Allogeneic Stem Cell Transplantation (allo-SCT) for Acute Myeloid Leukemia (AML): Low Incidence of Relapse and Graft Versus Host Disease (GVHD) in Patients (pts) Transplanted without Active Leukemia Using in-Vivo T-Cell Depletion with Rabbit Anti-Thymocyte Globulin (r-ATG)

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4527-4527
Author(s):  
James L. Slack ◽  
Jose F. Leis ◽  
Craig B. Reeder ◽  
Joseph R. Mikhael ◽  
Raoul Tibes ◽  
...  

Abstract Abstract 4527 Introduction: The prognosis for pts with intermediate or high risk AML remains dismal, with relapse rates typically in the 60–80% range after treatment with chemotherapy alone. While allo-SCT can decrease the risk of relapse to 10–20%, widespread use of this modality is limited by relatively high rates of non-relapse mortality (NRM), often due to severe acute and/or chronic GVHD. Attenuation of severe GVHD, without a concomitant increase in relapse or NRM, should improve outcomes and result in cure of a larger fraction of AML pts. We therefore investigated the use of in-vivo T-cell depletion with r-ATG in pts with intermediate- or high-risk AML but without active leukemia at the time of allo-SCT. Patients and Methods: Pts (n = 43) were included in this retrospective analysis if they were between 18 and 65 years of age and had no evidence of active AML at the time of allo-SCT (see Table). All pts had 1 or more high-risk features: 1) adverse or intermediate risk cytogenetics (without NPM1 mutation if cytogenetically normal); 2) therapy-related or secondary AML; 3) high WBC count at diagnosis; 4) failure to achieve CR after 1 cycle of induction; or 5) not in CR1 at allo-SCT. Among the 43 pts, 10 received grafts from related donors, 14 from 10/10 matched unrelated donors (URDs), and 19 from mismatched URDs (9/10, n = 11; 8/10, n = 8). All pts received r-ATG according to institutional standard operating policy, with doses ranging from 2.5 – 10 mg/kg depending on donor type and degree of mismatch. All transplants were performed using PBSC. Additional GVHD prophylaxis included tacrolimus plus either methotrexate or mycophenolate mofetil. Results: The median age was 47 (range 20 – 65), and median follow-up for surviving pts is 12 (range 1 – 66) months. As of 8/5/11, 39 pts were alive, and 4 had died from multiorgan failure (n = 1), relapse (n = 1), GVHD (n = 1), and veno-occlusive disease (n = 1). The 2-year estimate of PFS is 84.7% (Fig. 1). The 2-year cumulative incidence of relapse is 6.8% (2 pts, days 97 and 147), and of non-relapse mortality 9.4%. Three pts developed severe (grades III-IV) acute GVHD by day 100 (cumulative incidence 4.6% at day 100) with no additional cases of severe acute GVHD beyond day 100. To date, 4 pts have developed moderate/severe chronic GVHD (cumulative incidence 16.8% at 2 yrs), with one death at day 344 related to complications of acute and chronic GVHD. CMV reactivation occurred in 29 pts (56%), with no deaths related to CMV. Three pts have reactivated EBV, with one case of PTLD (all treated with Rituximab). Conclusions: In this retrospective analysis of single center data, the inclusion of r-ATG in the GVHD prophylactic strategy appeared to significantly attenuate the incidence and severity of both acute and chronic GVHD. Although follow-up is relatively early, the incidence of relapse and NRM does not appear to be increased compared to contemporaneous pts treated without ATG. Given that almost half of the pts received grafts from mismatched URDs, this abrogation in risk of GVHD is significant and clinically relevant. While randomized studies are needed, these data suggest that in-vivo T-cell depletion with r-ATG ameliorates severe GVHD, without increasing relapse or non-relapse mortality, in AML pts without overt leukemia at the time of allo-SCT. Using this strategy, cure rates of 70 – 80% may be realistic and attainable for younger (</= age 65) AML patients who achieve a leukemia-free state and who have a reasonably matched related or unrelated donor. Disclosures: Reeder: Celgene: Research Funding; Millennium Pharmaceuticals Inc.: Research Funding; Novartis: Research Funding.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2305-2305 ◽  
Author(s):  
Robert J Soiffer ◽  
Jennifer LeRademacher ◽  
Vincent T Ho ◽  
Fangyu Kan ◽  
Andrew Artz ◽  
...  

