Antibodies to Human Factor XII with Antithrombotic Properties

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1106-1106
Author(s):  
Anton Matafonov ◽  
Adam E. Gailani ◽  
Stephanie L. Grach ◽  
Philberta Y Leung ◽  
Qiufang Cheng ◽  
...  

Abstract Abstract 1106 The plasma protease factor XIIa (FXIIa) contributes to vascular occlusion in murine thrombosis models, at least partly through activation of factor XI (FXI). While there is good correlation between plasma FXI levels and thrombotic events in humans, the situation is not as clear for FXII (the precursor of FXIIa), suggesting fundamental differences in thrombus formation in mice and humans. To facilitate studies on the effects of FXII/XIIa on thrombus formation, we developed novel inhibitory antibodies to human FXII, designated 9A2 and 15H8, by immunizing FXII-deficient mice with human FXII. Using recombinant human FXII molecules that lack various domains, and chimeras in which specific domains in FXII are replaced with those from the related protein hepatocyte growth factor activator, we determined that 9A2 and 15H8 bind to the FXII/XIIa non-catalytic heavy chain at different sites. 9A2 binds on or near the EGF2 domain, while 15H8 binds to the fibronectin type I and/or kringle domain. These areas have been implicated in FXII binding to polyanionic surfaces. Saturating concentrations of 9A2 or 15H8 reduced FXII activity by 50% and 90%, respectively, in an aPTT assay using normal plasma, while combining the antibodies resulted in >95% inhibition. However, in assays in which clot formation was triggered by adding FXIIa directly to plasma, preincubation of FXIIa with either antibody did not prolong the clotting time. Furthermore, neither antibody had a strong effect in a chromogenic assay of FXI activation by FXIIa, indicating the antibodies interfere with the aPTT assay primarily by inhibiting FXII activation. FXII activation in the aPTT assay is initiated by addition of a polyanion such as silica to the plasma to induce contact activation. In vivo, polymers of inorganic phosphate (polyP) may serve a similar function. Contact activation is triggered in plasma when FXII bound to the polyanion is activated, probably by trace amounts of FXIIa or another protease present in the plasma. Once formed, FXIIa converts the zymogens prekallikrein and FXI to the proteases kallikrein and FXIa, both of which can activate additional FXIIa to amplify the process. In the presence of 9A2 or 15H8, activation of pure FXII in the presence of either silica or polyP was significantly reduced. Interestingly, the antibodies actually potentiated FXII activation by kallikrein or FXIa in the absence of a polyanion. Taken as a whole, these results suggest that binding of 9A2 or 15H8 to FXII results in conformational changes that make FXII a better substrate for kallikrein and FXIa, possibly by mimicking the effect of FXII binding to a polyanion, but that prevent activation of FXII by FXIIa (autoactivation), blunting the overall rate of activation. We tested the effects of 9A2 and 15H8 in a mouse model in which thrombotic occlusion of the carotid artery is induced by exposing the vessel to a 3.5% solution of ferric chloride. Wild type C57Bl/6 mice develop arterial occlusion within 5 to 10 minutes, while FXII-deficient mice are resistant to arterial occlusion. Infusion of human FXII into FXII-deficient mice restores the wild type phenotype. 15H8 prevented thrombus formation in mice reconstituted with human FXII, while 9A2 reduced the rate of thrombotic occlusion by 50%. In an ex vivo flow model, perfusion of human blood through collagen-coated tubes at a shear rate of 300 sec−1 results in tube occlusion by platelet and fibrin rich clot in ∼15 minutes. 15H8 effectively blocked fibrin formation and reduced platelet accumulation, preventing tube occlusion. 9A2 was also effective at preventing clot formation, but there was evidence of some fibrin accumulation over time. In summary, the monoclonal anti-human FXII IgGs 9A2 and 15H8 prevent thrombus formation in whole blood in vivo and ex vivo by interfering with FXII activation. Our data support the hypothesis that pharmacologic inhibition of FXII activation may have therapeutic utility in disorders that are driven or aggravated by the blood contact system. Disclosures: No relevant conflicts of interest to declare.

