Leukemia-Induced Alterations in Bone Marrow Cytokine and Chemokine Levels Contribute to Altered Stem Cell Lodgment and Impairment of Normal Stem Cell Growth in CML

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 962-962
Author(s):  
Bin Zhang ◽  
Yin Wei Ho ◽  
Tessa L. Holyoake ◽  
Claudia S Huettner ◽  
Ravi Bhatia

Abstract Abstract 962 Specialized bone marrow (BM) microenvironmental niches are essential for hematopoietic stem cell (HSC) lodgment and maintenance. However microenvironmental interactions of leukemia stem cells (LSC) are poorly understood. Although chronic myelogenous leukemia (CML) results from HSC transformation by the BCR-ABL gene, the role of the microenvironment in modulating leukemia development is not known. We employed the SCL-tTA-BCR/ABL mouse model of CML to investigate the LSC interactions with the BM microenvironment. In this model, targeted expression of the BCR-ABL gene in murine HSC via a tet-regulated SCL promoter results in development of a chronic phase CML-like disorder. We have reported that LSC capacity is restricted to BCR-ABL+ cells with long-term hematopoietic stem cell (LTHSC) phenotype(LSK Flt3-CD150+CD48-) (Blood 2010 116:1212A). LSC numbers are reduced in the BM but increased in the spleen of CML mice compared with LTHSC from control mice, suggesting that LSC have altered niche interactions. LSC also demonstrate altered trafficking with significant reduction in homing of IV injected LSC to BM, and markedly increased egress of intrafemorally injected LSC to the spleen, potentially related to reduced CXCL12 levels in the BM of CML mice. In addition, levels of several chemokines and cytokines, including MIP1α, MIP1β, MIP2, IL-1α, IL-1β, TNF-α, G-CSF and IL-6, were increased in CML BM, related to increased production by malignant hematopoietic cells. We investigated whether altered chemokine and cytokine expression was associated with altered capacity of the CML BM microenvironment to support LTHSC engraftment. LTHSC from control mice or LSC from CML mice were transplanted into irradiated CML or control recipients. There was reduced engraftment of both control LTHSC and CML LSC in the BM of CML compared to control recipients at 2 weeks after transplantation, associated with reduced homing to CML BM, potentially related to low BM CXCL12 levels. The numbers of control LTHSC in the BM of CML recipient mice remained low at 4 weeks post-transplantation, whereas the numbers of CML LSC increased to numbers similar to those seen in the BM of control recipients. Culture with CML BM supernatants (SN) resulted in impaired growth of control LTHSC compared to control BM SN. In contrast the growth of CML LSC was similar following culture with CML and control BM SN. Culture with individual factors at concentrations similar to those observed in CML BM (16ng/ml MIP1α, 8ng/ml MIP1β, 2.5ng/ml IL-1α, 3.5ng/ml IL-1β, 0.05ng/ml TNF-α) resulted in significantly reduced growth of normal LTHSC compared with CML LSC. These results indicate that diffusible factors produced by leukemic cells in the CML BM environment selectively inhibit normal LTHSC compared to CML LSC growth. Exposure of a murine stromal cell line to CML BM SN resulted in reduced CXCL12 mRNA levels compared to BM SN from control mice. The cytokine G-CSF, which was increased in CML BM SN, has been reported to reduce CXCL12 transcription. We observed significant reduction of CXCL12 mRNA levels in stromal cells cultured with G-CSF (0.2ng/ml), supporting a potential role for increased G-CSF production by leukemia cells in reduced CXCL12 production by CML BM stromal cells and reduced LSC retention in the BM. We evaluated whether defects in microenvironmental function in CML were affected by imatinib treatment. Treatment of CML mice with imatinib (200mg/kg/day, 2 weeks) led to reduction in MIP1α, MIP1β, IL-1β, and IL-6 levels in BM cells. Engraftment of normal LTHSC was significantly enhanced in BM of CML recipients pre-treated with imatinib. Results obtained with the mouse model were validated using specimens obtained from CML patients. CXCL12 mRNA levels were significantly reduced in human CML compared to normal MNCs, whereas expression of MIP1α, MIP-2, IL-1α and IL-1β were increased in CML MNCs, consistent with results obtained with the mouse model. Coculture with CML MNC conditioned medium (CM) resulted in selective impairment of growth of normal CD34+CD38- primitive progenitors compared to CM from normal MNC, but did not inhibit growth of CML progenitors. We conclude that leukemia-induced alterations in BM cytokine and chemokine levels contribute to altered LSC lodgment and to selective impairment of growth of normal LTHSC in the CML BM microenvironment, leading to a relative growth advantage for CML LSC over normal LTHSC and expansion of the leukemic clone. Disclosures: Holyoake: Novartis: Research Funding; Bristol Myers Squibb: Research Funding.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2168-2168
Author(s):  
Jin Ye ◽  
Isabel A Calvo ◽  
Itziar Cenzano ◽  
Amaia Vilas-Zornoza ◽  
Xabier Martinez-de-Morentin ◽  
...  

