Microrna-16 Regulates BMI1 in the Clonogenic Side Population of Refractory Mantle Cell Lymphoma

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 861-861
Author(s):  
Kazuaki Teshima ◽  
Miho Nara ◽  
Atsushi Watanabe ◽  
Mitsugu Ito ◽  
Yoshiaki Hatana ◽  
...  

Abstract Abstract 861 Background: Mantle cell lymphoma (MCL) is categorized as an indolent CD5+ B-cell lymphoma and is associated with numerous genomic copy number alterations, including 9p21 deletion (CDKN2A) and 10p12 amplification (BMI1). The target gene of the 10p12 amplification has been identified as BMI1, whose overexpression is frequently observed in the blastoid variant of MCL. CDKN2A is also well-known target of BMI1 in solid tumor. So, it has been hypothesized that BMI1 regulates CDKN2A in MCL. However there are the MCL cases with both 10p12 amplification and 9p21 homozygous deletion, suggesting that BMI1 might regulate the other target gene(s). The proto-oncogene, BMI1 is crucially involved in cancer stem cell maintenance and the upregulation has been demonstrated in aggressive or relapsed cases of solid tumors. Cancer stem cells are often identified in the side population (SP) of cancer cells, which is detected based on the cell's ability to export Hoechst 33342 dye via an ATP-binding cassette (ABC) membrane transporter, which gives the SP a distinct low-staining pattern. Aim of the study: The aim of this study is to determine the role of BMI1 in MCL initiating cells, especially in the relapsed cases. In this presentation, we show that the SP fraction has stem cell-like characteristics and high tumorigenic potential, and that BMI1 expression is upregulated in the SP in both relapsed MCL cases and MCL cell lines. Further we show that miR-16 is upstream regulator of the BMI1 in MCL. Results: To determine the role of BMI1 in the pathogenesis of MCL-initiating cells, we firstly examined BMI1 expression at primary MCL cases and found that its expression is stronger in cases of recurrent MCL than at initial diagnosis. We next characterized the MCL SP and found that the SP cells exhibit cancer stem cell-like features and upregulated BMI1 expression, which appears to enhance anti-apoptosis activity. Knocking down of BMI1 increases apoptosis and reduces tumorigenicity in CDKN2A−/− MCL cell lines (REC1 and Z138c). Subcutaneous inoculation of NOD/Shi-scid IL-2γnul (NOG) mice with CDKN2A−/− MCL cell lines, siBMI1-expressing cells were significantly smaller than those in mice receiving control siRNA in vivo. Chip assay showed that BMI1 interacts with BCL2L11/Bim and PMAIP3/Noxa, which were recently shown to be Bmi-1 target. These results suggest that BMI1/Bmi-1 may regulate Bim and/or Noxa to inhibit apoptosis in MCL cells. Furthermore, upon screening for upstream regulator of BMI1, we found that expression of a non-cording regulatory RNA, microRNA-16 (miR-16) is weaker in MCL SP cells than in non-SP cells. To investigate relationship between BMI1 and miR-16, we transfected miR-16 into MCL cell lines, and found that it directly downregulated BMI1, leading to reductions in tumor size following in vivo lymphoma xenograft (NOG mice). Finally, we find that bortezomib, which is known to be a proteasome inhibitor, led to dose-and time- dependent reductions in Bmi-1 expression with re-upregulation of miR-16 in both cell lines and a primary sample. Conclusion: We conclude that dysregulation of miR-16 and BMI1 plays a key role in lymphomagenesis by reducing MCL cell apoptosis, especially in refractory/recurrent cases via enhancement of anti apoptotic function. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 864-869 ◽  
Author(s):  
Michele Magni ◽  
Massimo Di Nicola ◽  
Liliana Devizzi ◽  
Paola Matteucci ◽  
Fabrizio Lombardi ◽  
...  