1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


Blood ◽  
2010 ◽  
Vol 115 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Yacine Boulaftali ◽  
Frédéric Adam ◽  
Laurence Venisse ◽  
Véronique Ollivier ◽  
Benjamin Richard ◽  
...  

AbstractProtease nexin–1 (PN-1) is a serpin that inhibits plasminogen activators, plasmin, and thrombin. PN-1 is barely detectable in plasma but is expressed by platelets. Here, we studied platelet PN-1 in resting and activated conditions and its function in thrombosis. Studies on human platelets from healthy donors and from patients with a Gray platelet syndrome demonstrate that PN-1 is present both at the platelet surface and in α-granules. The role of PN-1 was investigated in vitro using human platelets incubated with a blocking antibody and using platelets from PN-1–deficient mice. Both approaches indicate that platelet PN-1 is active on thrombin and urokinase-type plasminogen activator. Blockade and deficiency of platelet PN-1 result in accelerated and increased tissue factor-induced thrombin generation as indicated by calibrated automated thrombography. Moreover, platelets from PN-1–deficient mice respond to subthreshold doses of thrombin, as assessed by P-selectin expression and platelet aggregation. Thrombus formation, induced ex vivo by collagen in blood flow conditions and in vivo by FeCl3-induced injury, is significantly increased in PN-1–deficient mice, demonstrating the antithrombotic properties of platelet PN-1. Platelet PN-1 is thus a key player in the thrombotic process, whose negative regulatory role has been, up to now, markedly underestimated.


Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 594-600 ◽  
Author(s):  
Catherine Leon ◽  
Meike Alex ◽  
Antje Klocke ◽  
Eberhard Morgenstern ◽  
Christine Moosbauer ◽  
...  

Abstract While the adenosine 5′-diphosphate (ADP) pathway is known to enhance thrombus formation by recruiting platelets and leukocytes to the primary layer of collagen-adhering platelets, its role for the initiation of coagulation has not been revealed. Ex vivo inhibition of the P2Y12 ADP receptor by clopidogrel administration diminished the rapid exposure of tissue factor (TF), the major initiator of coagulation, in conjugates of platelets with leukocytes established by the contact of whole blood with fibrillar collagen. Under in vitro conditions, the P2Y12 and P2Y1 ADP receptors were both found to be implicated in the exposure of TF in collagen-activated whole blood. Immunoelectron-microscopy revealed that collagen elicited the release of TF from its storage pools within the platelets. Functional activation of the intravascular TF was reduced by inhibition of the ADP receptors, partially due to the disruption of the platelet-neutrophil adhesions. Injection of collagen into the venous system of mice increased the number of thrombin-antithrombin complexes, indicative for the formation of thrombin in vivo. In P2Y1-deficient mice, the ability of collagen to enhance the generation of thrombin was impaired. In conclusion, the platelet ADP pathway supports the initiation of intravascular coagulation, which is likely to contribute to the concomitant formation of fibrin at the site of the growing thrombus.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1050-1050
Author(s):  
Angela Doerr ◽  
Denise Pedrosa ◽  
Maria Schander ◽  
Yotis A. Senis ◽  
Alexandra Mazharian ◽  
...  

