Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019 cells) Have Long-Term Persistence and Induce Durable Responses In Relapsed, Refractory CLL

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4162-4162 ◽  
Author(s):  
David L. Porter ◽  
Michael Kalos ◽  
Noelle V. Frey ◽  
Stephan A. Grupp ◽  
Alison W. Loren ◽  
...  

Abstract Background Chimeric antigen receptors (CARs) combine the antigen recognition domain of an antibody with intracellular signaling domains into a single chimeric protein. CD19 is an ideal target for CARs since expression is restricted to normal and malignant B cells. Inclusion of the CD137 (4-1BB) signaling domain results in potent antitumor activity and in-vivo persistence of anti-CD19 CAR-modified T cells in mice. Lentiviral transduction into T cells facilitates strong surface expression of the CAR. We reported anti-tumor activity of CAR-modified autologous T cells targeted to CD19 (CTL019 cells) in 3 patients (pts) with CLL with relatively short follow up (Porter, et al NEJM 2011; Kalos et al Sci Trans Med 2011). We now report on outcomes and longer follow up from our pilot study treating 14 pts with relapsed, refractory CLL. Methods Autologous T cells collected by leukapheresis were transduced with a lentivirus encoding anti-CD19 scFv linked to 4-1BB and CD3-ζ signaling domains. Gene-modified T cells were expanded and activated ex-vivo by exposure to anti-CD3/CD28 beads. Pts had to have relapsed or persistent disease after at least 2 previous treatments (1 prior therapy for patients with p53 mutation) and progressed at least within 2 years of their last therapy. All pts received lymphodepleting chemotherapy ending 3-5 days before T cell infusion. The target dose of cells was 5 x 109 mononuclear cells with an expected transfection efficiency of 10-40% (total CTL019 dose 5x108 – 2 x 109 total cells). Cell infusions were planned over 3 days (10% on day 1, 30% of day 2, and 60% on day 3) but were held for fevers or other toxicity. Results 14 patients were treated on this pilot study including 12 men and 2 women with a median age of 67 (51-78). Pts had received a median of 4 prior therapies (1-10) and 6 pts had a mutation of p53. All pts had active disease at the time of CTL019 cell infusion. Lymphodepleting chemotherapy was Fludarabine/cyclophosphamide (3), pentostatin/cyclophosphamide (5), or bendamustine (6). A median of 7.5 x 108 total cells (range 1.7-50), corresponding to 1.4 x 108(range 0.14-5.9) genetically modified cells were infused over day 0, 1 and 2. There were no infusional toxicities >grade 2 though 6 pts developed fevers within 24 hrs of infusion #1 (3) or #2 (3) and did not receive additional CTL019 cells. Median follow-up as of July 15, 2013 was 9.4 mo (4-35) for all pts and 16 mo (5-35) for the 8 responding pts. 3 patients (21%) achieved a CR (follow-up 11, 34, and 35 mo), 5 (36%) achieved a PR (med follow up 11 mo, range 5-27 mo) and 6 (43%) had no response, for an overall major response rate of 57%. 2 of 5 pts with a PR progressed 4 mo after infusion with CD19+ CLL, and no patient with a CR has relapsed. Comparing responders to non-responders, there has been no association between response and patient age (66 vs 67 yrs), number of prior therapies (median 4 each), cell dose (7.5 vs 11.5 x 108MNC), or p53 mutation (3/8 vs 3/6, p>0.9), implying that within the dose ranges studied, there is no obvious dose:response relationship. All responding pts developed a delayed cytokine release syndrome (CRS), concurrent with peak T cell expansion, and was manifested by fever, and variable degrees of nausea, anorexia, myalgias, and transient hypotension and hypoxia. Detailed cytokine analysis showed marked increases from baseline values of IL6, IFN-γ, and IL2R, while no significant elevation in systemic levels of TNFα or IL2 were observed. The CRS required intervention in 5 patients. Treatment was initiated for hemodynamic or respiratory instability and was rapidly reversed in all cases with corticosteroids in 1 pt and the IL6-receptor antagonist tocilizumab (4 pts); 3 of these 4 pts also