Novel Genomic Structural Variations in Relapsed Childhood ETV6/RUNX1 (TEL/AML1) Acute Lymphoblastic Leukemias Identified by Next Generation Sequencing

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 518-518
Author(s):  
Vera Okpanyi ◽  
Christoph Bartenhagen ◽  
Michael Gombert ◽  
Sebastian Ginzel ◽  
Pina Fanny Ida Krell ◽  
...  

Abstract Abstract 518 Introduction The chimeric fusion gene ETV6/RUNX1 generated by the interchromosomal translocation t(12;21) presents the most frequent chromosomal aberration in childhood acute lymphoblastic leukemia (ALL), occurring in approximately 25% of all patients. This ALL subtype is associated with an overall favorable prognosis, nevertheless 10–20% of children will suffer from relapse. ETV6/RUNX1-positive preleukemic clones arise already in utero, but require additional cooperating oncogenic lesions for the development of overt leukemia. The nature of the assisting genetic alterations and the mechanisms driving the development of leukemia and recurrent disease are still not well understood. Methods We applied state-of-the-art whole genome and whole exome next-generation-sequencing to comprehensively analyze the assisting oncogenic alterations in pediatric patients with initial and/or recurrent ETV6/RUNX1+ ALL (primary disease n=11, recurrent disease n=7). Matched sample sets taken at initial diagnosis, remission and relapse were compared. Mate pair and/or paired end sequencing was carried out for whole genome analysis with inserts spanning 2 kb or 500 kb, respectively. Constructed libraries were sequenced from both ends with 36- or 50-bp reads on a Genome Analyzer IIx or a HiSeq 2000 (Illumina/Solexa), respectively. Reads were aligned against the human reference genome (GRCh37) using BWA. Duplicate reads were removed. Unique reads with high mapping quality (q>35) served as input for GASV which detected translocations and inversions based on the mapping coordinates, insert sizes and read orientation. Variations covered by at least three reads in the tumor sample and not detected in the remission sample or the Database of Genomic Variants were reported. For detection of copy number variations, the program FREEC carried out coverage normalization, computation of copy number ratios between paired leukemia and remission samples (with up to 10 kb resolution) and subsequent segmentation. A subset of six selected patients was further investigated by targeted enrichment of whole exomic regions employing SeqCap EZ libraries (Roche) and 100 bp single read next-generation-sequencing on a HighSeq 2000. Mutations were called using GATK and further processed by an in-house bioinformatic pipeline. Putative somatically acquired mutations were validated by PCR, Sanger sequencing and FISH analysis. Results Genomes were sequenced to at least 13× physical coverage (mate pair) and 6.7× sequence coverage (paired-end). Exome sequencing achieved a minimum of 25× sequence coverage. In silico we detected 155 tumor-specific intragenic translocations. On average each tumor harbored 9 acquired translocations. With the exception of one case (13 translocations at diagnosis, 9 at relapse), the number of translocations was higher in relapse than in the matched diagnosis sample (additional 3 translocations on average). Ongoing validation studies confirmed the defining ETV6/RUNX1 translocation t(12;21) and identified 13 novel translocations. The genes affected are involved in essential signaling pathways, such as cytokine signaling (LIFR), calcium signaling (RCAN2), insulin and anti-apoptotic signaling (PHIP). Interestingly, also a factor essential for pre-mRNA splicing (IBP160) and genes encoding regulatory RNAs (miRNAs, lincRNAs and RNAs involved in splicing) were rearranged. A validated intragenic deletion of 836 bp leading to a frameshift and premature stop affected a calcium ion sensor of the ferlin protein family. Recurrent deletions in 9 of 11 cases (82%) ranging from 5 to 200 kb were detected in the immunoglobulin lambda variable gene cluster (IGLV) on chromosome 22q11. Some of the deletions were extending into the pre-B lymphocyte 1 gene (VPREB1) locus. In silico the probabilty of illegitimate RAG-mediated recombination at the breakpoint sites was determined by evaluation of RIC scores. RIC scores indicated that aberrant V(D)J rearrangements involving cryptic recombination sequence signals had caused the deletions on chromosome 22q11. Conclusion We present somatic mutations that are promising novel candicate genes (e.g. LIFR, RCAN2, PHIP, IBP160) for cooperating secondary mutations in ETV6/RUNX1+ ALL and discuss their impact on the molecular pathology of primary and recurrent disease. Disclosures: No relevant conflicts of interest to declare.

