance induction (ITI) by frequent administration of high doses of FVIII is successful in most patients. The remaining up to 20% failing ITI face increased morbidity and mortality. To elucidate the capacity of single-chain variable antibody fragments (scFvs) for neutralization of inhibitory anti-FVIII antibodies (FVIII inhibitors), scFvs that specifically interact with strong inhibitory murine monoclonal anti-human FVIII antibodies (anti-hFVIII mAbs) were selected by screening synthetic scFv phage displayed libraries. Since the majority of inhibitory anti-hFVIII mAbs are directed against the FVIII A2 or C2 domain, selection of scFvs was performed for two anti-A2 and two anti-C2 mAbs. Affinity selection identified several specific, potential anti-idiotypic scFvs for each anti-hFVIII mAb, which were further analyzed. ScFvs expressed as IgG fusion protein bind to mAbs with affinities up to 0,1nM. Binding of mAbs to immobilized FVIII was inhibited via specific scFvs by more than 90%. In the functional Bethesda Assay FVIII activity was fully restored when corresponding anti-idiotypic scFvs were added to plasma spiked with FVIII-specific mAbs. In addition, the cross-reactivity of scFvs with heterologous mAbs specific for A2 and C2 was tested and confirmed the exclusive interaction of the selected scFvs with their respective mAb. Overall, anti-idiotypic scFvs specific for anti-hFVIII mAbs can be successfully selected from phage displayed libraries and efficiently neutralize FVIII inhibitors. ScFv anti-idiotypes may therefore facilitate the development of specific immunotherapies for hemophilia patients with inhibitors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (5) ◽  
pp. 1552-1558 ◽  
Author(s):  
Yubin Kang ◽  
Litao Xie ◽  
Diane Thi Tran ◽  
Colleen S. Stein ◽  
Melissa Hickey ◽  
...  

Abstract Hemophilia A is a clinically important coagulation disorder caused by the lack or abnormality of plasma coagulation factor VIII (FVIII). Gene transfer of the FVIII cDNA to hepatocytes using lentiviral vectors is a potential therapeutic approach. We investigated the efficacy of feline immunodeficiency virus (FIV)–based vectors in targeting hepatocytes and correcting FVIII deficiency in a hemophilia A mouse model. Several viral envelope glycoproteins were screened for efficient FIV vector pseudotyping and hepatocyte transduction. The GP64 glycoprotein from baculovirus Autographa californica multinuclear polyhedrosis virus pseudo-typed FIV efficiently and showed excellent hepatocyte tropism. The GP64-pseudotyped vector was stable in the presence of human or mouse complement. Inclusion of a hybrid liver-specific promoter (murine albumin enhancer/human α1-antitrypsin promoter) further enhanced transgene expression in hepatocytes. We generated a GP64-pseudotyped FIV vector encoding the B domain–deleted human FVIII coding region driven by the liver-specific promoter, with 2 beneficial point mutations in the A1 domain. Intravenous vector administration conferred sustained FVIII expression in hemophilia A mice for several months without the generation of anti–human FVIII antibodies and resulted in partial phenotypic correction. These findings demonstrate the utility of GP64-pseudotyped FIV lentiviral vectors for targeting hepatocytes to correct disorders associated with deficiencies of secreted proteins.


Author(s):  
Н.И. Зозуля

Серьезным осложнением, связанным с лечением гемофилии А, является развитие ингибиторов. В последние годы был проведён ряд исследований, посвящённых данной проблеме: RODIN, INSIGHT, FranceCoag, SIPPET и NuProtect. В данном обзоре суммируются основные результаты этих исследований. Согласно результатам рандомизированного исследования SIPPET, препараты плазматического фактора свертывания крови VIII (FVIII) обладают меньшей иммуногенностью, чем препараты рекомбинантного FVIII, синтезированного из клеточной линии китайских хомячков, что следует учитывать при выборе стратегии лечения. Согласно результатам исследования NuProtect, опубликованным в 2019 г., концентрат рекомбинантного FVIII, полученный из клеточной линии человека, демонстрирует профиль иммуногенности, сходный с таковым у препаратов плазматического FVIII. У ранее нелеченых пациентов с ненулевыми мутациями при применении симоктоког альфа не наблюдалось образования ингибиторов, также как и в случае применения препаратов плазматического FVIII в исследовании SIPPET. Inhibitor development is a serious complication associated with hemophilia A therapy. A number of studies have been carried out of this issue — RODIN, INSIGHT, FranceCoag, SIPPET, and NuProtect. This review summarizes the main results of these studies. According to the results of the SIPPET randomized trial, plasma-derived coagulation factor VIII (FVIII) products are less immunogenic than recombinant FVIII products synthesized from a Chinese hamster cell line; this fact should be taken into account in choosing a treatment strategy. According to the results of NuProtect study published in 2019, the concentrate of human cell line-derived recombinant FVIII demonstrates immunogenicity profi le similar to the one in plasma-derived FVIII products. Previously untreated patients with non-zero mutations receiving simoctocog alfa did not show development of inhibitors as well as in case of administration of plasma-derived FVIII products in SIPPET study.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4250-4250
Author(s):  
Rong-Fu Zhou ◽  
Yueyi Xu ◽  
Wenjin Gao