received 1 or 2 doses of corticosteroids. Persistence of CTL019 cells has been detected by flow cytometry in all 6 pts with ongoing responses 5-35 months after infusion, and all patients have sustained B cell aplasia without any unusual infectious complications. Conclusions CTL019 cells are autologous T cells genetically engineered to express an anti-CD19 scFv coupled to 4-1BB/CD3-ζ signaling domains. These cells can undergo robust in-vivo expansion and can persist for at least 3 yrs. CTL019 therapy is associated with a significant CRS that responds rapidly to anti-cytokine treatment. CTL019 cells can induce potent and sustained responses (8/14) for patients with advanced, relapsed and refractory CLL regardless of p53 mutation status. Disclosures: Porter: Novartis: Patents & Royalties, Research Funding; Genentech: Spouse employment, Spouse employment Other. Off Label Use: CTL019 cells to treat CLL. Kalos:Adaptive biotechnologies: Member scientific advisory board , Member scientific advisory board Other; Novartis corporation: CART19 technology, CART19 technology Patents & Royalties. Grupp:Novatis: Research Funding. Lledo:Novartis: Research Funding. Chew:Novartis: Patents & Royalties. Zheng:Novartis: Patents & Royalties. Levine:Novartis: cell and gene therapy IP, cell and gene therapy IP Patents & Royalties. June:Novartis: Patents & Royalties, Research Funding.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 67-67 ◽  
Author(s):  
Stephan A Grupp ◽  
Noelle V. Frey ◽  
Richard Aplenc ◽  
David M Barrett ◽  
Anne Chew ◽  
...  

Abstract Background CARs combine a single chain variable fragment (scFv) of an antibody with intracellular signaling domains into a single chimeric protein. We previously reported on CTL019 cells expressing a CAR with intracellular activation plus costimulatory domains. Infusion of these cells results in 100 to 100,000x in vivo proliferation, durable anti-tumor activity, and prolonged persistence in pts with B cell tumors, including 1 sustained CR in a patient with ALL (Grupp, et al. NEJM 2013). We now report on outcomes and longer follow up from our pilot studies treating 20 pts (16 children and 4 adults) with relapsed, refractory ALL. Methods T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3ζ, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into pts with relapsed or refractory CD19+ ALL. 17/20 pts received lymphodepleting chemotherapy the week prior to CTL019 infusion. The targeted T cell dose range was 107 to 108 cells/kg with a transduction efficiency (TE) of 11-45%. On the adult protocol, the target dose was 5 x 109 total cells split over 3 days with a TE of 6-31%. 11 pts had relapsed ALL after a prior allogeneic SCT. T cells were collected from the pt, regardless of prior SCT status, and not from allo donors. All pts s/p allo SCT had to be 6 mos s/p SCT with no GVHD or GVHD treatment. Results 16 children median age 9.5 y (5-22y) and 4 adults median age 50y (26-60y) with CD19+ ALL were treated. One child had T cell ALL aberrantly expressing CD19. 14/16 pediatric pts had active disease or +MRD after chemotherapy on the day prior to CTL019 cell infusion, while 2 were MRD(-). 3 of 4 adults had active disease prior to lymphodepleting chemotherapy, while 1 was in morphologic CR. Lymphodepleting chemotherapy varied with most receiving a Cytoxan-containing regimen the week prior to CTL019. A median of 3.7x106 CTL019 cells/kg (0.7-18x106/kg) were infused over 1-3 days. There were no infusional toxicities >grade 2, although 5 pts developed fevers within 24 hrs of infusion and did not receive planned subsequent infusions of CTL019 cells. 14 patients (82%) achieved a CR, including the patient with CD19+ T ALL, 3 did not respond, and 3 are pending evaluation. 