Abstract Abstract 2305 HCT using RIC regimens has increased steadily over the past decade. In vivo administration of anti-T cell antibodies, such as alemtuzumab and anti-thymocyte globulin (ATG) preparations, is often employed to promote engraftment and limit graft-versus-host disease (GVHD). While these antibodies might reduce the severity and incidence of GVHD, they may also blunt the allo-immune graft-versus-tumor effect of HCT. Transplant outcomes after in vivo T-cell depletion (n=584 ATG; n=213 alemtuzumab) were compared to those after T-cell replete (n=879) RIC transplants for myeloid and lymphoid malignancies. Patients were aged 21–69 yrs and transplanted from 2000–2007. Median follow-up of patients is 3 years. Conditioning regimens consisted of an alkylating agent (melphalan, busulfan, or cyclophosphamide) with fludarabine. 792 patients (47%) received allografts from a HLA-matched sibling, 650 (39%) from an 8/8 and 234 (14%) from a 7/8 HLA-matched unrelated donor. In vivo T-cell depletion was used for 35% of matched sibling HCT, 57% of 8/8 and 64% of 7/8 HLA matched unrelated donor HCT. Results of multivariable analysis adjusted for age, disease and disease stage, donor, year of transplant, conditioning regimen, and GVHD prophylaxis are shown in Table below. Grade 2–4 acute GVHD was lower with alemtuzumab containing regimens (20%) than ATG containing (41%) or T replete (42%) regimens. Chronic GVHD occurred in 27% of recipients of alemtuzumab, 43% of ATG, and 57% of T replete regimens, respectively. Compared to T-cell replete regimens, relapse risks were higher with ATG and alemtuzumab containing regimens (38%, 49% and 51%, respectively) and non-relapse mortality, higher with ATG containing regimens only. Treatment failure (relapse or death) was higher with both ATG and alemtuzumab containing regimens compared to T replete regimens. Overall mortality was highest with ATG containing regimens. These observations are independent of disease, disease status and donor type including 7/8 HLA-matched HCT. The 3-year probabilities of disease-free survival (DFS) were 25%, 30% and 39% with ATG-containing, alemtuzumab-containing and T-cell replete regimens, respectively. Corresponding probabilities for overall survival were 38%, 50% and 46%. There were no differences in disease-free and overall survival at 3-years by ATG source or dose. The incidence of EBV-PTLD was higher with alemtuzumab and ATG containing compared to T-cell replete regimens (2% vs. 2% vs. 0.2%). These results suggest in-vivo T-cell depletion with RIC regimens containing an alkylating agent and fludarabine significantly lowers DFS despite lower GVHD. The routine use of in-vivo T-cell depletion in this setting warrants a cautious approach in the absence of a prospective randomized trial. Alemtuzumab vs. T-cell replete ATG vs. T-cell replete Alemtuzumab vs. ATG Hazard ratio, p-value Hazard ratio, p-value Hazard ratio, p-value Grade 2-4 acute GVHD 0.33, p<0.0001 0.88, p=0.12 0.38, p<0.001 Grade 3-4 acute GVHD 0.42, p<0.0001 0.86, p=0.20 0.48, p=0.001 Chronic GVHD 0.34, p<0.0001 0.69, p<0.0001 0.49, p<0.0001 Non-relapse mortality 1.04, p=0.85 1.34, p=0.01 0.78, p=0.19 Relapse 1.54, p=0.0001 1.53, p<0.0001 1.01, p=0.94 Treatment failure 1.40, p=0.0003 1.46, p<0.0001 0.96, p=0.67 Overall mortality 1.09, p=0.46 1.25, p=0.002 0.87, p=0.22 Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 547-547 ◽  
Author(s):  
John Koreth ◽  
Kwang Woo Ahn ◽  
Joseph Pidala ◽  
James L. Gajewski ◽  
Hailin Wang ◽  
...  

