The Trithorax Group Protein Ash1l Is An Essential Epigenetic Regulator of Adult Hematopoietic Stem Cell Maintenance

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 387-387
Author(s):  
Morgan Jones ◽  
Michelle L Brinkmeier ◽  
Julien Schira ◽  
Ann Friedman ◽  
Sami Malek ◽  
...  

Abstract Abstract 387 The Trithorax family of epigenetic regulators is intimately linked to normal and malignant hematopoiesis. While substantial work indicates that Mixed lineage leukemia (Mll) is required for hematopoietic stem cell (HSC) homeostasis, the functions of many other Trithorax family members have not been evaluated. We have discovered that the mammalian Trithorax group gene absent, small, or homeotic 1-like (ash1l) is required for the maintenance of adult, but not fetal HSCs. Mice homozygous for a gene trap insertion into the first intron of ash1l (GT/GT) had a ca. 90% reduction in ash1l transcripts. These animals had normal numbers of phenotypically defined fetal liver HSCs (CD150+CD48−Lin−Sca-1hic-Kithi cells), but a 10-fold reduction in adult bone marrow HSCs already apparent by 6 weeks after birth. GT/GT bone marrow HSC depletion began in the first three weeks of life, the period during which HSCs turn off their fetal homeostasis program and enter a state of increased quiescence in the bone marrow. Cell cycle analysis revealed that GT/GT HSCs had an increased cycling fraction with a profound reduction in quiescent HSCs in the G0 phase of the cell cycle. This suggested that ash1l is essential to establish and/or maintain a quiescent population of adult-type HSCs. Furthermore, competitive and non-competitive transplantation assays showed that both fetal liver and adult bone marrow were incapable of providing long-term reconstitution in lethally irradiated recipients, indicating that neither compartment could sustain long-term HSC activity after reaching the recipient's bone marrow. To understand this profound HSC defect, we next sought to analyze the in vivo function of Ash1l. Like MLL, Ash1l is a SET domain-containing histone methyltransferase. Although MLL functions as an H3K4 methyltransferase, the in vivo specificity of the Ash1l SET domain has not been described. Transcriptional analysis of GT/GT HSCs indicated that expression of Hoxa9, a known target of MLL, was reduced by 50%. This suggested that Hoxa9 could be a useful locus at which to evaluate the biochemical activity of Ash1l by chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR). ChIP-qPCR revealed that GT/GT bone marrow cells had reduced H3K36 dimethylation but preserved H3K4 trimethylation at the Hoxa9 locus. This was consistent with previous in vitro analysis of Ash1l SET domain activity and computer predictions showing a high degree of conservation between Ash1l and SET2, an H3K36 methyltransferase. Thus, Ash1l and MLL are both required for Hoxa9 expression although their enzymatic activities differ, suggesting that Ash1l and MLL may act cooperatively at Hoxa9 and other target loci. To evaluate the functional consequences of this interaction, we studied mice deficient for ash1l and lacking Menin, a factor required for proper MLL targeting to target loci. Strikingly, these animals rapidly progressed to hematopoietic failure with a complete obliteration of the hematopoietic stem and progenitor compartment, a phenotype not observed in either genetic background independently. These data indicate that Ash1l and MLL/menin work cooperatively in hematopoiesis. Together, our findings reveal an essential function of ash1l in the maintenance of adult HSCs. Furthermore, they indicate that Ash1l functions in vivo as an H3K36 methyltransferase and suggest that different Trithorax family members can coregulate target genes by providing distinct activating histone marks. Future work will reveal the full extent and mechanisms of these cooperative effects in normal and malignant hematopoiesis. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2308-2308
Author(s):  
Laura R Goldberg ◽  
Mark S Dooner ◽  
Mandy Pereira ◽  
Michael DelTatto ◽  
Elaine Papa ◽  
...  