11/17 evaluable pts have ongoing BM CR with median follow up 2.6 mo (1.2-15 mo). Three patients with a CR at 1 month have subsequently relapsed, 1 with CD19(-) disease. Median follow-up as of August 1, 2013 was 2.6 mo (1-15 mo) for all pts. All responding pts developed some degree of delayed cytokine release syndrome (CRS), concurrent with peak T cell expansion, manifested by fever, with variable degrees of myalgias, nausea, anorexia. Some experienced transient hypotension and hypoxia. Detailed cytokine analysis showed marked increases from baseline values of IL6 and IFNγ (both up to 1000x), and IL2R, with mild or no significant elevation in systemic levels of TNFα or IL2. Treatment for CRS was required for hemodynamic or respiratory instability in 7/20 patients and was rapidly reversed in all cases with the IL6-receptor antagonist tocilizumab (7 pts), together with corticosteroids in 4 pts. Although T cells collected from the 11 pts who had relapsed after allo SCT were generally 100% of donor origin, no GVHD has been seen. Persistence of CTL019 cells detected by flow cytometry and/or QPCR in pts with ongoing responses continued for 1-15 months after infusion, resulting in complete B cell aplasia during the period of CTL019 persistence. Pts have been treated with IVIg without any unusual infectious complications. One child who entered a CR subsequently developed MDS with a new trisomy 8 in ALL remission and has gone to SCT, and 1 child developed a single leukemia cutis lesion at 6 mo, still BM MRD(-). Conclusions CTL019 cells are T cells genetically engineered to express an anti-CD19 scFv coupled to CD3ζ signaling and 4-1BB costimulatory domains. These cells can undergo robust in-vivo expansion and can persist for 15 mo or longer in pts with relapsed ALL. CTL019 therapy is associated with a significant CRS that responds rapidly to IL-6-targeted anti-cytokine treatment. This approach has promise as a salvage therapy for patients who relapse after allo-SCT, and collection of tolerized cells from the recipient appears to have a low risk of GVHD. CTL019 cells can induce potent and durable responses for patients with relapsed/refractory ALL. Multicenter trials are being developed to test this therapy for ALL in the phase 2 setting. Disclosures: Grupp: Novartis: Research Funding. Chew:Novartis: Patents & Royalties. Levine:Novartis: cell and gene therapy IP, cell and gene therapy IP Patents & Royalties. Litchman:Novartis Phamaceuticals: Employment, Equity Ownership. Rheingold:Novartis: Research Funding. Shen:Novartis Pharmaceuticals: Employment, Equity Ownership. Wood:Novartis Pharmaceuticals: Employment, Equity Ownership. June:Novartis: Patents & Royalties, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 873-873 ◽  
Author(s):  
David L. Porter ◽  
Michael Kalos ◽  
Noelle V. Frey ◽  
Stephan A Grupp ◽  
Alison W. Loren ◽  
...  

Abstract Background Patients (pts) with relapsed, and/or refractory (R/R) CLL have a poor prognosis with few effective treatment options. We have shown that infusion of autologous T cells genetically modified to express a chimeric antigen receptor (CAR) consisting of an external anti-CD19 domain, with the CD3ζ and 4-1BB signaling domains (CTL019 cells), can mediate potent anti-tumor effects in pts with advanced, relapsed refractory CLL. In our initial pilot study, doses of 1.7-50, x 108 mononuclear cells, corresponding to 0.14-5.9 x 108genetically modified cells, were given as a split dose infusion on days 0, 1 and 2 to 14 pts with R/R CLL and overall response rate (PR plus CR) was 57%. The majority of responses were sustained, and associated with marked expansion and long-term persistence of transduced cells. Notably, there was no obvious dose:reponse or dose:toxicity effect noted over a wide range of cell doses. To better define an optimal CTL019 cell dose, we are performing a randomized phase II study of 2 doses of CTL019 cells in pts with R/R CLL. Methods Pts with R/R CLL are randomly assigned to receive either 5x108 vs. 5x107transduced CTL019 cells, with the rationale that both doses induced CRs in pts on our initial pilot trial. In the initial stage, 12 evaluable pts will be treated in each arm and in stage 2, an additional 8 pts will be treated with the selected dose level. Pts have to have relapsed or persistent disease after at least 2 previous treatments and progress within 2 years of their last therapy. All pts receive lymphodepleting chemotherapy ending 3-5 days before T cell infusion. Cell infusions are given as a single dose. Results As of 7/15/2013, 27 pts have been enrolled; T cells did not adequately expand in 3, 1 patient was not eligible after screening, and 10 pts have been treated including 7 men and 3 women with a median age of 63 yrs (range 59-76). 