Abstract Elimination of tumor cells (“purging”) from hematopoietic stem cell products is a major goal of bone marrow–supported high-dose cancer chemotherapy. We developed an in vivo purging method capable of providing tumor-free stem cell products from most patients with mantle cell or follicular lymphoma and bone marrow involvement. In a prospective study, 15 patients with CD20+ mantle cell or follicular lymphoma, bone marrow involvement, and polymerase chain reaction (PCR)–detectable molecular rearrangement received 2 cycles of intensive chemotherapy, each of which was followed by infusion of a growth factor and 2 doses of the anti-CD20 monoclonal antibody rituximab. The role of rituximab was established by comparison with 10 control patients prospectively treated with an identical chemotherapy regimen but no rituximab. The CD34+ cells harvested from the patients who received both chemotherapy and rituximab were PCR-negative in 93% of cases (versus 40% of controls;P = .007). Aside from providing PCR-negative harvests, the chemoimmunotherapy treatment produced complete clinical and molecular remission in all 14 evaluable patients, including all 6 with mantle cell lymphoma (versus 70% of controls). In vivo purging of hematopoietic progenitor cells can be successfully accomplished in most patients with CD20+ lymphoma, including mantle cell lymphoma. The results depended on the activity of both chemotherapy and rituximab infusion and provide the proof of principle that in vivo purging is feasible and possibly superior to currently available ex vivo techniques. The high short-term complete-response rate observed suggests the presence of a more-than-additive antilymphoma effect of the chemoimmunotherapy combination used.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 864-869 ◽  
Author(s):  
Michele Magni ◽  
Massimo Di Nicola ◽  
Liliana Devizzi ◽  
Paola Matteucci ◽  
Fabrizio Lombardi ◽  
...  

Elimination of tumor cells (“purging”) from hematopoietic stem cell products is a major goal of bone marrow–supported high-dose cancer chemotherapy. We developed an in vivo purging method capable of providing tumor-free stem cell products from most patients with mantle cell or follicular lymphoma and bone marrow involvement. In a prospective study, 15 patients with CD20+ mantle cell or follicular lymphoma, bone marrow involvement, and polymerase chain reaction (PCR)–detectable molecular rearrangement received 2 cycles of intensive chemotherapy, each of which was followed by infusion of a growth factor and 2 doses of the anti-CD20 monoclonal antibody rituximab. The role of rituximab was established by comparison with 10 control patients prospectively treated with an identical chemotherapy regimen but no rituximab. The CD34+ cells harvested from the patients who received both chemotherapy and rituximab were PCR-negative in 93% of cases (versus 40% of controls;P = .007). Aside from providing PCR-negative harvests, the chemoimmunotherapy treatment produced complete clinical and molecular remission in all 14 evaluable patients, including all 6 with mantle cell lymphoma (versus 70% of controls). In vivo purging of hematopoietic progenitor cells can be successfully accomplished in most patients with CD20+ lymphoma, including mantle cell lymphoma. The results depended on the activity of both chemotherapy and rituximab infusion and provide the proof of principle that in vivo purging is feasible and possibly superior to currently available ex vivo techniques. The high short-term complete-response rate observed suggests the presence of a more-than-additive antilymphoma effect of the chemoimmunotherapy combination used.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3906-3912 ◽  
Author(s):  
Jorg A. Kruger ◽  
Charles D. Kaplan ◽  
Yunping Luo ◽  
He Zhou ◽  
Dorothy Markowitz ◽  
...  