Abstract In myeloablative unrelated donor allogeneic hematopoietic cell transplantation (HCT) a 1-locus HLA-mismatch (-A, -B, -C, -DRB1) is associated with lower survival compared to fully matched pairs. However data in reduced-intensity and non-myeloablative conditioning (together called RIC) HCT are limited. We analyzed adult AML/ALL/CML/MDS recipients of first 8/8 HLA-matched or 1-locus mismatched unrelated donor (MUD, MMUD) RIC HCT performed in the period 1999-2011 and registered in the CIBMTR. HLA-A, -B, -C and -DRB1 loci were typed in all pairs at high resolution; -DQB1 and -DPB1 loci could not be evaluated in all pairs. Transplants involving ex-vivo T-cell depletion, CD34+ selection, or post-transplant cyclophosphamide were excluded. Overall survival (OS) was the primary outcome. Secondary outcomes included non-relapse mortality (NRM), relapse, disease-free survival (DFS) and acute and chronic GVHD. Individual locus mismatch was also assessed. Apart from HLA matching, variables related to patient (age, race, sex, KPS, diagnosis, disease-risk), donor (age, parity), both (sex match/ABO match/CMV match) treatment (conditioning intensity, TBI use, in-vivo T-cell depletion (ATG), graft source (PB, BM) and GVHD prophylaxis (CyA-, Tac-based)) were considered. 2588 RIC HCT (8/8 MUD: 2025; 7/8 MMUD: 563) from 144 centers and 12 countries were analyzed. Median follow up in 8/8 MUD and 7/8 MMUD was 38 and 48 months respectively. Diagnoses were AML (65%), ALL (8%), CML (7%), MDS (20%). Conditioning intensity was RIC (79%), NMA (21%). 58% received in-vivo T-cell depletion. Graft source was PBSC (85%), BM (15%). GVHD prophylaxis was Tac-based (70%), CyA-based (27%). Mismatches involved HLA-A (188), -B (81), -C (219), and -DRB1 (75); with -DPB1 and -DQB1 typing available in 1382 and 2502 cases respectively. Compared to 8/8 MUD, 7/8 MMUD recipients were more likely to be younger and ethnic minorities and to have older and parous donors. In univariate analyses DQB1- and -DPB1 mismatch was not associated with worse OS, DFS, or NRM and was not further evaluated. There was a trend toward more grade II-IV acute GVHD in -DPB1 double (p=0.02) but not single mismatches. In multivariate models 7/8 MMUD RIC HCT had worse grade II-IV and III-IV acute GVHD, NRM, DFS and OS, but not relapse or chronic GVHD (Table). No significant interactions were identified between degree of HLA matching and other clinical variables. Adjusted 1- and 3-year NRM for 8/8 MUD vs. 7/8 MMUD was 20.4% vs. 28.9% (p<0.0001) and 29.2% vs. 38.1% (p<0.0007) respectively. Adjusted 1- and 3-year OS was 54.7% vs. 48.8% (p=0.01) and 37.4% vs. 30.9% (p=0.005) respectively (Figure). There was no difference between allele and antigen mismatches. HLA-A, -B, -C, and -DRB1 locus mismatches were each associated with 1 or more impaired outcomes (acute GVHD, NRM, DFS, and/or OS). Table 1 7/8 vs. 8/8 HLA HR (95% CI) p-value Acute GVHD II-IV 1.29 (1.09-1.53) 0.003 Acute GVHD III-IV 1.69 (1.00-3.36) 0.05 Chronic GVHD 1.11 (0.96-1.28) 0.15 Relapse 1.01 (0.87-1.17) 0.92 NRM 1.52 (1.29-1.79) <0.0001 DFS 1.20 (1.07-1.34) 0.0015 OS 1.25 (1.11-1.40) 0.0001 Compared to 8/8 MUD, both 7/8 allele and antigen MMUD RIC HCT have greater treatment toxicity and worse survival, of a magnitude similar to that seen in myeloablative transplantation. An isolated mismatch at HLA-A, -B, -C, or -DRB1 was associated with 1 or more adverse outcomes. In unrelated donor RIC HCT, matching for all alleles of HLA-A, -B, -C and -DRB1 loci results in superior outcomes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2280-2280
Author(s):  
Avichai Shimoni ◽  
Myriam Labopin ◽  
Bipin N. Savani ◽  
Rose-Marie Hamladji ◽  
Dietrich W. Beelen ◽  
...  

Abstract Allogeneic stem cell transplantation (SCT) is a potentially curative therapy for patients with acute myeloid leukemia (AML). Myeloablative conditioning (MAC) is associated with prohibitive rates of non-relapse mortality (NRM) in older and less medically fit patients. Several reduced intensity conditioning regimens (RIC) and more recently the more dose-intensive reduced toxicity myeloablative (RTC) regimens were designed to replace MAC in this setting. The backbone of these regimens is usually fludarabine with busulfan and more recently also with treosulfan, but there is no clear data on the comparative outcomes with these different regimens in the different SCT settings. The current study included 3561 patients with AML given a first allogeneic SCT from an HLA-matched sibling (n=1683) or a 10/10 matched unrelated donor (n=1878) between the years 2000-2014 and reported to the acute leukemia working party (ALWP) of EBMT. Only patients given fludarabine with either intravenous busulfan (ivBu), (FB, n=2990) or treosulfan (FT, n=571) alone were analyzed. Fludarabine and ivBu at 6.4 mg/kg (n=1457) or treosulfan at 30-36 gr/m2 (n=168) were considered RIC regimens while fludarabine with ivBu at a total dose of 9.6-12.8 mg/kg (n=1533) or treosulfan at 42 gr/m2(n=403) were considered RTC regimens according to EBMT criteria. The median age of FB and FT recipients was 55.5 and 58.3 years, respectively (P< 0.0001). The status at SCT was 72.5% CR1, 15.0% CR2 and 12.5% advanced disease in the FB group compared to 55.0%, 20.3% and 24.7% in the FT group, respectively (P<0.0001). More FT recipients had SCT from unrelated donors (64.8% Vs. 50.4%, P<0.0001) but less had in-vivo T-cell depletion (58.4%Vs 70.5%, P<0.0001). Cytogenetic subgroup distribution was similar between the groups. Ninety percent had peripheral blood stem cell grafts in both groups. The median follow-up was 19 and 43 months after FB and FT, respectively. Using univariant analysis, the 2-year relapse incidence (RI) was 32.7% and 35.5%, respectively (P=0.49). NRM was 17.6% and 19.4%, respectively (P=0.09). Leukemia-free survival (LFS) and overall survival (OS) were 49.5% and 54.8% after FB and 45.1% and 52.6% after FT, respectively (P=0.04, P=0.17). Acute GVHD grade II-IV and chronic GVHD were 23.1% and 35.7% after FB and 18.8% and 39.8% after FT, respectively (P=0.03, P=0.04). In all, the GVHD/ relapse-free survival (GRFS) was 36.5% and 31.5%, respectively (P=0.08). After adjusting for the differences in patient characteristics, there was no difference between the FB and FT groups in RI, NRM, LFS, OS and GRFS. However, acute GVHD grade (II-IV) was higher after FB (HR, 1.49, P=0.0004). The same observations were seen when the analysis was limited to RIC or RTC regimens only, or when only patients in remission were analyzed. However, when analyzing only the 516 patients with advanced disease at SCT, 2-year OS was 29.7% and 43.0% after FB and FT (P=0.002) and this difference remained significant in the multivariant analysis (HR, 1.50, p=0.003). Among the entire group, the factors associated with reduced survival were advanced age (HR 1.01, P<0.0001), secondary AML (HR 1.19, P=0.005), CR2 (HR 1.21, P=0.007) and advanced disease (HR 2.02, P<0.0001) compared to CR1, and female donor to male recipient (HR 1.15, P=0.03). Conditioning type and intensity, donor type, CMV status and in vivo T-cell depletion were not significant. Relapse was lower and NRM was higher with RTC compared with RIC, but OS was similar. The same factors predicted for GRFS, a surrogate for quality of life, with the only difference been the positive role of in vivo T-cell depletion (HR 0.8, P=0.0002). In conclusion, RIC and RTC regimens with ivBu or treosulfan-based regimens are associated with similar transplantation outcomes. OS is primarily affected by disease factors such as status of disease at SCT and secondary leukemia. Treosulfan- based conditioning is associated with a lower rate of acute GVHD, but with similar rates of chronic GVHD, NRM and GRFS. Treosulfan conditioning may have some advantage in patients with advanced disease at SCT. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5080-5080 ◽  
Author(s):  
Johannes Schetelig ◽  
Martin Bornhaeuser ◽  
Christian Thiede ◽  
Brigitte Mohr ◽  
Uta Oelschlaegel ◽  
...  