Abstract Abstract 2308 Hematopoietic stem cell biologists have amassed a tremendous depth of knowledge about the biology of the marrow stem cell over the past few decades, facilitating invaluable basic scientific and translational advances in the field. Most of the studies to date have focused on highly purified populations of marrow cells, with emphasis placed on the need to isolate increasingly restricted subsets of marrow cells within the larger population of resident bone marrow cells in order to get an accurate picture of the true stem cell phenotype. Such studies have led to the dogma that marrow stem cells are quiescent with a stable phenotype and therefore can be purified to homogeneity. However, work from our laboratory, focusing on the stem cell potential in un-separated whole bone marrow (WBM), supports an alternate view of marrow stem cell biology in which a large population of marrow stem cells are actively cycling, continually changing phenotype with cell cycle transit, and therefore, cannot be purified to homogeneity. Our studies separating WBM into cell cycle-specific fractions using Hoechst 33342/Pyronin Y or exposing WBM to tritiated thymidine suicide followed by competitive engraftment into lethally irradiated mice revealed that over 50% of the long-term multi-lineage engraftment potential in un-separated marrow was due to cells in S/G2/M. This is in stark contrast to studies showing that highly purified stem cell populations such as LT-HSC (Lineage–c-kit+sca-1+flk2−) engraft predominantly when in G0. Additionally, by performing standard isolation of a highly purified population of stem cells, SLAM cells (Lineage–c-kit+sca-1+flk2−CD150+CD41−CD48−), and testing the engraftment potential of different cellular fractions created and routinely discarded during this purification process, we found that 90% of the potential engraftment capacity in WBM was lost during conventional SLAM cell purification. Incubation of the Lineage-positive and Lineage-negative fractions with tritiated thymidine, a DNA analogue which selectively kills cells traversing S-phase, led to dramatic reductions in long-term multi-lineage engraftment potential found within both cellular fractions (over 95% and 85% reduction, respectively). This indicates that the discarded population of stem cells during antibody-based stem cell purification is composed largely of cycling cells. In sum, these data strongly support that 1) whole bone marrow contains actively cycling stem cells capable of long-term multi-lineage engraftment, 2) these actively cycling marrow stem cells are lost during the standard stem cell purification strategies, and 3) the protean phenotype of actively cycling cells as they transit through cell cycle will render cycling marrow stem cells difficult to purify to homogeneity. Given the loss of a large pool of actively cycling HSC during standard stem cell isolation techniques, these data underscore the need to re-evaluate the total hematopoietic stem cell pool on a population level in addition to a clonal level in order to provide a more comprehensive study of HSC biology. Disclosures: No relevant conflicts of interest to declare.


1984 ◽  
Vol 159 (3) ◽  
pp. 731-745 ◽  
Author(s):  
R A Fleischman ◽  
B Mintz

Bone marrow of normal adult mice was found, after transplacental inoculation, to contain cells still able to seed the livers of early fetuses. The recipients' own hematopoietic stem cells, with a W-mutant defect, were at a selective disadvantage. Progression of donor strain cells to the bone marrow, long-term self-renewal, and differentiation into myeloid and lymphoid derivatives was consistent with the engraftment of totipotent hematopoietic stem cells (THSC) comparable to precursors previously identified (4) in normal fetal liver. More limited stem cells, specific for the myeloid or lymphoid cell lineages, were not detected in adult bone marrow. The bone marrow THSC, however, had a generally lower capacity for self-renewal than did fetal liver THSC. They had also embarked upon irreversible changes in gene expression, including partial histocompatibility restriction. While completely allogeneic fetal liver THSC were readily accepted by fetuses, H-2 incompatibility only occasionally resulted in engraftment of adult bone marrow cells and, in these cases, was often associated with sudden death at 3-5 mo. On the other hand, H-2 compatibility, even with histocompatibility differences at other loci, was sufficient to ensure long-term success as often as with fetal liver THSC.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4354-4362 ◽  
Author(s):  
Nobuko Uchida ◽  
Annabelle M. Friera ◽  
Dongping He ◽  
Michael J. Reitsma ◽  
Ann S. Tsukamoto ◽  
...  