AbstractRecently, the cancer stem cell hypothesis has gained significant recognition as the descriptor of tumorigenesis. Although previous studies relied on transplanting human or rat tumor cells into immunecompromised mice, our study used the Hoechst 33342 dye–based side population (SP) technique to isolate and transplant stem cell–like cancer cells (SCLCCs) from the 4T1 and NXS2 murine carcinoma cell lines into the immune-competent microenvironment of syngeneic mice. 4T1 cells displayed an SP of 2% with a Sca-1highc-Kit–CD45– phenotype, whereas NXS2 cells contained an SP of 0.2% with a Sca-1highCD24highc-Kit–CD45–GD high2 phenotype. Reverse transcription–polymerase chain reaction (RT-PCR) further revealed up-regulation in SP cells of ABCG2, Sca-1, Wnt-1, and TGF-β2. Additionally, 4T1 and NXS2 SP cells exhibited increased resistance to chemotherapy, and 4T1 SP cells also showed an increased ability to efflux doxorubicin, which correlated with a selective increase in the percentage of SP cells found in the tumors of doxorubicin-treated mice. Most importantly, SP cells showed a markedly higher repopulation and tumorigenic potential in vivo, which correlated with an increased number of cells in the SP compartment of SP-derived tumors. Taken together, these results show that we successfully characterized SCLCCs from 2 murine carcinoma cell lines in the immune-competent microenvironment of syngeneic mice.


ESMO Open ◽  
2018 ◽  
Vol 3 (6) ◽  
pp. e000387 ◽  
Author(s):  
Chiara Tarantelli ◽  
Elena Bernasconi ◽  
Eugenio Gaudio ◽  
Luciano Cascione ◽  
Valentina Restelli ◽  
...  

BackgroundThe outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability. Birabresib (MK-8628/OTX015) has shown antitumour activity in different preclinical models and has been the first BET inhibitor to successfully undergo early clinical trials.Materials and methodsThe activity of birabresib as a single agent and in combination, as well as its mechanism of action was studied in MCL cell lines.ResultsBirabresib showed in vitro and in vivo activities, which appeared mediated via downregulation of MYC targets, cell cycle and NFKB pathway genes and were independent of direct downregulation of CCND1. Additionally, the combination of birabresib with other targeted agents (especially pomalidomide, or inhibitors of BTK, mTOR and ATR) was beneficial in MCL cell lines.ConclusionOur data provide the rationale to evaluate birabresib in patients affected by MCL.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 302-302 ◽  
Author(s):  
Fiona Brown ◽  
Yang Zhang ◽  
Claire Hinterschied ◽  
Alexander Prouty ◽  
Shelby Sloan ◽  
...  

Mantle cell lymphoma (MCL) is an incurable B cell malignancy, defined by the t(11;14) translocation and comprises 3-6% of non-Hodgkin lymphomas diagnosed annually. MCL is associated with a poor prognosis due to emergence of resistance to immuno-chemotherapy and targeted agents. Due to the late median age of diagnosis, aggressive chemotherapy and stem cell transplantation are often not realistic options. The average overall survival of patients with MCL is 5 years and for the majority of patients who progress on targeted agents like ibrutinib, survival remains at a dismal 3-8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated by elderly patients to improve treatment outcomes and quality of life. Our group has identified the type II protein arginine methyltransferase enzyme, PRMT5, to be dysregulated in MCL and to promote growth and survival by supporting the cell cycle, PRC2 activity, and signaling via the BCR and PI3K/AKT pathways. We have developed first-in-class selective