Abstract Background Thrombus formation is a complex, dynamic and multistep process, based on two crucial steps: platelet adhesion and platelet aggregation that both involve the large multimeric plasma glycoprotein Von Willebrand Factor (VWF). VWF binding to the GPIb/X/V complex initiates platelet adhesion to the vessel wall at high shear stress and triggers platelet activation resulting in the generation of thrombin and activation of integrin αIIbβ3 on the platelet surface. This activation of αIIbβ3 in turn leads to outside-in signalling and promotes binding of αIIbβ3 to fibrinogen and VWF, mediating thrombus growth. Trigging receptor expressed on myeloid cells like transcript-1 (TLT-1) is a transmembrane receptor, which is targeted to α-granules of platelets and megakaryocytes. Thrombin-induced platelet activation rapidly presents TLT-1 on the platelet surface and releases a soluble form (sTLT-1) into the circulation. To date the only known ligand for TLT-1 is fibrinogen and TLT-1 has been implicated in the regulation of inflammation-associated thrombosis. Interestingly, a putative interaction of VWF with TLT-1 was indicated by a screen with known platelet receptors. Aim We aimed to evaluate the effect of TLT-1/VWF interaction on platelet aggregation and thrombus formation. Methods Recombinant TLT-1 and VWF were purified and the interaction between TLT-1 and VWF was analyzed by surface plasmon resonance. Static interaction was confirmed by an ELISA based binding assay. Flow assays assessed TLT-1 dependent thrombus formation in vitro. The effects of TLT-1 knockout on thrombus formation in vivo were examined via intravital microscopy of the flow restricted inferior vena cava (IVC) and imaging of platelet attachment and fibrin formation over 6 hours. Furthermore, thrombus formation and resolution was followed by high resolution ultrasound imaging after stenosis induction for 28 days. Integrin aIIbb3 activation was analysed by flow cytometry using the JonA antibody in murine platelet rich plasma. Results VWF bound to soluble TLT-1 with high affinity in a calcium dependent manner (K D = 1.9 nM). The binding site on VWF was mapped to the A3D4 domains and high molecular weight VWF multimers had the greatest affinity for TLT-1. Moreover, HEK293 cells transfected with TLT-1 bound to VWF and VWF strings formed specifically on TLT-1 expressing cells, confirming the interaction between the two proteins. VWF inhibited the binding of fibrinogen to TLT-1, suggesting that VWF is a preferred binding partner of TLT-1. Human platelets exhibited increased TLT-1 surface expression after TRAP-6 induced platelet activation and TLT-1 was detected throughout thrombi formed under flow. Furthermore, a TLT-1 blocking antibody inhibited the interaction of TLT-1 with VWF and reduced platelet capture to type I collagen under shear stress. Ex vivo perfusion of blood from TLT-1 knock out mice over type I collagen also resulted in reduced thrombus formation compared to blood from wild-type mice. TLT-1 knock-out platelets were activated by thrombin similar to wild-type controls, based on P-selectin expression in platelet rich plasma. However, activation of integrin αIIbβ3 determined by JonA staining was reduced in the absence of TLT-1. This phenotype of reduced integrin αIIbβ3 activation on P-selectin positive platelets was phenocopied by the thrombin platelet response in platelet rich plasma from VWF -/- mice, but not GPIbα-deficient mice, indicating that the TLT-1-VWF interaction on platelets directly influences integrin αIIbβ3 activation. Significantly, thrombus formation was markedly reduced in TLT-1 knockout mice in the IVC model in vivo in comparison to wild-type mice. Conclusions This study demonstrates that TLT-1 is a novel platelet ligand for VWF, and that TLT-1 may preferentially bind VWF over fibrinogen. We propose a TLT-1/VWF dependent integrin αIIbβ3 activation mechanism which plays a pivotal role in thrombus formation under non-inflammatory and potentially inflammatory conditions. Disclosures Ruf: ICONIC Therapeutics: Consultancy; MeruVasimmune: Current holder of individual stocks in a privately-held company; ARCA bioscience: Consultancy, Patents & Royalties.


2020 ◽  
Author(s):  
Daria S. Morozova ◽  
Alexey A. Martyanov ◽  
Sergei I. Obydennyi ◽  
Julia-Jessica D. Korobkin ◽  
Alexey V. Sokolov ◽  
...  

AbstractInfiltration of growing thrombi by leukocytes, being the key part of the thromboinflammation, is well established in vivo. The study was aimed at the development of an ex vivo simulation of this phenomenon. Thrombus formation in anticoagulated whole blood from healthy volunteers and patients was visualized by fluorescent microscopy in parallel-plate flow chambers with fibrillar collagen type I coverslips.Moving CD66b-positive cells (granulocytes) were observed in hirudinated or recalcified blood under low wall shear rate conditions (<200 s−1). These cells crawled around thrombi in a step-wise manner with an average rate of 70 nm/s. Pre-incubation of blood with leukocyte priming agents lead to a significant increase in average cell velocity. On the contrary, leukocytes from Wiskott-Aldrich syndrome patients demonstrated a 1.5-fold lower average velocity, in line with their impaired actin polymerization.Thereby, the observed features of granulocytes crawling are consistent with the neutrophil chemotaxis phenomenon. We conclude that the proposed ex vivo experimental setting allows us to observe granulocytes activity in near-physiological conditions.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 409-409 ◽  
Author(s):  
Suzanne Delaney ◽  
Uma Sinha ◽  
Nisha Nanda ◽  
Yibing Yan ◽  
Anjali Pandey ◽  
...  