Abstract Understanding the regulation of normal and malignant human hematopoiesis requires a comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory microenvironment. Recent studies using scRNA-seq technologies have shed light on the organization of the hematopoietic regulatory microenvironment in the mouse. These studies have resolved some of the controversies regarding the overlap of stromal populations, the description of certain discrete stromal cells as professional, hematopoietic cytokine-producing populations, but also helped to delineate the relationship between specific stromal cell types in the murine BM. Nevertheless, these studies are limited by the number of cells sequenced, potentially hampering our ability to resolve the full spectrum of cellular states and differentiation stages that define the stromal BM microenvironment. Further, knowledge on the conservation of the cellular composition in the human BM stroma is in its infancy due to the difficulty of obtaining high-quality samples with sufficient stromal cell numbers from healthy individuals. This leaves us with two outstanding challenges; how to piece together such different fragments towards a comprehensive molecular atlas and to what extent such an atlas in mice is conserved in the human bone marrow. Here, we dissect the intrinsic organization and the heterogeneity within the endothelial (EC) and mesenchymal cell populations (MSC) governing the BM microenvironment in mouse and human. This was accomplished through customized bioinformatics integration of multiple scRNA-seq datasets along with the inclusion of over 50.000 murine and human bone marrow stromal cells. By these means, we were able to identify new subsets of MSC and EC, but more importantly, to define new molecular markers to identify highly specialized subpopulations of cells in the murine BM microenvironment. Pathway enrichment analysis unveiled multiple, potentially transient cell states defined by differential gene expression and the enrichment of specific functional characteristics. Importantly, 14 EC subsets were characterized by enrichment in pathways known to be essential for endothelial homeostasis maintenance, demonstrating a high degree of specialization in the endothelium. Similarly, 11 transient cell states in the MSC compartment were defined and characterized by their differentiation capacity. Importantly, our deep deconvolution of the heterogeneous mesenchymal and endothelial compartments became feasible only by integrating multiple datasets. Furthermore, based on the knowledge generated in the mouse, we were able to describe how much of the information and targets from the mouse can be of interest in human characterization. This analysis identified the expression of the human orthologs to the murine cluster-defining genes with different degrees of enrichment in the endothelium and mesenchyme. Moreover, some of these shared genes in mice and human stromal cells corresponded to the GO-defining genes of the different clusters identified in the mouse. These findings suggest a significant degree of conservation regarding the cellular states that define the stromal microenvironment in mouse and human. Although additional studies and improved processing of human samples will be required for deep characterization of the human BM microenvironment, these preliminary results validate our integrative cross-species approach. Taken together, our study provides a deeper understanding of the composition and specialization of the BM microenvironment and point towards a significant degree of conservation between species. Moreover, we demonstrate the usefulness of the multi-dataset integration and the customized clustering approach used in our study to improve the resolution of complex tissues and organs. This approach promises to aid in the construction of cell atlases by reducing the resources associated with sequencing that a single lab will need to invest in order to obtain meaningful depth in single-cell analysis. Future studies integrating genome, transcriptome, epigenome, proteome, and anatomical positioning together with functional assays to correlate descriptive phenotypes with functional data will help fully resolve the composition, regulation, and connectivity in the BM microenvironment in health and disease. Figure 1 Figure 1. Disclosures Paiva: Adaptive, Amgen, Bristol-Myers Squibb-Celgene, Janssen, Kite Pharma, Sanofi and Takeda: Honoraria; Bristol-Myers Squibb-Celgene, Janssen, and Sanofi: Consultancy; Celgene, EngMab, Roche, Sanofi, Takeda: Research Funding. Saez: Magenta Therapeutics: Patents & Royalties. Prosper: BMS-Celgene: Honoraria, Research Funding; Janssen: Honoraria; Oryzon: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3199-3199
Author(s):  
Ji Zha ◽  
Lori Kunselman ◽  
Hongbo Michael Xie ◽  
Brian Ennis ◽  
Jian-Meng Fan ◽  
...  