5 pts had a mutation of p53. All pts had active disease at the time of CTL019 cell infusion. Lymphodepleting chemotherapy was Fludarabine/cyclophosphamide (8), pentostatin/cyclophosphamide (1), or bendamustine (1). 4 pts have been randomized to the higher dose level (5 x 108 CTL019 cells) and 6 pts have been randomized to the lower dose level (5 x 107CTL019 cells). There were no significant infusional toxicities. Median follow-up as of July 15, 2013 was 3 mo (1.3-5) for all pts and 3.3 mo (1.3-4) for responding pts. 2 pts have achieved a CR and 2 pts achieved PR, both with clearance of CLL from the blood and marrow and >50 reduction in adenopathy, for an overall response rate of 40%. In other recipients of CTL019 cells, we have observed ongoing improvement in adenopathy over time implying there can be a continued anti-tumor response. No responding patient has progressed. Seven of 10 pts experienced a delayed cytokine release syndrome (CRS) manifested by symptoms that included high fevers, nausea, myalgias and in some cases, capillary leak, hypoxia, and hypotension, typically correlated with peak CTL019 cell expansion. We have noted that the CRS accompanying CTL019 therapy has been associated with marked increases of serum IL6 and can be rapidly reversed with the IL6-receptor antagonist tocilizumab. The CRS required intervention in 2 pts, one who responded and one who did not respond to CTL019. Treatment was initiated for hemodynamic or respiratory instability and was effective in reversing signs and symptoms of CRS in both pts. A preliminary analysis through July 15, 2013 does not yet suggest a dose:response or dose:toxicity relationship. 2 of 4 recipients of the higher dose CTL019 responded, and 2 of 6 recipients at the lower dose level responded. The 7 pts who experienced a CRS included all 4 responding pts and 3 pts who did not respond. The CRS occurred in 3/4 recipients of higher dose CTL019 cells and 4/6 of recipients of lower dose CTL019 cells. CTL019 expansion in-vivo and persistence over the follow up period was noted in all responding pts. Conclusions In this ongoing dose optimization study of CTL019 cells, 4 of the first 10 pts treated have responded within 3 months. With short follow-up, as yet there is no suggestion that there is a dose:response or dose:toxicity relationship at the dose ranges being studied. These cells can undergo robust in-vivo expansion and from other studies (ASH 2013) can persist for at least 3 yrs. This trial confirms that CTL019 cells can induce potent responses for pts with advanced, relapsed and refractory CLL. Disclosures: Porter: Novatis: IP and potential royalties with COI managed according to policies of the University of Pennsylvania, IP and potential royalties with COI managed according to policies of the University of Pennsylvania Patents & Royalties, Research Funding; Genentech: Spouse employment, Spouse employment Other. Off Label Use: CTL019 cells to treat CLL. Kalos:Novartis corporation: CART19 technology, CART19 technology Patents & Royalties; Adaptive biotechnologies: Member scientific advisory board , Member scientific advisory board Other. Grupp:Novartis: Research Funding. Chew:Novartis: Patents & Royalties. Shen:Novartis Pharmaceuticals: Employment, Equity Ownership. Wood:Novartis Pharmaceuticals: Employment, Equity Ownership. Litchman:Novartis Pharmaceuticals Corporation: Employment, Equity Ownership. Zheng:Novartis: Patents & Royalties. Levine:Novartis: cell and gene therapy IP, cell and gene therapy IP Patents & Royalties. June:Novartis: Patents & Royalties, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 766-766 ◽  
Author(s):  
Aaron P. Rapoport ◽  
Edward A. Stadtmauer ◽  
Dan T. Vogl ◽  
Brendan M Weiss ◽  
Gwendolyn K. Binder-Scholl ◽  
...  