inhibitors of PRMT5 and, in collaboration with Prelude Therapeutics, we have demonstrated that novel SAM-competitive PRMT5 inhibitors provide potent anti-tumor activity in aggressive preclinical models of human MCL. Selective inhibition of PRMT5 in these models and MCL cell lines leads to disruption of constitutive PI3K/AKT signaling, dephosphorylation and nuclear translocation of FOXO1, and enhanced recruitment of this tumor suppressor protein to chromatin. We identified 136 newly emerged FOXO1-bound genomic loci following 48 hours of PRMT5 inhibition in the CCMCL1 MCL line by performing chromatin immunoprecipitation-seq analysis. These genes were markedly upregulated in CCMCL1 cells treated with the PRMT5 inhibitor PRT382 as determined by RNA-seq analysis. Among those genes, we identified and confirmed FOXO1 recruitment to the promoter of BAX, a pro-apoptotic member of the BCL2 family of proteins. Treatment of MCL cell lines (Granta-519, CCMCL1, Z-138, and SEFA) with the selective PRMT5 inhibitor PRT382 (10, 100nM) led to upregulation of BAX protein levels and induction of programmed cell death as measured by annexin V/PI staining and flow cytometry. We hypothesized that induction of BAX would trigger a therapeutic vulnerability to the BCL2 inhibitor venetoclax, and that combination PRMT5/BCL2 inhibitor therapy would drive synergistic cell death in MCL. Single agent and combination treatment with venetoclax and PRT382 was performed in eight MCL lines including a new cell line generated from our ibrutinib-refractory PDX model (SEFA) and IC50 and synergy scores were calculated. The Z-138 line was most sensitive to venetoclax (IC50<10nM) while CCMCL-1, SP53, JeKo-1, and Granta-519 demonstrated relative resistance (IC50>1uM). All lines reached an IC50 <1uM when co-treated with PRT382, with IC50 values ranging from 20 - 500nM. Combination treatments showed high levels of synergy (scores > 20) in 4 lines and moderate synergy (scores 10-20) in 2 lines. The two lines with the highest levels of synergy, Z-138 and SEFA, express high levels of BCL-2 and are Ibrutinib resistant. Overall there was a strong positive correlation between BCL2 expression and synergy score (r=0.707), and no correlation between PRMT5 expression and synergy score (r=0.084). In vivo evaluation in two preclinical MCL models (Granta-519 NSG mouse flank and an ibrutinib-resistant MCL PDX) showed therapeutic synergy with combination venetoclax/PRT382 treatment. In both models, mice were treated with sub-therapeutic doses of venetoclax and/or PRT543 (Granta) or PRT382 (IR-MCL PDX) and tumor burden assessed weekly via flank mass measurement (Granta) or flow cytometry (IR-MCL-PDX). Combination treatment with well-tolerated doses of venetoclax and PRMT5 inhibitors in both MCL in vivo models showed synergistic anti-tumor activity without evidence of toxicity. This preclinical data provides mechanistic rationale while demonstrating therapeutic synergy and lack of toxicity in this preclinical study and justifies further consideration of this combination strategy targeting PRMT5 and BCL2 in MCL in the clinical setting. PRT543, a selective PRMT5 inhibitor, has been advanced into clinical studies for the treatment of patients with solid tumors and hematologic malignancies, including MCL (NCT03886831). Disclosures Zhang: Prelude Therapeutics: Employment. Vaddi:Prelude Therapeutics: Employment. Scherle:Prelude Therapeutics: Employment. Baiocchi:Prelude: Consultancy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 886-886 ◽  
Author(s):  
Lapo Alinari ◽  
Erin Hertlein ◽  
David M. Goldenberg ◽  
Rosa Lapalombella ◽  
Fengting Yan ◽  
...  