Abstract The DNA synthesis inhibitor hydroxyurea (HU) was administered to determine whether it induces changes in the cell-cycle status of primitive hematopoietic stem cells (HSCs)/progenitors. Administration of HU to mice leads to bone marrow accumulation of c-kit+Thy-1.1loLin−/loSca-1+ (KTLS) cells in S/G2/M phases of the cell cycle. HU is a relatively nontoxic, reversible cell-cycle agent that can lead to approximately a threefold expansion of KTLS cells in vivo and approximately an eightfold increase in the number of KTLS cells in S/G2/M. HSCs in HU-treated mice have undiminished multilineage long-term and short-term clonal reconstitution activity.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4749-4749
Author(s):  
Shanti Rojas-Sutterlin ◽  
André Haman ◽  
Trang Hoang

Abstract Abstract 4749 Hematopoietic stem cell (HSC) transplantation is the first successful cellular therapy and remains the only treatment providing long-term cure in acute myeloblastic leukemia. At the apex of the hematopoietic system, quiescent HSCs are spared by chemotherapeutic treatments that target proliferating cells and therefore can regenerate the entire blood system of a patient after drug exposure. Nevertheless, the consequence of repeated chemotherapy regimen on HSC function remains to be clarified. We previously showed that Scl/Tal1 gene dosage regulates HSC quiescence and functions when transplanted at limiting dilutions (Lacombe et al., 2010). In the present study, we investigate how massive expansion in vivo influences stem cell functions. To address this question, we optimized a protocol based on 5-fluorouracil (5-FU), an antimetabolite that has been used to treat colon, rectum, and head and neck cancers. In addition, we used Scl+/− mice to address the role of Scl in controlling HSCs expansion post-5-FU. We show that within 7 days following 5-FU treatment, HSCs exit quiescence and enter the cell cycle. To deplete cycling HSCs, we injected a second dose of 5-FU and showed that the stem cell pool was disseminated. Nonetheless, the remaining HSCs proliferated extensively to re-establish the HSC pool, which was twice larger than that of untreated mice. At this point, most HSCs have exited the cell cycle and were back to quiescence. Despite a near normal stem cell pool size and a quiescent status, HSCs from these 5-FU treated mice could not compete against untreated cells to regenerate the host in transplantation assays. Furthermore, we show that this extensive proliferation in vivo severely impaired the clonal expansion of individual HSC as measured by the mean activity of stem cell (MAS). Our results demonstrate that HSCs lose their competitive potential after two 5-FU treatments, suggesting that HSCs have an intrinsic expansion limit beyond which their regenerative potential is impaired. In addition, Scl is haplodeficient for cell cycle entry and cell division but Scl gene dosage does not affect this expansion limit. Therefore, our data dissociate the control of HSC expansion under extensive proliferative stress from cell cycle control during steady state. We surmise that chemotherapy regimen based on repeated administration of 5-FU or other antimetabolites are likely to severely impair long-term stem cell functions. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 421-432 ◽  
Author(s):  
D DiGiusto ◽  
S Chen ◽  
J Combs ◽  
S Webb ◽  
R Namikawa ◽  
...  

Experimentation on human stem cells is hampered by the relative paucity of this population and by the lack of assays identifying multilineage differentiation, particularly along the lymphoid lineages. In our current study, phenotypic analysis of low-density fetal bone marrow cells showed two distinct populations of CD34+ cells: those expressing a high density of CD34 antigen on their surface (CD34hi) and those expressing an intermediate level of CD34 antigen (CD34lo). Multiple tissues were used to characterize the in vitro and in vivo potential of these subsets and showed that only CD34hi cells support long-term B lymphopoiesis and myelopoiesis in vitro and mediate T, B, and myeloid repopulation of human tissues implanted into SCID mice. CD34lo cells repeatedly failed to provide long-term hematopoietic activity in vivo or in vitro. These results indicate that a simple fractionation based on well-defined CD34 antigen levels can be used to reproducibly isolate cells highly enriched for in vivo long-term repopulating activity and for multipotent progenitors, including T- and B-cell precursors. Additionally, given the limited variability in the results and the high correlation between in vitro and in vivo hematopoietic potential, we propose that the CD34hi population contains virtually all of the stem cell activity in fetal bone marrow and therefore is the population of choice for future studies in hematopoietic stem cell development and gene therapy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-10
Author(s):  
Na Yoon Paik ◽  
Grace E. Brown ◽  
Lijian Shao ◽  
Kilian Sottoriva ◽  
James Hyun ◽  
...  