Abstract Background Despite recent therapeutic advances, multiple myeloma (MM) remains primarily an incurable cancer. Patients experiencing rapid recovery of T cells post autologous stem cell transplant (auto-SCT) may have improved outcomes, and spontaneous cellular responses to tumor can occur, suggesting immune mediated control of tumor is possible. We and others have investigated therapeutic cancer vaccines that have shown promise in pilot studies, in particular following post-transplant infusion of activated autologous T cells. However, efficacy of these approaches may be limited by thymic selection which restricts the repertoire of T cell receptors (TCRs) to low affinity TCRs that cannot recognize the low level of antigen present on most tumor cells. We hypothesized that incorporation of affinity-enhanced tumor antigen-specific TCRs into autologous T cells infused post-transplant would overcome this limitation and improve response rates in the post auto-SCT setting. Methods We report interim results of a Phase II clinical trial (NCT01352286) to evaluate the safety and activity of autologous T cells genetically engineered to express an affinity-enhanced TCR that recognizes the NY-ESO-1/LAGE-1 peptide complex HLA‐A*0201‐SLLMWITQC; these cells are infused in the setting of profound lymphodepletion that accompanies high dose chemotherapy administered during auto-SCT. Patients with high risk or relapsed MM, who are HLA‐A*0201 positive, and whose tumor is positive for NY-ESO-1 and/or LAGE-1 by RT-PCR are eligible. CD25 depleted CD4 and CD8 T cells are activated and expanded using anti-CD3/CD28 antibody conjugated microbeads, and genetically modified with a lentiviral vector containing the TCR construct at a multiplicity of infection of 1. Engineered T cells are administered four days after high dose melphalan and two days following auto-SCT, at a dose range of 1-10 billion total cells with a minimum gene modification requirement of 10%. Patients are evaluated for MM responses in accordance with the IMWG criteria at 6 weeks, and 3 and 6 months post infusion. At 3 months, patients start lenalidomide maintenance. The initial 6 patient phase is complete and a 20 patient extension phase is ongoing. Results Prior to enrollment on study, patients had received a median of 3 prior therapies including 6 with prior transplant. 50% of tumors contained high risk chromosomal abnormalities, and NY-ESO-1 expression is correlated with adverse prognosis. 20 patients (average age of 57) have been infused with an average of 2.3 X 109 engineered T cells (range 4.5 X 108-3.9 X 109); this reflects an average clinical scale transduction efficiency of 34% (range 18% – 49%). Infusions have been well tolerated, and the majority of adverse events were related to the high dose melphalan. Possibly related SAEs were neutropenia and thrombocytopenia, and GI and metabolism disorders including diarrhea, colitis, hyponatremia and hypomagnesemia. 10, 4, 2, and 2 patients have reached the 1 year, 9 month, 6 month and 3 month assessment timepoints, respectively, and 17/20 patients are alive. Best response by day 100 is sCR/CR in 2/15 (13%), nCR in 10/15 (67%), and PR in 3/15% (20%), which compares favorably to historic responses in patients undergoing first or second transplant. Engineered T cells expanded and persisted in blood and marrow at 180 days by Q-PCR and flow-cytometry in all but one case (Figure). 7 patients progressed after day 100, which was accompanied either by loss of engineered T cells or loss of tumor antigen. Detailed phenotyping and functional analysis of engineered T cells, and correlates with clinical responses, is underway. Summary This is the first clinical evaluation of engineered T cells in the MM setting. Infusions are safe, well tolerated, and are associated with encouraging responses in a high risk myeloma population. A study evaluating the engineered T cells in a non-transplant study is underway. Disclosures: Stadtmauer: Celgene: Consultancy. Binder-Scholl:Adaptimmune: Employment. Smethurst:Adaptimmune: Employment. Brewer:Adaptimmune: Employment. Bennett:Adaptimmune: Employment. Gerry:Adaptimmune: Employment. Pumphrey:Adaptimmune: Employment. Tayton-Martin:Adaptimmune: Employment. Ribeiro:Adaptimmune: Employment. Levine:Novartis: cell and gene therapy IP, cell and gene therapy IP Patents & Royalties. Jakobsen:Adaptimmune: Employment. Kalos:Novartis corporation: CART19 technology, CART19 technology Patents & Royalties; Adaptive biotechnologies: Member scientific advisory board , Member scientific advisory board Other. June:Novartis: Patents & Royalties, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 717-717 ◽  
Author(s):  
David L Porter ◽  
Stephan A. Grupp ◽  
Michael Kalos ◽  
Alison W. Loren ◽  
Lester Lledo ◽  
...  