Abstract Mantle cell lymphoma (MCL) is an incurable B-cell malignancy and patients with this disease have limited therapeutic options. Despite the success of Rituximab in treatment of B-cell malignancies, its use as a single agent or in combination with chemotherapy in MCL has demonstrated modest activity; thus, novel strategies are needed. CD74 is an integral membrane protein expressed on malignant B cells and implicated in promoting survival and growth, making it an attractive therapeutic target. The humanized anti-CD74 monoclonal antibody (mAb), Milatuzumab, (Immunomedics) has shown promising preclinical activity against several human B-cell lymphoma cell lines, but has not been studied in MCL. Since Rituximab and Milatuzumab target distinct antigens lacking known association, we explored a combination strategy with these mAbs in MCL cell lines, patient samples, and in a preclinical model of MCL. Flow cytometric analysis shows that the MCL cell lines Mino and JeKo, and MCL patient tumor cells, express abundant surface CD74 compared to the CD74-negative cell line, Jurkat. Incubation of Mino and JeKo cells with immobilized (goat anti-human IgG) Milatuzumab (5 μg/ml) resulted in mitochondrial depolarization and significant induction of apoptosis determined by Annexin V/PI and flow cytometry (apoptosis at 8hr=38.3±0.85% and 25.4±2.6%; 24hr=73.6±3.47% and 36±3.57%; 48hr=84.9±3.91% and 50.4±4.17%, respectively, compared to Trastuzumab (control). Expression of surviving cells from anti-CD74-treated MCL cells consistently demonstrated marked induction of surface CD74 (MFI 762) compared to control (MFI 6.1). Incubation with immobilized Rituximab (10 μg/ml) resulted in 39.5±2.5% and 37.1±8.35% apoptotic events at 8hr, 58.8±3.14%, 41.2±8.27% at 24hr, and 40.1±1.3% and 45.6±3.25% at 48hr, respectively. Combination treatment of Mino and JeKo cells with Milatuzumab and Rituximab led to significant enhancement in cell death, with 77.6±3.95% and 79.6±2.62% apoptosis at 8hr in Jeko and Mino cells (P=0.0008 and P=0.00004 vs. Milatuzumab alone; P=0.00015 and P=0.001 vs. Rituximab alone); 90.4±3.53% and 76.6±4.3% at 24hr, respectively (P=0.0042 and P=0.0002 vs. Milatuzumab, P=0.0003 and P=0.0027 vs. Rituximab alone); 92.8±0.77% and 85.6±2.62% at 48hr, respectively (P= 0.026 and P=0.0002 vs. Milatuzumab alone, P=0.0000005 and P=0.00008 compared to Rituximab alone, respectively). To examine the in vivo activity of Rituximab and Milatuzumab, a preclinical model of human MCL using the SCID (cb17 scid/scid) mouse depleted of NK cells with TMβ1 mAb (anti-murine IL2Rb) was used. In this model, intravenous injection of 40×106 JeKo cells results in disseminated MCL 3–4 weeks after engraftment. The primary end-point was survival, defined as the time to develop cachexia/wasting syndrome or hind limb paralysis. Mice were treated starting at day 17 postengraftment with intraperitoneal Trastuzumab mAb control (300 μg qod), Milatuzumab (300 μg qod), Rituximab (300 μg qod), or a combination of Milatuzumab and Rituximab. The mean survival for the combination-treated group was 55 days (95%CI:41, upper limit not reached as study was terminated at day 70), compared to 33 days for Trastuzumab-treated mice (95% CI:31,34), 35.5 days for the Milatuzumab-treated mice (95% CI:33,37), and 45 days for the Rituximab-treated mice (95%CI:30,46). The combination treatment prolonged survival of this group compared to Trastuzumab control (P=0.001), Milatuzumab (P=0.0006) and Rituximab (P=0.098). No overt toxicity from Milatuzumab or the combination regimen was noted. A confirmatory study with a larger group of mice and detailed mechanistic studies are now underway. These preliminary results provide justification for further evaluation of Milatuzumab and Rituximab in combination in MCL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3729-3729
Author(s):  
Heather Gilbert ◽  
John Cumming ◽  
Josef T. Prchal ◽  
Michelle Kinsey ◽  
Paul Shami