Over 17,000 people require bone marrow transplants annually, based on the US department of Health and Human Services (https://bloodcell.transplant.hrsa.gov). Despite its high therapeutic value in treatment of cancer and autoimmune disorders, transplant of hematopoietic stem cells (HSC) is limited by the lack of sufficient source material due primarily inadequate expansion of functional HSCs ex vivo. Hence, establishing a system to readily expand human umbilical cord blood or bone marrow HSCs in vitro would greatly support clinical efforts, and provide a readily available source of functional stem cells for transplantation. While the bone marrow is the main site of adult hematopoiesis, the fetal liver is the primary organ of hematopoiesis during embryonic development. The fetal liver is the main site of HSC expansion during hematopoietic development, furthermore the adult liver can also become a temporary extra-medullary site of hematopoiesis when the bone marrow is damaged. We have created a bioengineered micropatterned coculture (MPCC) system that consists of primary human hepatocytes (PHHs) islands surrounded and supported by 3T3-J2 mouse embryonic fibroblasts. Long-term establishment of stable PHH-MPCC allows us to culture and expand HSC in serum-free medium supplemented with pro-hematopoietic cytokines such as stem cell factor (SCF) and thrombopoietin (TPO). HSCs cultured on this PHH-MPCC microenvironment for two weeks expanded over 200-fold and formed tight clusters around the periphery of the PHH islands. These expanded cells also retained the expression of progenitor markers of Lin-, Sca1+, cKit+, as well as the long-term HSC phenotypic markers of CD48- and CD150+. In addition to the phenotypic analysis, the expanded cells were transplanted into lethally irradiated recipient mice to determine HSC functionality. The expanded cells from the PHH-MPCC microenvironment were able to provide multi-lineage reconstitution potential in primary and secondary transplants. With our bioengineered MPCC system, we further plan to scale up functional expansion of human HSC ex vivo and to better understand the mechanistic, cell-based niche factors that lead to maintenance and expansion HSC. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3596-3606 ◽  
Author(s):  
Troy D. Randall ◽  
Irving L. Weissman

Abstract A significant fraction of hematopoietic stem cells (HSCs) have been shown to be resistant to the effects of cytotoxic agents such as 5-fluorouracil (5-FU), which is thought to eliminate many of the rapidly dividing, more committed progenitors in the bone marrow and to provide a relatively enriched population of the most primitive hematopoietic progenitor cells. Although differences between 5-FU–enriched progenitor populations and those from normal bone marrow have been described, it remained unclear if these differences reflected characteristics of the most primitive stem cells that were revealed by 5-FU, or if there were changes in the stem-cell population itself. Here, we have examined some of the properties of the stem cells in the bone marrow before and after 5-FU treatment and have defined several activation-related changes in the stem-cell population. We found that long-term reconstituting stem cells decrease their expression of the growth factor receptor c-kit by 10-fold and increase their expression of the integrin Mac-1 (CD11b). These changes begin as early as 24 hours after 5-FU treatment and are most pronounced within 2 to 3 days. This activated phenotype of HSCs isolated from 5-FU–treated mice is similar to the phenotype of stem cells found in the fetal liver and to the phenotype of transiently repopulating progenitors in normal bone marrow. We found that cell cycle is induced concomitantly with these physical changes, and within 2 days as many as 29% of the stem-cell population is in the S/G2/M phases of the cell cycle. Furthermore, when examined at a clonal level, we found that 5-FU did not appear to eliminate many of the transient, multipotent progenitors from the bone marrow that were found to be copurified with long-term repopulating, activated stem cells. These results demonstrate the sensitivity of the hematopoietic system to changes in its homeostasis and correlate the expression of several important surface molecules with the activation state of HSCs.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Shai Erlich ◽  
Silvia R.P. Miranda ◽  
Jan W.M. Visser ◽  
Arie Dagan ◽  
Shimon Gatt ◽  
...  