Abstract Abstract 717 Background: Chimeric antigen receptors (CARs) combine the antigen recognition domain of an antibody with intracellular signaling domains into a single chimeric protein. CD19 is an ideal target for CARs since expression is restricted to normal and malignant B cells. Inclusion of the CD137 (4-1BB) signaling domain results in potent antitumor activity and in vivo persistence of anti-CD19 CARs in mice. We reported anti-tumor activity of CAR-modified autologous T cells targeted to CD19 (CART19 cells) in 3 patients (pts) with CLL with relatively short follow up (Porter, et al NEJM 2011; Kalos et al Sci Trans Med 2011). We now report on outcomes and longer follow up from 10 pts treated with CART19 cells. Methods: Autologous T cells collected by leukapheresis were transduced with a lentivirus encoding anti-CD19 scFv linked to 4-1BB and CD3-z signaling domains. Gene-modified T cells were expanded and activated ex-vivo by exposure to anti-CD3/CD28 beads. Pts had CLL or ALL with persistent disease after at least 2 previous treatments. Results: 10 pts have received CART19 cells; 9 adults median age 65 yrs (range 51–78) were treated for relapsed, refractory CLL and one 7 yr old was treated for relapsed refractory ALL. CLL pts had received a median of 5 prior regimens (range 2–10) and all had active disease at the time of infusion. 3/9 CLL patients had deletion of the p53 gene. The ALL pt had chemorefractory relapse, having received chemotherapy 6 weeks prior to infusion. All CLL pts received lymphodepleting chemotherapy 4–6 days before infusions (FC, PC or bendamustine, while the ALL pt had an ALC <10 after prior chemotherapy and did not require further lymphodepletion). A median of 7.5 × 108 total cells (range 1.7–50) corresponding to 1.45 × 108 (range 0.14–5.9) genetically modified cells were infused on day 0. Median follow-up as of 8/12/2012 was 5.6 mo (range 1–24 mo). 9 pts are evaluable for response (<30d follow up in 1 pt). No pt has died. There were no infusional toxicities >grade 2. CART19 homed to the marrow in the CLL pts and marrow and CSF for the ALL patient with detectable CART19 cells in the CSF (21 lymphs/uL, 78% CAR+) day 23 after infusion. 4/9 evaluable pts achieved CR. (3 CLL, 1 ALL). 2 CLL pts had a PR lasting 3 and 5 months, and 3 pts did not respond. In the 4 pts who achieved CR, maximal expanded cells in the blood were detected at an average of 27 fold higher than the infused dose (range 21–40-fold) with maximal in-vivo expansion between day 10 and 31 post infusion. No patient with CR has relapsed. All pts who responded developed a cytokine release syndrome (CRS) manifested by fever, and variable degrees of nausea, anorexia, and transient hypotension and hypoxia. In responding CLL pts the maximal fold elevation from baseline for IFN-γ was 89–298x, IL-6 6–40x, and IL2R 5– 25x, while no significant elevation in systemic levels of TNFα or IL2 were observed. For the ALL pt, maximal elevations from baseline were: IFNγ: 6040x; IL-6: 988x; IL2R: 56x, while significant elevations in TNFα (17x) and IL2 (163x) were also observed. The timing for maximum cytokine elevation differed but in all cases correlated with peak T cell expansion in the PBMC. 5 pts with CRS required treatment; patient 03 was treated with high dose steroids with resolution of symptoms but only achieved a PR. While steroid treatment had a variable effect on the CRS, we noted that these symptoms were temporally associated with significant elevations in serum IL-6. Accordingly, 4 of these pts were treated with the IL6-receptor antagonist tocilizumab on day 3–10 with prompt resolution of fevers, hypotension and hypoxia. 3 of these patients are evaluable for response and 2 achieved a CR. For the pts in CR, CART19 expression in the blood was documented by flow cytometry at the most recent follow up for each patient: 24 mo (pt 01), 22 mo (pt 02), 3 mo (pt 100), and 2 mo (pt 09). Conclusions: Autologous T cells genetically engineered to express an anti-CD19 scFv coupled to 4-1BB/CD3-z signaling domains can undergo robust in-vivo expansion, persist for at least up to 2 yrs, and can be associated with a significant CRS that responds to anti-cytokine therapy. CART19 cells can induce potent and sustained responses (6/9 responses, 4 CR) for patients with advanced, refractory and high risk CLL and relapsed refractory ALL. Disclosures: Porter: Novatis: Patents & Royalties; Celgene: Honoraria; Genentech: Employment; Pfizer: Research Funding. Off Label Use: The use of CART19 cells to treat CD19+ malignancy and the use of tocilizumab to treat cytokine activation syndrome related to CART19 cells. Kalos:University of Pennsylvania: Employment, Patents & Royalties. Levine:TxCell: Consultancy, Membership on an entity's Board of Directors or advisory committees; University of Pennsylvania: financial interest due to intellectual property and patents in the field of cell and gene therapy. Conflict of interest is managed in accordance with University of Pennsylvania policy and oversight Patents & Royalties. June:Novartis: Research Funding, entitled to receive royalties from patents licensed to Novartis, entitled to receive royalties from patents licensed to Novartis Patents & Royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1589-1589
Author(s):  
Fabian Frontzek ◽  
Marita Ziepert ◽  
Maike Nickelsen ◽  
Bettina Altmann ◽  
Bertram Glass ◽  
...  