Abstract Studies of the Syk −/− mouse have implicated spleen tyrosine kinase (Syk), a signaling protein with both kinase and scaffolding activities, in platelet signaling following engagement of GPVI and αIIbβ3 by collagen and fibrinogen, respectively. The present study was designed to determine whether specific inhibition of the kinase activity of Syk, without targeting the Syk scaffolding function, affected in vivo arterial thrombosis. In preliminary experiments, blood from wild-type and Syk−/− mice was perfused through collagen-coated capillaries under arterial shear rates to study ex vivo thrombosis. While blood from wild-type mice formed robust thrombi (37±4.7 μm3/μm2), none was observed in Syk−/− mice. Thrombi intermediate in size (16±3.9 μm3/μm2) developed in Syk+/− mice. To achieve specific pharmacological targeting of the kinase activity of Syk, P142-76, a potent (IC50 = 4 nM) and selective Syk kinase inhibitor was utilized. P142-76 was screened against a broad panel of 139 purified kinases at 50 nM. While Syk kinase was inhibited by 92%, all other kinases retained more than 70% of their activity. In washed human platelets, P142-76 inhibited convulxin (CVX)-induced phosphorylation of LAT (linker for activation of T-cells; IC50 = 111 nM) and intracellular calcium increases (IC50 = 31 nM). The GPVI/Syk-specificity of P142-76 activity was confirmed by its inability to inhibit intracellular calcium increases induced by the PAR1 thrombin receptor agonist TRAP. P142-76 also inhibited CVX-induced aggregation of both human washed platelets (IC50 = 87 nM) and platelet-rich plasma (IC50 = 2.5 μM). Considering the controversial data in respect to the participation of GPVI in arterial thrombosis in murine models, the dependence of arterial thrombosis on Syk function was studied in vivo in pigs. Cross-species activity of P142-76 was confirmed in vitro (CVX-induced PRP aggregation IC50= 350 nM; 5 μM P142-76 completely inhibited thrombosis triggered by collagen in the perfusion chamber assay). At a plasma concentration which abolished ex vivo CVX-induced but not ADP-induced pig platelet aggregation, P142-76 significantly inhibited the deposition of [111In]-labeled platelets in a carotid artery crush swine thrombosis model, without compromising primary hemostasis. % aggregation Swine (n=3) Platelet Deposition % inhibition Plasma Conc (ng/ml) Bleed Time (min) Activated Clotting Time (sec) ADP (20 μM) CVX (250 ng/ml) Control Artery 0 0 3±0.9 133±22 100 100 Treated Artery 76±6.5 1343±304 3.5±0.3 130±13 100 0 To clarify further the contribution of the kinase activity of Syk to arterial thrombosis, effects of P142-76 on human blood were evaluated in real time in the collagen-coated perfusion chamber. Low concentrations of P142-76 (0.3 μM) affected thrombus stability, while increasing concentrations (1–5 μM) delayed and then completely inhibited thrombus formation. Furthermore, P142-76 destabilized pre-formed thrombi, indicating a critical role for Syk in conferring strength to platelet-platelet interactions, i.e. αIIbβ3-mediated cohesion. Our data indicate that the kinase activity of Syk acts in arterial thrombosis through at least two distinct mechanisms. First, Syk kinase confers stability to platelet-platelet interactions downstream of αIIbβ3. Second, it initiates thrombus formation on collagen surfaces. This dual activity of the kinase activity of Syk makes it a preferred target for inhibition of arterial thrombosis, as it does not compromise primary hemostasis.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 510-514 ◽  
Author(s):  
Miroslava Požgajová ◽  
Ulrich J. H. Sachs ◽  
Lutz Hein ◽  
Bernhard Nieswandt