Abstract Recently we demonstrated that RIC with busulfan, fludarabine and ATG followed by allogeneic hematopoietic stem cell transplantation (HSCT) induced molecular remissions in patients (pts) with advanced CLL. However, this approach was hampered by severe GVHD. In an attempt to lower the rate of severe GVHD we replaced ATG by campath in a new study protocol. Patients and Methods: 20 pts with a median age of 54 years (range, 43 to 64) and advanced CLL were included. A median of 3 prior chemotherapy regimens had been given before HSCT, including fludarabine-containing regimens in all but two pts with autoimmune hemolysis. High risk cytogenetic features (17p−, 11q−, +12) were present in 9 pts. After conditioning with busulfan (8 mg/kg), fludarabine (150 mg/m2) and campath (75 mg) on days −9 to −5 peripheral blood stem cells from matched related (n=4) or unrelated donors (n=16) were transplanted. GVHD prophylaxis consisted of CSA monotherapy. Campath levels were analysed in frozen serum samples by BioAnaLab, Oxford, UK. Results: Two pts had no detectable campath level at the day of HSCT, while four pts had levels between 0.5 to 1.8 microgram/mL. Regeneration of neutrophils (>0.5/nl) and platelets (>20/nl) required a median of 17 (range, 14–25) and 10 (range, 0–27) days, respectively. Incomplete T-cell chimerism (<50%) was observed in 7 pts and subsequently 3 pts experienced secondary graft failure on days 134, 152 and 324. Six pts received donor lymphocyte infusions (DLI) for the conversion of incomplete T-cell chimerism (N=4) or progressive disease (N=2). Sponaneous acute GVHD II° to IV° occurred in 9/20 pts. After DLI four additional pts developed acute GVHD II° to IV°. Limited chronic GVHD occurred in 9 and extensive disease in 2 pts. In CMV seropositive pts the day 100 probability of CMV infection was 74% (95% CI, 44% to 100%). Severe encephalitis (HHV6, EBV and JC virus as suspected agents) was observed in 5 pts. Two pts recovered without sequelae, 2 pts are cognitively handicaped and one pt died. Hemorrhagic cystitis (CTC 2/3) occurred in 2 pts. After a median follow-up of 13 months (range, 6 – 26 months), 15 pts are alive. Four pts died from treatment related complications. Causes of death were pneumonia of unknown etiology (N=2), encephalitis (N=1) and GVHD grade IV (N=1). One pt died from severe acute GVHD subsequent to the treatment of relapse with DLI. One-year overall and progression-free survival was 75% (95% CI, 55% to 95%) and 50% (95% CI, 25% to 75%), respectively. The one-year probability of non-relapse mortality was 20% (95% CI, 2% to 38%). The number of binding sites for campath is highly variable in pts with progressive CLL resulting in interindividually highly variable pharmacokinetics. Differences in the extent of in vivo T-cell depletion might therefore explain the individually varying T-cell engraftment pattern. In addition, the high incidence of severe viral infections reflects impaired immunoreconstitution. Including pts after DLI we observed a substantial rate of severe GVHD. Based on these data we decided to skip the strategy of in vivo T-cell depletion with campath in patients with CLL.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4594-4594
Author(s):  
Maria Queralt Salas ◽  
Wilson Lam ◽  
Arjun Law ◽  
Fotios V. Michelis ◽  
Dennis Dong Hwan Kim ◽  
...  