Abstract Abstract 3729 Poster Board III-665 Mantle cell lymphoma (MCL) is a well defined B-cell non-Hodgkin lymphoma characterized by a translocation that juxtaposes the BCL1 gene on chromosome 11q13, which encodes cyclin D1 (CD1), next to the immunoglobulin heavy chain gene promoter on chromosome 14. The resulting constitutive overexpression of CD1 leads to a deregulated cell cycle and activation of cell survival mechanisms. In addition, the gene which encodes GST-n, an enzyme that has been implicated in the development of cancer resistance to chemotherapy, is also located on chromosome 11q13 and is often coamplified along with the BCL1 gene in MCL (1). These two unique biological features of MCL - the overproduction of cyclin D1 and GST-n – may be involved in the carcinogenesis, tumor growth and poor response of this disease to treatment, and they offer potential mechanisms for targeted anti-cancer therapy. Nitric oxide (NO) is a biologic effector molecule that contributes to a host's immune defense against microbial and tumor cell growth. Indeed, NO is potently cytotoxic to tumor cells in vitro (2–4). However, NO is also a potent vasodilator and induces hypotension, making the in vivo administration of NO very difficult. To use NO in vivo requires agents that selectively deliver NO to the targeted malignant cells. A new compound has recently been developed that releases NO upon interaction with glutathione in a reaction catalyzed by GST-n. JS-K seeks to exploit known GST-n upregulation in malignant cells by generating NO directly in cancer cells, and it has been shown to decrease the growth and increase apoptosis in vitro in AML cell lines, AML cells freshly isolated from patients, multiple myeloma cell lines, hepatoma cells and prostate cancer cell lines (3, 5–7). JS-K also decreases tumor burden in NOD/SCID mice xenografted with AML and multiple myeloma cells (5, 7). Importantly, JS-K has been used in cytotoxic doses in the mouse model without significant hypotension. To evaluate whether JS-K treatment has anti-tumor activity in MCL, the human MCL cell lines Jeko1, Mino, Granta and Hb-12 were grown with media only, with JS-K at varying concentrations and with DMSO as an appropriate vehicle control. For detection of apoptotic cells, cell-surface staining was performed with FITC-labeled anti–Annexin V and PI. Cell growth was evaluated using the Promega MTS cytotoxicity assay. Results show that JS-K (at concentrations up to 10 μM) inhibits the growth of MCL lines compared to untreated controls, with an average IC50 of 1 μM. At 48 hours of incubation, all cell lines showed a significantly greater rate of apoptosis than untreated controls. A human MCL xenograft model was then created by subcutaneously injecting two NOD/SCID IL2Rnnull mice with luciferase-transfected Hb12 cells. Seven days post-injection, one of the mice was treated with JS-K at a dose of 4 μmol/kg (expected to give peak blood levels of around 17 mM in a 20 g mouse). Injections of JS-K were given intravenously through the lateral tail vein 3 times a week. The control mouse was injected with an equivalent volume of micellar formulation (vehicle) without active drug. The Xenogen bioluminescence imaging clearly showed a difference in tumor viability, with a significantly decreased signal in the JS-K treated mouse. Our studies demonstrate that JS-K markedly decreases cell proliferation and increases apoptosis in a concentration- and time-dependent manner in mantle cells in vitro. In a xenograft model of mantle cell lymphoma, treatment with JS-K results in decreased tumor viability. Proposed future research includes further defining the molecular basis of these treatment effects; using this therapy in combination with other cancer treatments both in vitro and in vivo; and studying JS-K treatment in MCL patients. Disclosures: Shami: JSK Therapeutics: Founder, Chief Medical Officer, Stockholder.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3113-3113
Author(s):  
Jonathon B. Cohen ◽  
Nathan Hall ◽  
Amy S. Ruppert ◽  
Jeffrey A. Jones ◽  
Pierluigi Porcu ◽  
...  