Platelet activation plays a central role in hemostasis and thrombosis. Many platelet agonists function through G-protein–coupled receptors. Epinephrine activates the α2A-adrenergic receptor (α2A) that couples to Gz in platelets. Although α2A was originally cloned from platelets, its role in thrombosis and hemostasis is still unclear. Through analysis of α2A-deficient mice, variable tail bleeding times were observed. In vitro, epinephrine potentiated activation/aggregation responses of wild-type but not α2A-deficient platelets as determined by flow cytometry and aggregometry, whereas perfusion studies showed no differences in platelet adhesion and thrombus formation on collagen. To test the in vivo relevance of α2A deficiency, mice were subjected to 3 different thrombosis models. As expected, α2A-deficient mice were largely protected from lethal pulmonary thromboembolism induced by the infusion of collagen/epinephrine. In a model of FeCl3-induced injury in mesenteric arterioles, α2A–/– mice displayed a 2-fold increase in embolus formation, suggesting thrombus instability. In a third model, the aorta was mechanically injured, and blood flow was measured with an ultrasonic flow probe. In wild-type mice, all vessels occluded irreversibly, whereas in 24% of α2A-deficient mice, the initially formed thrombi embolized and blood flow was reestablished. These results demonstrate that α2A plays a significant role in thrombus stabilization.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3981-3989 ◽  
Author(s):  
Qiufang Cheng ◽  
Erik I. Tucker ◽  
Meghann S. Pine ◽  
India Sisler ◽  
Anton Matafonov ◽  
...  

AbstractMice lacking factor XII (fXII) or factor XI (fXI) are resistant to experimentally–induced thrombosis, suggesting fXIIa activation of fXI contributes to thrombus formation in vivo. It is not clear whether this reaction has relevance for thrombosis in pri mates. In 2 carotid artery injury models (FeCl3 and Rose Bengal/laser), fXII-deficient mice are more resistant to thrombosis than fXI- or factor IX (fIX)–deficient mice, raising the possibility that fXII and fXI function in distinct pathways. Antibody 14E11 binds fXI from a variety of mammals and interferes with fXI activation by fXIIa in vitro. In mice, 14E11 prevented arterial occlusion induced by FeCl3 to a similar degree to total fXI deficiency. 14E11 also had a modest beneficial effect in a tissue factor–induced pulmonary embolism model, indicating fXI and fXII contribute to thrombus formation even when factor VIIa/tissue factor initiates thrombosis. In baboons, 14E11 reduced platelet-rich thrombus growth in collagen-coated grafts inserted into an arteriovenous shunt. These data support the hypothesis that fXIIa-mediated fXI activation contributes to thrombus formation in rodents and primates. Since fXII deficiency does not impair hemostasis, targeted inhibition of fXI activation by fXIIa may be a useful antithrombotic strategy associated with a low risk of bleeding complications.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1131-1131
Author(s):  
Jasna Marjanovic ◽  
Brad Rumancik ◽  
Luke Weber ◽  
Felix Wangmang ◽  
Dane Fickes ◽  
...  

Abstract Phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) is a messenger that accumulates in platelets in a phosphoinositide 3-kinase and platelet aggregation-dependent manner. PtdIns(3,4)P2 is broken down by inositol polyphosphate 4-phosphatases, type I (INPP4A) and type II (INPP4B). These enzymes do not catalyze hydrolysis of phosphoinositides other than PtdIns(3,4)P2, and therefore provide unique means for studying the role of this lipid in platelet activation. We have found that the dominant isoform of 4-phosphatases expressed in platelets is INPP4A and we have generated radiation chimera mice with the deficiency in INPP4A restricted to hematopoietic cell lineage. Compared to wild type platelets, agonist-stimulated INPP4A-deficient platelets accumulated higher levels of PtdIns(3,4)P2. An increase in platelet aggregation in INPP4A-deficient platelets was observed with all tested agonists. To study platelet function in vivo, we performed carotid artery injury mouse thrombosis model experiments. Time to occlusion was dramatically reduced in mice with INPP4A deficiency. These data support the hypothesis that by regulating PtdIns(3,4)P2 levels, INPP4A downregulates platelet aggregation and thrombus formation. To investigate mechanisms mediating INPP4A-dependent signals, we compared levels of phosphorylated Akt and phosphorylated glycogen synthase kinase (GSK) in wild type and INPP4A-deficient platelets in response to agonist stimulation. An increase in phospho-Akt levels was observed in INPP4A-deficient platelets, suggesting that in addition to its well-characterized regulator, PtdIns(3,4,5)P3, PtdIns(3,4)P2 can promote Akt activation. Interestingly, this was not accompanied by a significant increase in phospho-GSK levels, suggesting a possible novel mechanism involved in platelet aggregation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 421-421
Author(s):  
Zurina Romay-Penabad ◽  
Guadalupe Montiel-Manzano ◽  
Elizabeth Pappalardo ◽  
Katherine A. Hajjar ◽  
Tuya Shilagard ◽  
...  