Introduction The combination of anti-thymoglobulin (ATG), post-transplant cyclophosphamide (PTCy) and cyclosporine (CsA) provides an effective control of graft-versus host disease (GVHD) in allo-HSCT using peripheral blood stem cell (PBSC) grafts, as has been reported by Dr. Viswabandya et al. We aim to report a large, single center experience in reduced intensity conditioning (RIC) allo-HSCT using dual T-cell depletion with ATG and PTCy combined with CsA for GVHD prophylaxis using grafts from 10/10 matched unrelated donors. Patients and methods Between October 2015 and April 2019, 167 adult patients diagnosed with hematological malignancies underwent first 10/10 MUD RIC allo-HSCT. RIC regimen was composed by fludarabine, busulfan, and 200cGy of total body irradiation. For GVHD prophylaxis all recipients received rabbit-ATG, PTCy 50mg/m2/day on day +3 and +4, and CsA since day +5. One hundred sixteen (69.5%) recipients, transplanted between 2015 and May 2018, received a total dose of 4.5mg/kg of rabbit-ATG (given on day -3,-2 and -1). In May 2018, the dose of ATG was lowered to a total of 2mg/kg (given on day -3 and -2). A total of 51 (30.5%) recipients received the lowered dose of ATG. The median follow-up of the entire cohort was 14 months (range: 0.4-44.5). For those patients who got a higher dose of ATG was 20 months and for those who received a lower dose of ATG was 8.8 months. Data was collected retrospectively and updated on July 2019. Cumulative incidence (Cum.Inc) of GVHD analysis was assessed accounting relapse and death as competing events. Results Baseline and post-transplant information are summarized in the Table 1 and 2. Ninety-three (55.7%) recipients were diagnosed with acute myeloid leukemia (AML). The cum.Inc of grade II-IV and grade III-IV acute GVHD at day +100 was respectively 15.6% (95% confidence interval (CI) 10.6-21.6) and 3.6% (95% CI 1.5-7.3). The cum.Inc of acute GVHD was not significantly affected by the dose of ATG (P>0.05). The cum.Inc of chronic GVHD was 10.9% (95% CI 6.6-16.4). Due to the shorter median follow up of the cohort that received a lower dose of ATG, the impact of the reduction of the dose in the cum.Inc of chronic GVHD was not explored. Overall, 48 (28.7%) recipients died and 35 (20.4%) relapsed. Main causes of death were relapse (14.4%) and infection (9.6%). Outcome information is reported in the Table 2 and Plot A, B and C. One-year overall survival (OS), relapse-free survival (RFS) and GVHD-free/RFS (GFRFS) were respectively 75.6%, 70.3%, 60.4%. Table 3 summarizes the impact of the use of a different dose of ATG in acute GVHD and post-transplant outcome. No significant differences were found between the two groups that receive a different dose of ATG. However, median follow-up was shorter in the cohort that received 2mg/kg of ATG. Table 4 reports the main post-allo-HSCT information of patients diagnosed with AML. One-year OS, RFS and GRFRS for this subgroup of patients were 76.8%, 71.9% and 65.9%. Conclusion The unique and modern combination of RIC PB allo-HSCT using ATG, PTCY and CsA for GVHD prophylaxis results in impressive post-transplant outcomes using 10/10 MUD. The use of dual T-cell depletion with ATG and PTCy is safe and provides an extraordinary control of GVHD with acceptable relapse rates using PB stem cell 10/10 MUD grafts. ATG of only 2mg/kg when it is combined with PTCy and CsA, results in an effective control of acute GVHD rates. The optimal dose of ATG for GVHD prophylaxis is not well established. Further investigations need to be done to determine the efficacy of a lower dose of ATG controlling chronic GVHD in this setting. For patients diagnosed with AML, this protocol is safe and an effective approach when a 10/10 MUD is available. Disclosures Michelis: CSL Behring: Other: Financial Support. Mattsson:Celgene: Honoraria; Gilead: Honoraria; Therakos: Honoraria.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 140-140
Author(s):  
Aldemar Montero ◽  
Bipin N. Savani ◽  
Stephan Mielke ◽  
Scott R. Solomon ◽  
Richard Childs ◽  
...  