Abstract Abstract 3113 Background: Pre-transplantation FDG-PET/CT (PET/CT) has been associated with progression-free survival (PFS) and overall survival (OS) in patients (pts) with relapsed Hodgkin's and diffuse large B-cell lymphoma (Spaepan, Blood.102 :53-59, 2003). However, no data exist regarding the role of PET/CT pre-transplant in pts with mantle cell lymphoma (MCL). We performed a retrospective analysis of pts with MCL and available pre-transplant PET/CT to evaluate the association of pre-transplant PET/CT findings with PFS and OS. Methods: PET/CT was reviewed by a single radiologist according to International Harmonization Committee (IHC) criteria with mediastinal blood pool as the referenced background activity and also utilizing liver blood pool. Bone marrow (BM) uptake was not utilized in the PET/CT response assessment. Associations between PET/CT positivity and clinical characteristics were performed using Fisher's Exact and Wilcoxon rank sum tests. PFS curves were constructed from date of transplant until date of relapse or death by the Kaplan-Meier method and evaluated by the log-rank test. Univariable proportional hazards models described the relationship between clinical variables and PFS. Results: Twenty-nine pts with PET/CT prior to autologous stem cell transplant were included. Median age was 60 (range 37–73), and 86% were male. Median MIPI was 5.9 (range 4.9–7.0), with 36%, 40%, and 24% of pts classified as low (< 5.7), intermediate (5.7–6.2), or high risk (> 6.2), respectively. At diagnosis, 93% of pts had BM involvement, 56% had splenomegaly, and 27% had bulky adenopathy ≥ 5cm. Sixty-nine percent of pts were induced with RCHOP and methotrexate (RCHOP+M, Damon, JCO 27 :6101–6108); other therapies included RCHOP (n=4), RHyperCVAD (n=2), bortezomib (n=2), and REPOCH (n=1). Sixty-six percent, 21%, and 14% of pts received 2, 3–5, or 6 induction cycles prior to transplant, respectively. Conditioning regimens were BEAM (59%) and BEC (41%) and 90% of pts underwent transplant in first remission. Median time to transplant from diagnosis was 5.4 months (range 3.4–82). With a median follow up of 18 months (range 0.7–43), estimated median PFS is 42 months (95% CI 15–45). There have been 7 relapses (4 RCHOP, 1 RCHOP+M, 1 bortezomib, 1 REPOCH) and 5 deaths (disease progression, n=3, and pneumonia, n=2). Seventeen pts (59%) had a negative PET/CT prior to transplant, with identical results using mediastinal or liver blood pool. In 19, 6, and 4 pts respectively receiving 2, 3–5, and 6 cycles of induction therapy, 58%, 50%, and 75% were PET/CT negative prior to transplant. PET/CT positive pts received RCHOP+M (n=10), RCHOP (n=1), and bortezomib (n=1), Compared to PET/CT negative pts, PET/CT positive pts were younger (median age 55 v. 62, p=0.04) with lower MIPI (p=0.05). There was no significant association of bulky adenopathy (p=0.09), induction with RCHOP+M (p=0.23), or number of induction cycles (p=0.87) with PET/CT findings. 5 pts had a positive pre-transplant BM biopsy, of which 2 were BM negative by PET/CT. BM positivity on pre-transplant PET/CT was observed in 14 pts with only 3 also positive by BM biopsy. Median PFS was 45 months (95% CI 13–45) for PET/CT negative pts and 33 months (95% CI 3–33) in PET/CT positive pts (Figure 1; p=0.03). At this time, 4 of 17 PET/CT negative pts have progressed or died compared to 5 of 12 PET/CT positive pts. Of the 5 deaths experienced thus far, 4 have occurred in PET/CT positive pts. Presence of bulky adenopathy ≥ 5cm was also associated with a worse PFS (p=0.01), but MIPI (p=0.31) and age (p=0.61) were not. Conclusions: PET/CT associates with PFS after autologous stem cell transplantation in MCL (p=0.03). However, additional follow-up is needed to see if this association between PET/CT positivity and early relapse in MCL persists. In addition, as the majority of pts had 2 cycles of induction therapy with RCHOP+M, the impact of treatment regimen and number of cycles is difficult to assess in this series. Interestingly, neither age nor MIPI were associated with PFS from transplant, perhaps indicating that clinical characteristics at diagnosis are less important in pts that achieve a complete response by IHC criteria prior to transplant. Prospective investigation with centrally reviewed PET/CT scans compared with standard CT is required to determine the predictive role of pre-transplant PET/CT in MCL. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document