Abstract Background: Thrombosis is an important cause of morbidity and mortality in Antiphospholipid Syndrome (APS) and in SLE patients with antiphospholipid antibodies (aPL). APL recognize β2 glycoprotein I (β2GPI)-bound to receptor (s) in endothelial cells (EC) and other target cells (i.e. platelets, monocytes) and trigger an intracellular signalling and a pro-coagulant and pro-inflammatory phenotype [i e.expression of tissue factor (TF), vascular cell adhesion molecule-1 (VCAM-1)] that lead to thrombosis. There is in vitro evidence that annexin A2 (A2), a receptor for tissue plasminogen activator (tPA) and plasminogen – and possibly other proteins such as toll-like receptors or the receptor for apolipoprotein E2′ - may be binding β2GPI on the membrane of target cells. Here, we examined the involvement of A2 in aPL-mediated pathogenic effects in vivo. We studied the effects of aPL Abs on thrombus formation, VCAM-1 expression in aortas of mice, and TF function in carotid artery homogenates in annexin A2 deficient (−/−) mice. Methods: A2 (−/−) mice and the corresponding wild-type (WT) mice, in groups of 10, were injected i.p. twice (0 and 48 hours later) with IgG from a patient with APS (IgG-APS) or with control IgG (IgG-NHS). Seventy-two hours after the first injection, several procedures were done in each mice: dynamics of thrombus formation (thrombus size), TF function in homogenates of carotid arteries, and c) VCAM-1 expression in the aortas using quantum dot nano crystals and two-photon excitation laser scanning microscopy. In addition, we examined the effect of an anti-A2 antibody on aPL-induced expression of intercellular cell-adhesion molecule (ICAM-1), E-selectin and TF acvitity on cultured endothelial cells (EC). Results: The titers of aCL and anti-β2GPI Abs in the sera of the mice at the time of surgery were medium-high positive in A2 (−/−) mice and in wild type mice injected with IgG-APS. Thrombus sizes were significantly larger in WT mice injected with IgG-APS when compared to similar type of mice treated with IgG-NHS (p=0.003). The size of thrombus in A2 (−/−) mice injected with IgG-APS was significantly smaller than mean thrombus size in WT mice injected with IgG-APS (p:0.0005). However, thrombus size in A2 (−/−) mice was larger in mice injected with IgG-APS when compared to same type of mice treated with control IgG-NHS (p=0.003), indicating a partial but significant abrogation of the thrombogenic effect. TF activity was significantly larger in WT mice treated with IgG-APS when compared to mice injected with IgG-NHS. Importantly, TF activity in carotid arteries homogenates of annexin A2 (−/−) mice injected with IgG-APS was significantly decreased (by 52%) when compared to wild type mice treated with IgG-APS. The expression of VCAM-1 in aorta of annexin A2 (−/−) ex vivo was also significantly reduced compared to LPS-treated mice (positive control) (p= 0.01). Interestingly, anti-A2 antibody significantly decreased aPL-induced expression of ICAM-1, E-sel and TF on cultured EC. Conclusions: Altogether these data indicate for the first time that A2 is involved in vivo pathogenic effects of aPL Abs. These findings may have important implications to devise new targeted and more specific therapeutic approaches to block the pathogenic effects of aPL Abs in patients with APS and SLE.


Sign in / Sign up

Export Citation Format

Share Document