Abstract Between 1997 and 2004, 138 patients with hematological malignancies had an HLA-identical sibling peripheral blood stem cell transplant (PBSCT). Preparative regimen was TBI (12–13.6Gy), cyclophosphamide 120mg/kg +/− fludarabine 125mg/m2. T-cell dose was adjusted to 0.2-1 x 105 CD3+ cells/kg. CD34 dose was 2.7 – 15.9 x 106/kg (median 5.9). Patients without ≥ grade 2 acute GVHD received 1 or 2 donor lymphocyte infusions (DLI) of 107 CD3+ cells/kg between days 45 and 100. For GVHD prophylaxis, all patients received cyclosporine (CSA) following the DLI for a minimum of 6 months. In addition 72 patients received CSA in the first 6 weeks post PBSCT and 66 received no CSA immediately post-transplant. Patients were aged between 10–56 (median 34 years). Seventy-seven patients with CML-CP (42), acute leukemia in first remission (22) or MDS RA (10) were designated as standard risk (SR) for transplant outcome. Sixty-one patients with more advance or refractory disease were designated as high risk (HR) for transplant outcome. Seven patients, distributed in both groups had CLL, NHL, MM and CMML. Overall survival, relapse and TRM were 58 ± 4.5%, 40.2 ± 5.5% and 18.4 ± 3.4% respectively after a median follow up of 4 years. Twenty-two patients did not receive DLI, 70 received one and 46 received two DLI. Twenty-three patients had TRM, 2 from graft failure, 5 from acute or chronic GVHD. Fifty two (37%) developed ≥ grade II, and 21 (15%) patients grade III-IV acute GVHD. Forty two (30%) had limited and 30 (22%) extensive chronic GVHD. In univariate Kaplan-Meier analyses standard risk disease, cGVHD, single DLI and day 30 lymphocyte count (LC30) above median, favorably affected overall survival (DLI p=0.002; LC30 p=0.0002, all other variables p&lt;0.0001). Risk status was the strongest factor predicting relapse (28.8 ± 8% and 58.4 ± 7% in SR and HR patients respectively p&lt;0.0001). Fludarabine, degree of T-cell depletion, age, cyclosporine schedule and CD34 dose were not significant. In a Cox regression analysis, only cGVHD (RR, 4.268; p=0.001; 95% CI=1.77–10.25) and standard risk (RR, 0.146; p&lt;0.001; 95%CI=0.06–0.35) remained as independent predictive factors for outcome (Figure A). On landmark analysis after day +120, cGVHD was associated with better OS (p&lt;0.0001) and DFS (p=0.0006) (Figure B), and relapse (21.7± 6% and 51.5 ± 11% in patients with and without cGVHD p= 0.002). Aggressive T-cell depletion, combined with relatively high doses of CD34+ cells had proven to be a key strategy to minimize TRM and severe aGVHD. Similar to unmanipulated PBSCT this approach appears to provide a protective effect of chronic GVHD, but with low late mortality. Figure Figure


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3029-3029
Author(s):  
Nizar J. Bahlis ◽  
Douglas A. Stewart ◽  
Mary Lynn Savoie ◽  
Christopher Brown ◽  
Andrew Daly ◽  
...  

Abstract Background: We have investigated a conditioning regimen with Fludarabine and intravenous Busulfan with reduced ATG dose in patients with advanced and poor prognosis myeloma exploring the possibility that a low dose ATG may be sufficient enough to prevent severe GvHD without completely suppressing the graft vs myeloma effect. Methods: 15 patients received a conditioning regimen consisting of fludarabine 50mg/m2 on days -6 to -2 and IV BU (Busulfex, ESP Pharma) at a “myeloablative” dose of 3.2 mg/kg daily days -5 to -2 inclusive. All pts received Thymoglobulin (Genzyme) 4.5 mg/kg in divided doses over 3 consecutive days pre-transplant finishing D0, cyclosporine A and methotrexate with folinic acid. Results: The median age was 49 years (range 40–61). 14 (93.3%) patients had stage III (DS) disease with a median β2-microglobulin 3.12 mg/dl (1.82–5.75) and 7/11 (63.6%) in whom FISH studies were available had deletion 13, 5/15 (33.3%) patients had relapsed or progressed within 2 years of prior autologous stem cell transplant and 4 (26.6%) had progressed while on thalidomide /Dex salvage treatment. The disease status prior to allogeneic transplant was partial response (PR) in 6/15 (40%) and progressive disease (PD) in 9/15 (60%). 2/15 had plasma cell leukemia. The median number of bone marrow plasma cells prior to allo-transplant was 16% (range 3%-85%). Donors were matched siblings (MRD) for 13 (86.7%) and alternate donors in 2 (13.3%, unrelated with 2 C antigen mismatch). Cell source was blood in 14/15 (93.3%). Acute GVHD grade II-IV occurred in only 1 patient (6.6%) with no grade III-IV acute GVHD. Chronic GVHD occurred in 9/15 (60%). The TRM was 6.6%. Among 14/15 patients evaluable for response, the overall response rate (CR+PR) was 53.3% (2 CR, 6 PR, 1 MR and 5 PD); 37.5% (1CR, 2PR, 1MR and 4PD) for pts with PD at the time of the transplant and 71.4% (4PR, 1MR and 1PD) for pts with del13. After a median follow-up of 40.9 months (range 36–65.2), the estimated OS and PFS at 4 years for all patients is 38.9% (CI 95%: 13.1–64.7%) and 20.0% (CI 95%: 0–40.3%) respectively. For patients with del13 the estimated OS and PFS at 4 years is 38.1% (CI 95%: 0–77.9%) and 0% respectively. Conclusion: In vivo T-cell depletion with ATG results in a low rate of severe aGvHD with low treatment-related mortality and a substantial number of long-term survivors among patients with advanced multiple myeloma. The detection of deletion 13 by FISH however remains a predictor of short progression free survival. Figure Figure


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1977-1977
Author(s):  
James L. Slack ◽  
Jose F. Leis ◽  
Craig B. Reeder ◽  
Joseph R. Mikhael ◽  
Pierre Noel ◽  
...  