Hematopoietic stem cell (HSC) transplantation (HSCT) is required for curative therapy for patients with high-risk hematologic malignancies, and a number of non-malignant disorders including inherited bone marrow failure syndromes (iBMFS). Strategies to enhance bone marrow (BM) niche capacity to engraft donor HSC have the potential to improve HSCT outcome by decreasing graft failure rates and enabling reduction in conditioning intensity and regimen-associated complications. Several studies in animal models of iBMFS have demonstrated that BM niche dysfunction contributes to both the pathogenesis of iBMFS, as well as impaired graft function after HSCT. We hypothesize that such iBMFS mouse models are useful tools for discovering targetable niche elements critical for donor engraftment after HSCT. Here, we report the development of a novel mouse model of Shwachman-Diamond Syndrome (SDS) driven by conditional Sbds deletion, which demonstrates profound impairment of healthy donor hematopoietic engraftment after HSCT due to pathway-specific dysfunctional signaling within SBDS-deficient recipient niches. We first attempted to delete Sbds specifically in mature osteoblasts by crossing Sbdsfl/flmice with Col1a1Cre+mice. However, the Col1a1CreSbdsExc progenies are embryonic lethal at E12-E15 stage due to developmental musculoskeletal abnormalities. Alternatively, we generated an inducible SDS mouse model by crossing Sbdsfl/flmice with Mx1Cre+ mice, and inducing Sbds deletion in Mx1-inducible BM hematopoietic and osteolineage niche cells by polyinosinic-polycytidilic acid (pIpC) administration. Compared with Sbdsfl/flcontrols, Mx1CreSbdsExc mice develop significantly decreased platelet counts, an inverted peripheral blood myeloid/lymphoid cell ratio, and reduced long-term HSC within BM, consistent with stress hematopoiesis seen in BMF and myelodysplastic syndromes. To assess whether inducible SBDS deficiency impacts niche function to engraft donor HSC, we transplanted GFP+ wildtype donor BM into pIpC-treated Mx1CreSbdsExc mice and Sbdsfl/flcontrols after 1100 cGy of total body irradiation (TBI). Following transplantation, Mx1CreSbdsExc recipient mice exhibit significantly higher mortality than controls (Figure 1). The decreased survival was related to primary graft failure, as Mx1CreSbdsExc mice exhibit persistent BM aplasia after HSCT and decreased GFP+ reconstitution in competitive secondary transplantation assays. We next sought to identify the molecular and cellular defects within BM niche cells that contribute to the engraftment deficits in SBDS-deficient mice. We performed RNA-seq analysis on the BM stromal cells from irradiated Mx1CreSbdsExc mice versus controls, and the results revealed that SBDS deficiency in BM niche cells caused disrupted gene expression within osteoclast differentiation, FcγR-mediated phagocytosis, and VEGF signaling pathways. Multiplex ELISA assays showed that the BM niche of irradiated Mx1CreSbdsExc mice expresses lower levels of CXCL12, P-selectin and IGF-1, along with higher levels of G-CSF, CCL3, osteopontin and CCL9 than controls. Together, these results suggest that poor donor HSC engraftment in SBDS-deficient mice is likely caused by alterations in niche-mediated donor HSC homing/retention, bone metabolism, host monocyte survival, signaling within IGF-1 and VEGF pathways, and an increased inflammatory state within BM niches. Moreover, flow cytometry analysis showed that compared to controls, the BM niche of irradiated Mx1CreSbdsExc mice contained far fewer megakaryocytes, a hematopoietic cell component of BM niches that we previously demonstrated to be critical in promoting osteoblastic niche expansion and donor HSC engraftment. Taken together, our data demonstrated that SBDS deficiency in BM niches results in reduced capacity to engraft donor HSC. We have identified multiple molecular and cellular defects in the SBDS-deficient niche contributing to this phenotype. Such niche signaling pathway-specific deficits implicate these pathways as critical for donor engraftment during HSCT, and suggest their potential role as targets of therapeutic approaches to enhance donor engraftment and improve HSCT outcome in any condition for which HSCT is required for cure. Disclosures Olson: Merck: Membership on an entity's Board of Directors or advisory committees; Bluebird Bio: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria.