2016 ◽  
Vol 55 (1) ◽  
pp. 177-182 ◽  
Author(s):  
Alexander L. Greninger ◽  
Danielle M. Zerr ◽  
Xuan Qin ◽  
Amanda L. Adler ◽  
Reigran Sampoleo ◽  
...  

ABSTRACT Metagenomic next-generation sequencing (mNGS) is increasingly used for the unbiased detection of viruses, bacteria, fungi, and eukaryotic parasites in clinical samples. Whole-genome sequencing (WGS) of clinical bacterial isolates has been shown to inform hospital infection prevention practices, but this technology has not been utilized during potential respiratory virus outbreaks. Here, we report on the use of mNGS to inform the real-time infection prevention response to a cluster of hospital-acquired human parainfluenza 3 virus (HPIV3) infections at a children's hospital. Samples from 3 patients with hospital-acquired HPIV3 identified over a 12-day period on a general medical unit and 10 temporally associated samples from patients with community-acquired HPIV3 were analyzed. Our sample-to-sequencer time was <24 h, while our sample-to-answer turnaround time was <60 h with a hands-on time of approximately 6 h. Eight (2 cases and 6 controls) of 13 samples had sufficient sequencing coverage to yield the whole genome for HPIV3, while 10 (2 cases and 8 controls) of 13 samples gave partial genomes and all 13 samples had >1 read for HPIV3. Phylogenetic clustering revealed the presence of identical HPIV3 genomic sequence in the two of the cases with hospital-acquired infection, consistent with the concern for recent transmission within the medical unit. Adequate sequence coverage was not recovered for the third case. This work demonstrates the promise of mNGS for providing rapid information for infection prevention in addition to microbial detection.


2008 ◽  
Vol 18 (10) ◽  
pp. 1638-1642 ◽  
Author(s):  
D. R. Smith ◽  
A. R. Quinlan ◽  
H. E. Peckham ◽  
K. Makowsky ◽  
W. Tao ◽  
...  

2021 ◽  
Author(s):  
Michael Schneider ◽  
Asis Shrestha ◽  
Agim Ballvora ◽  
Jens Leon

Abstract BackgroundThe identification of environmentally specific alleles and the observation of evolutional processes is a goal of conservation genomics. By generational changes of allele frequencies in populations, questions regarding effective population size, gene flow, drift, and selection can be addressed. The observation of such effects often is a trade-off of costs and resolution, when a decent sample of genotypes should be genotyped for many loci. Pool genotyping approaches can derive a high resolution and precision in allele frequency estimation, when high coverage sequencing is utilized. Still, pool high coverage pool sequencing of big genomes comes along with high costs.ResultsHere we present a reliable method to estimate a barley population’s allele frequency at low coverage sequencing. Three hundred genotypes were sampled from a barley backcross population to estimate the entire population’s allele frequency. The allele frequency estimation accuracy and yield were compared for three next generation sequencing methods. To reveal accurate allele frequency estimates on a low coverage sequencing level, a haplotyping approach was performed. Low coverage allele frequency of positional connected single polymorphisms were aggregated to a single haplotype allele frequency, resulting in two to 271 times higher depth and increased precision. We compared different haplotyping tactics, showing that gene and chip marker-based haplotypes perform on par or better than simple contig haplotype windows. The comparison of multiple pool samples and the referencing against an individual sequencing approach revealed whole genome pool resequencing having the highest correlation to individual genotyping (up to 0.97), while transcriptomics and genotyping by sequencing indicated higher error rates and lower correlations.ConclusionUsing the proposed method allows to identify the allele frequency of populations with high accuracy at low cost. This is particularly interesting for conservation genomics in species with big genomes, like barley or wheat. Whole genome low coverage resequencing at 10x coverage can deliver a highly accurate estimation of the allele frequency, when a loci-based haplotyping approach is applied. Using annotated haplotypes allows to capitalize from biological background and statistical robustness.


Sign in / Sign up

Export Citation Format

Share Document