Abstract Abstract 1977 Introduction: Transplant options are limited for adult patients (pts) who lack a fully matched related or unrelated donor. We hypothesized that in-vivo T-cell depletion with r-ATG would allow safe allo-SCT from mismatched, unrelated donors, thus expanding the potential donor pool for pts with hematologic malignancies who require allo-SCT. Patients and Methods: Thirty seven adult pts (age 20 – 70, median 45) underwent a first unrelated, mismatched, allo-SCT between 1/1/2006 and 6/30/2011 at Mayo Clinic Arizona for hematologic malignancy (35 PBSC, 2 marrow). All pts had at least a one allele or one antigen mismatch (MM) at HLA-A, -B, -C, or -DRB1, and all except one pt received r-ATG as part of the GVHD prophylaxis strategy (dose range 2.5 – 10 mg/kg in daily dose of 2.5 mg/kg depending on degree of mismatch, with the last dose generally given on day −1). One pt received Campath after experiencing anaphylaxis to r-ATG. Pts were transplanted for acute myeloid leukemia (n = 19; 10 CR1, 6 CR2, 3 other), acute lymphoblastic leukemia (n = 8; 4 CR1, 4 CR>/= 2), chronic myeloid leukemia (n = 1), myelodysplastic syndrome (n = 5), or non-Hodgkin lymphoma (n = 4). Conditioning was myeloablative in 20, reduced intensity in 16, and non-myeloablative in 1. Mismatches were as follows: 1-allele MM (n = 7); 1 antigen MM (n = 15); 2 allele MM (n = 4); 1 antigen, 1 allele MM (n = 7); and 2 antigen MM (n = 4). Additional GVHD prophylaxis included tacrolimus plus either methotrexate (n =21), mycophenolate mofetil (n = 14), or other (n = 2). Results: The median follow-up for surviving pts is 12 months. As of 6/30/11, 31 pts were alive, and 6 had died of the following causes: multiorgan failure (n = 1), relapse (n = 3), and veno-occlusive disease (n = 2). To date, there have been no deaths related to acute or chronic GVHD. The 1- and 2-year estimated rates of overall survival are 84.5%/78.8% (Fig. 1); of progression-free survival 79.7%/72.0%. The estimated rate of relapse at 1 and 2 years is 11.8%/18.7%, and of non-relapse mortality 8.1%/10.5%. Four pts (10.8%) have developed severe (grades III-IV) acute GVHD by day 100 (days 19, 27, 30, 43; one pt after withdrawal of prograf due to transplant-associated microangiopathy). No late onset severe acute GVHD has been seen. Moderate to severe NIH-defined chronic GVHD occurred in a single pt at risk (cumulative incidence estimate 2.4% at 1 year, 4.7% at 2 years; Fig. 2). Four pts have reactivated EBV, with one developing PTLD (all have been treated with Rituximab). CMV reactivation was seen in 24 pts (65%), CMV disease in 4, with no deaths directly related to CMV. Conclusions: In vivo T-cell depletion with r-ATG abrogates severe acute and chronic GVHD, and allows use of mismatched unrelated donors for allo-SCT in adult pts with otherwise incurable hematologic malignancies. Long-term survivors are generally free of severe chronic GVHD, with good quality of life. There does not appear to be an increased incidence of disease relapse, and non-relapse mortality is low. This approach is safe, effective, and considerably expands the donor pool for adult pts who require allo-SCT. Disclosures: Reeder: Celgene: Research Funding; Millennium Pharmaceuticals Inc.: Research Funding; Novartis: Research Funding. Mesa:Incyte: Research Funding; Lilly: Research Funding; SBio: Research Funding; Astra Zeneca: Research Funding; NS Pharma: Research Funding; Celgene: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1210-1210 ◽  
Author(s):  
Sujith Samarasinghe ◽  
Simona Iacobelli ◽  
Cora Knol ◽  
Rose-Marie Hamladji ◽  
Gerard Socie ◽  
...  