Abstract The general utility of a novel, fluorescence-based procedure for assessing gene transfer and expression has been demonstrated using hematopoietic stem and progenitor cells. Lineage-depleted hematopoietic cells were isolated from the bone marrow or fetal livers of acid sphingomyelinase–deficient mice, and retrovirally transduced with amphotropic or ecotropic vectors encoding a normal acid sphingomyelinase (ASM) cDNA. Anti–c-Kit antibodies were then used to label stem- and progenitor-enriched cell populations, and the Bodipy fluorescence was analyzed in each group after incubation with a Bodipy-conjugated sphingomyelin. Only cells expressing the functional ASM (ie, transduced) could degrade the sphingomyelin, thereby reducing their Bodipy fluorescence as compared with nontransduced cells. The usefulness of this procedure for the in vitro assessment of gene transfer into hematopoietic stem cells was evaluated, as well as its ability to provide an enrichment of transduced stem cells in vivo. To show the value of this method for in vitro analysis, the effects of retroviral transduction using ecotropic versus amphotropic vectors, various growth factor combinations, and adult bone marrow versus fetal liver stem cells were assessed. The results of these studies confirmed the fact that ecotropic vectors were much more efficient at transducing murine stem cells than amphotropic vectors, and that among the three most commonly used growth factors (stem cell factor [SCF] and interleukins 3 and 6 [IL-3 and IL-6]), SCF had the most significant effect on the transduction of stem cells, whereas IL-6 had the most significant effect on progenitor cells. In addition, it was determined that fetal liver stem cells were only approximately twofold more “transducible” than stem cells from adult bone marrow. Transplantation of Bodipy-selected bone marrow cells into lethally irradiated mice showed that the number of spleen colony-forming units that were positive for the retroviral vector (as determined by polymerase chain reaction) was 76%, as compared with 32% in animals that were transplanted with cells that were nonselected. The methods described within this manuscript are particularly useful for evaluating hematopoietic stem cell gene transfer in vivo because the marker gene used in the procedure (ASM) encodes a naturally occurring mammalian enzyme that has no known adverse effects, and the fluorescent compound used for selection (Bodipy sphingomyelin) is removed from the cells before transplantation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 857-857
Author(s):  
Gregor B. Adams ◽  
Ian R. Alley ◽  
Karissa T. Chabner ◽  
Ung-il Chung ◽  
Emily S. Marsters ◽  
...  

Abstract During development, hematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, which remains the site of hematopoiesis throughout adulthood. In the bone marrow the HSCs are located at the endosteal surface, where the osteoblasts are a key component of the stem cell niche. The exogenous signals that specifically direct HSCs to the bone marrow have been thought to include stimulation of the chemokine receptor CXCR4 by its cognate ligand stromal derived factor-1α (SDF-1α or CXCL12). However, experiments in which CXCR4−/− fetal liver hematopoietic cells were transplanted into wild-type hosts demonstrated efficient engraftment of the HSCs in the bone marrow. In addition, treatment of HSCs with inhibitors of Gαi-coupled signaling, which blocks transmigration towards SDF-1αin vitro, does not affect bone marrow homing and engraftment in vivo. Therefore, we examined whether Gsα-coupled mechanisms play a key role in the engraftment of the HSCs in the bone marrow environment. Utilizing an inducible-conditional knockout of Gsα, we found that deletion of the gene in hematopoietic bone marrow cells did not affect their ability to perform in the in vitro primitive CFU-C or LTC-IC assay systems. However, Gsα−/− cells were unable to establish effective hematopoiesis in the bone marrow microenvironment in vivo in a competitive repopulation assay (41.1% contribution from wild-type cells versus 1.4% from knockout cells). These effects were not due to an inability of the cells to function in the bone marrow in vivo as deletion of Gsα following establishment of hematopoiesis had no effects on the HSCs. Examining the ability of the HSCs to home to the bone marrow, though, demonstrated that deletion of Gsα resulted in a marked impairment of the ability of the stem cells to localize to the marrow space (approximately 9-fold reduction in the level of primitive cell homing). Furthermore, treatment of BM MNCs with an activator of Gsα augmented the cells homing and thus engraftment potential. These studies demonstrate that Gsα is critical to the localization of HSCs to the bone marrow. Which receptors utilize this pathway in this context remains unknown. However, Gsα represents a previously unrecognized signaling pathway for homing and engraftment of HSCs to bone marrow. Pharmacologic activation of Gsα in HSC ex vivo prior to transplantation offers a potential method for enhancing stem cell engraftment efficiency.


Sign in / Sign up

Export Citation Format

Share Document