Abstract Objective: To deepen the understanding of the clinical manifestations of acquired hemophilia A for timely and correctly treatment. Methods: The clinical data of the acquired hemophilia A patients diagnosed in the hospital from Jan 2006 to Mar 2021 were retrospectively analyzed, and the relevant literature was reviewed. Results: 17 patients with acquired hemophilia A, male: female =10: 7, median age 61 years (19 to 78 years), were diagnosed and treated in the hospital with the median time from the onset to diagnosis 21 days (2 days to 6 months). Six patients had comorbidity, including hepatitis B carrying, chronic myelomonocytic leukemia, diabetes, hypertension and positive autoantibodies, pemphigoid and gastric cancer, respectively. Other 11 patients were healthy before the onset. All patients had large large ecchymosis of skin, and one case was combined with hematuria, and one case with retroperitoneal hematoma. All patients had APTT extension (45s-144.7s) and the prolonged APTT could not be corrected with normal mixed plasma with and without incubation at 37℃ for 2 hours. FVIII activity was 1% - 8.9% and inhibitor titer 2 - 128 Bu/ml. All patients with bleeding were with prothrombin complex/recombinant activated coagulation factor VII, some of them with pd-coagulation factor FVIII preparations. Inhibitors were removed with prednisone acetate (1 case) + chemotherapy (1 case), prednisone acetate / + CTX (11 cases) + chemotherapy (1 case), prednisone acetate/prednisolone + mabthera (2 cases) + CTX (1 case), respectively. The removal time of inhibitor was from 8 days to 4 years. During the treatment process, two patients developed lower extremity venous thrombosis, and one patient was complicated with lung infection. Conclusion: Patients with unexplained bleeding and prolonged APTT should be conducted normal mixed plasma correction test, coagulation factor activity and inhibitor titer examination. After correctly diagnosis, bypass agents /coagulation factor VIII preparations should be given timely for hemostasis, protocol based on glucocorticoid + CTX/mabthera to remove the inhibitor and symptomatic treatment for patients with primary comorbidity disease at the same time. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 561-561
Author(s):  
Kerstin Brettschneider ◽  
Anja Schmidt ◽  
Joerg Kahle ◽  
Aleksander Orlowski ◽  
Diana Stichel ◽  
...  

Abstract The development of inhibitory antibodies (inhibitors) against coagulation factor VIII (FVIII) is the most serious complication for patients with hemophilia A that undergo FVIII replacement therapy. In addition, healthy individuals can spontaneously develop inhibitory anti-FVIII auto-antibodies, which results in acquired hemophilia A. The current standard therapy for patients with hemophilia A and inhibitors, named immune tolerance induction (ITI), is based on frequent and mostly high dose administrations of FVIII. Unfortunately, the eradication of inhibitors can only be achieved in about 70% of patients. Alternative treatment of inhibitor patients with the monoclonal anti-CD20 antibody rituximab results in complete eradication of inhibitors; however, depletion of the entire CD20-positive B cell population is potentially accompanied by severe side effects. Recent studies in hemophilic FVIII knockout mice showed that the application of a FVIII-toxin conjugate resulted in (i) prevention of inhibitor development in naïve mice and (ii) long-term eradication of inhibitors in FVIII-immunized mice. As the use of FVIII for cell targeting of immunotoxins is presumably limited by its high molecular weight (250 kDa) and adhesiveness (off-target reactivity) we explored the potential use of alternative immunotoxins in the current study. The introduced immunotoxins are comprised of a single FVIII domain fused to the Exotoxin A (ETA) from Pseudomonas aeruginosa.The rationale for the use of a single domain instead of full length FVIII as cell-binding component is that immunodominant domains like A2 and C2 might still allow targeting of sufficient amounts of FVIII-specific B-cells by immunotoxins. For proof of concept studies, we generated a histidine-tagged C2 domain-ETA fusion protein (C2-ETA) that was bacterially expressed and purified by affinity chromatography. Purified C2-ETA was recognized by a panel of commercially available monoclonal anti-C2 antibodies in ELISA suggesting proper folding of the C2 domain in the bacterially expressed protein. To test the capacity of C2-ETA to eliminate FVIII-specific B-cells, splenocytes of FVIII-immunized FVIII knockout mice were re-stimulated with FVIII ex vivo in presence and absence of different concentrations of C2-ETA and ETA alone (as control). Re-stimulation of FVIII-specific memory B cells to FVIII- and C2-specific antibody secreting cells (ASC) was analyzed in anEnzyme linked immunospot (ELISPOT) assay using FVIII and C2 as antigens. While differentiation to FVIII-specific ASC was only partially inhibited by C2-ETA, differentiation to C2-specific ASC was completely blocked in a dose-dependent manner. In contrast, the use of ETA alone had no effect. Further analysis of the FVIII domain specificity of antibodies in plasma of FVIII-immunized FVIII knockout mice used for depletion studies revealed a strong contribution of C2-specific antibodies to the overall FVIII-specific immune response. In summary, our results show that the developed C2-ETA immunotoxin is able to specifically eliminate FVIII C2 domain-specific B cells ex vivo. Currently, C2-ETA is tested for its capacity to eliminate FVIII-specific B cells in FVIII knockout mice and additional FVIII domain-ETA immunotoxins are developed. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document