Abstract To determine the optimal serotherapy regimen in idiopathic aplastic anaemia stem cell transplantation, we analysed 1837 patients who underwent either in vivo T cell depletion with either ATG (n=1283) or Alemtuzumab (n=261) or no serotherapy (n=293) as part of their conditioning regimen. All patients had either undergone a matched sibling or matched unrelated donor stem cell transplant (at least 6 out of 6). Data was obtained retrospectively from the EBMT SAA database, between the periods 2000-2013. The major endpoints were graft versus host disease, overall survival and event free survival. Events were classified as graft failure, secondary malignancy, relapse and requirement for second transplant. The median follow up was 34 months in the ATG group, 30.9 months in the Alemtuzumab group and 47.9 months in the no serotherapy group. Rate of grade 2-4 acute GVHD was 19.1% without serotherapy; this was higher than that observed with both ATG (13.3%, p<0.001) and Alemtuzumab (6.7%, p<0.001; ATG vs Alemtuzumab: p=0.012). Cumulative incidence of chronic GVHD at 36 months was 30.4% without serotherapy; this was higher than that observed with both ATG (20.8%, p=0.021) and Alemtuzumab (14.7%, p=0.003; ATG vs Alemtuzumab: p=0.083). In multivariate analysis, grade 2-4 acute and chronic GVHD rates were significantly lower with Alemtuzumab compared to no serotherapy (Odds Ratio ratio (OR) = 0.16, p< 0.001 95%CI 0.08-0.31 and HR= 0.38, 95% CI 0.24-0.62, p< 0.001 respectively). Similarly, acute and chronic GVHD were lower with Alemtuzumab compared to ATG (OR = 0.26;p<0.001 95%CI 0.14-0.47 and HR = 0.58; 95%CI 0.38-0.89, p=0.012 , respectively). Acute and chronic GVHD were higher without serotherapy compared to ATG (OR = 1.65; p =0.01 95%CI 1.12-2.41 and HR = 1.51; 95%CI 1.12-2.04, p=0.008 , respectively). There was no difference in event free survival between the three groups. However, overall survival at 36 months was 73.3%, 81.3% and 81.5 in no serotherapy, ATG and alemtuzumab, respectively (ATG vs no serotherapy p=0.01; Alemtuzumab vs no serotherapy p=0.025; Alentuzumab vs ATG p=0.604). In multivariate analysis overall survival favoured in vivo T cell depletion compared to no serotherapy; (Alemtuzumab vs no serotherapy, HR=0.44; 95%CI 0.29-0.67, p<0.001); (no serotherapy vs. ATG HR=1.55; 95%CI 1.19-2.01, p=0.001). Among serotherapy, Alemtuzumab was associated with better OS as compared with ATG (OR=0.68; 95%CI 0.48-0.98, p=0.037). Our results suggest that use of in vivo T cell depletion in sibling and unrelated matched stem cell transplantation in idiopathic aplastic anaemia leads to a survival advantage. Alemtuzumab is associated with less GVHD than ATG without affecting event free survival. Figure 1. Figure 1. Disclosures Snowden: Celgene: Other: Educational support, Speakers Bureau; Janssen: Other: Educational support, Speakers Bureau; MSD: Consultancy, Other: Educational support, Speakers Bureau; Sanofi: Consultancy. Dufour:Pfizer: Consultancy. Risitano:Pfizer: Consultancy; Novartis: Research Funding; Rapharma: Consultancy, Research Funding; Alnylam: Consultancy, Research Funding; Alexion Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Off Label Use: this paper includes discussion of the use of alentuzumab for GVHD prophylaxis, which is currently off-label.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2761-2761
Author(s):  
Peter A. von dem Borne ◽  
Floor Beaumont ◽  
Ingrid Starrenburg ◽  
Machteld A. Oudshoorn ◽  
Geoff Hale ◽  
...  

Abstract In allogeneic stem cell transplantation (SCT) T-cell depletion reduces transplant related mortality by diminishing GVHD. We have investigated a myeloablative regimen for matched unrelated donor SCT using both in vivo and in vitro CAMPATH-1H for effective T-cell depletion, utilising DLI at a later time point for graft versus tumor effect if necessary. Thirty patients (median age 33 years, range 18–48) were transplanted from January 1997 to June 2002. Diagnoses were: CML CP (n=9), CML AP (n=2), AML/MDS (n=9), ALL (n=8), NHL (n=1) and Fanconi anemia (n=1). Six patients had one HLA mismatch, the others were identical for HLA A, B, C, DR and DQ. Conditioning consisted of CAMPATH-1H 5mg/d on days −8 to −4, TBI 6 Gy on days −8 and −7 and cyclofosfamide 60 mg/kg on days −6 and −5. T-cell depletion was performed by in vitro incubation of the graft with 20 mg CAMPATH-1H for 30 minutes (Campath “in the bag”). Post-transplant GVHD prophylaxis consisted of cyclosporine A and methotrexate. The stem cell source was bone marrow in 19 patients (63%) and peripheral blood in 11 patients. One graft failure was observed, all other patients had sustained engraftment of donor cells. Acute GVHD was observed in 12 patients (40%), maximally grade I-II skin. No severe acute GVHD (grade III-IV) was experienced. Limited chronic GVHD developed in 2 patients, resolving after treatment. Only in one patient extensive chronic GVHD developed, which did not resolve. CMV reactivation occurred in 23% of patients, one patient developed CMV disease. No EBV disease was observed. Ten patients received donor lymphocyte infusion (DLI) at a median of 17.4 months after SCT (8 patients with relapsed CML, one patient with relapsed ALL, one patient with autoimmune hemolytic anemia). After DLI acute GVHD grade I-II developed in 4 patients, and GVHD grade III-IV in 3. Chronic GVHD developed in 5 patients, of which 2 extensive, resolving in all except one patient. With a median follow up of 37 (range 21–84) months 17 patients are alive (57%). One of the CML patients shows persistence of molecular disease not responding to increasing doses of DLI. All other patients are in CR with the CML patients in molecular remission. Five patients (17%) died because of relapsed disease (2 AML/MDS and 3 ALL). Treatment related mortality was 26% (1 rejection, 2 GVHD, 1 myocardial infarction, 4 infections). In conclusion, matched unrelated donor SCT following myeloablative conditioning using T-cell depletion with CAMPATH-1H in vivo as well as in vitro results in good engraftment, minimal grade I-II GVHD and an overall survival of 57%. Relapse rate was not increased with this strategy. This regimen appears to be successful for young adults with high-risk malignancies.


Sign in / Sign up

Export Citation Format

Share Document