2015 ◽  
Vol 43 (9) ◽  
pp. S79
Author(s):  
Yoshikazu Matsuoka ◽  
Keisuke Sumide ◽  
Hiroshi Kawamura ◽  
Ryusuke Nakatsuka ◽  
Tatsuya Fujioka ◽  
...  

2020 ◽  
Author(s):  
Ka-Won Kang ◽  
Seung-Jin Lee ◽  
Ji Hye Kim ◽  
Byung-Hyun Lee ◽  
Seok Jin Kim ◽  
...  

Abstract Background This study assessed the mechanism of hematopoietic stem cell (HSC) mobilization using etoposide with granulocyte-colony stimulating factor (G-CSF) and determined how it differed from that using cyclophosphamide with G-CSF or G-CSF alone.Methods The study analyzed data from 173 non-Hodgkin’s lymphoma patients who underwent autologous peripheral blood stem cell transplantation (auto-PBSCT), in vitro experiments using HSCs and bone marrow stromal cells (BMSCs), and in vivo mouse model studies.Results The etoposide with G-CSF mobilization group showed the highest yield of CD34+ cells and the lowest change in white blood cell counts during mobilization. Etoposide triggered interleukin (IL)-8 secretion from BMSCs and caused long-term BMSC toxicity, which were not observed with cyclophosphamide treatment. The expansion of CD34+ cells cultured in BMSC-conditioned medium containing IL-8 was more remarkable than that without IL-8. The expression of CXCR2, mTOR, and cMYC in HSCs was gradually enhanced at 1, 6, and 24 h after IL-8 stimulation. In animal studies, the etoposide with G-CSF mobilization group presented stronger expression of IL-8-related cytokines and MMP9 and scantier expression of SDF-1 in the bone marrow, compared to the other groups not treated with etoposide.Conclusion Collectively, the unique mechanism of etoposide with G-CSF-mediated mobilization is associated with the secretion of IL-8 from BMSCs, causing the enhanced proliferation and mobilization of HSCs in the bone marrow, which was not observed in the mobilization using cyclophosphamide with G-CSF or G-CSF alone. Moreover, the long-term toxicity of etoposide to BMSC emphasizes the need for further studies to develop more efficient and safe chemo-mobilization strategies.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2340-2342 ◽  
Author(s):  
Stéphane J. C. Mancini ◽  
Ned Mantei ◽  
Alexis Dumortier ◽  
Ueli Suter ◽  
H. Robson MacDonald ◽  
...  

AbstractJagged1-mediated Notch signaling has been suggested to be critically involved in hematopoietic stem cell (HSC) self-renewal. Unexpectedly, we report here that inducible Cre-loxP–mediated inactivation of the Jagged1 gene in bone marrow progenitors and/or bone marrow (BM) stromal cells does not impair HSC self-renewal or differentiation in all blood lineages. Mice with simultaneous inactivation of Jagged1 and Notch1 in the BM compartment survived normally following a 5FU-based in vivo challenge. In addition, Notch1-deficient HSCs were able to reconstitute mice with inactivated Jagged1 in the BM stroma even under competitive conditions. In contrast to earlier reports, these data exclude an essential role for Jagged1-mediated Notch signaling during hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document