Introduction: The R-MegaCHOEP trial showed that dose-escalation of conventional chemotherapy necessitating autologous stem cell transplantation (ASCT) does not confer a survival benefit for younger patients (pts) with high-risk aggressive B-cell lymphoma in the Rituximab era (Schmitz et al., Lancet Oncology 2012; 13, 1250-1259). To describe efficacy and toxicity over time and document the long-term risks of relapse and secondary malignancy we present the 10-year follow-up of this study. Methods: In the randomized, prospective phase 3 trial R-MegaCHOEP younger pts aged 18-60 years with newly diagnosed, high-risk (aaIPI 2-3) aggressive B-cell lymphoma were assigned to 8 cycles of CHOEP (cyclophosphamide, doxorubcine, vincristine, etoposide, prednisone) or 4 cycles of dose-escalated high-dose therapy (HDT) necessitating repetitive ASCT both combined with Rituximab. Both arms were stratified according to aaIPI, bulky disease, and center. Primary endpoint was event-free survival (EFS). All analyses were calculated for the intention-to-treat population. This follow-up report includes molecular data based on immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) for MYC (IHC: 31/92 positive [40-100%], FISH: 14/103 positive), BCL2 (IHC: 65/89 positive [50-100%], FISH: 23/111 positive) and BCL6 (IHC: 52/86 positive [30-100%], FISH: 34/110 positive) and data on cell of origin (COO) classification according to the Lymph2CX assay (GCB: 53/88; ABC: 24/88; unclassified: 11/88). Results: 130 pts had been assigned to R-CHOEP and 132 to R-MegaCHOEP. DLBCL was the most common lymphoma subtype (~80%). 73% of pts scored an aaIPI of 2 and 27% an aaIPI of 3. 60% of pts had an initial lymphoma bulk and in 40% more than 1 extranodal site was involved. After a median observation time of 111 months, EFS at 10 years was 57% (95% CI 47-67%) in the R-CHOEP vs. 51% in the R-MegaCHOEP arm (42-61%) (hazard ratio 1.3, 95% CI 0.9-1.8, p=0.228), overall survival (OS) after 10 years was 72% (63-81%) vs. 66% (57-76%) respectively (p=0.249). With regard to molecular characterization, we were unable to detect a significant benefit for HDT/ASCT in any subgroup analyzed. In total, 16% of pts (30 pts) relapsed after having achieved a complete remission (CR). 23% of all relapses (7 pts) showed an indolent histology (follicular lymphoma grade 1-3a) and 6 of these pts survived long-term. In contrast, of 23 pts (77%) relapsing with aggressive DLBCL or unknown histology 18 pts died due to lymphoma or related therapy. The majority of relapses occurred during the first 3 years after randomization (median time: 22 months) while after 5 years we detected relapses only in 5 pts (3% of all 190 pts prior CR). 11% of pts were initially progressive (28 pts) among whom 71% (20 pts) died rapidly due to lymphoma. Interestingly, the remaining 29% (8 pts) showed a long-term survival after salvage therapy (+/- ASCT); only 1 pt received allogeneic transplantation. The frequency of secondary malignancies was very similar in both treatment arms (9% vs. 8%) despite the very high dose of etoposide (total 4g/m2)in the R-MegaCHOEP arm. We observed 2 cases of AML and 1 case of MDS per arm. In total 70 pts (28%) have died: 30 pts due to lymphoma (12%), 22 pts therapy-related (11 pts due to salvage therapy) (9%), 8 pts of secondary neoplasia (3%), 5 pts due to concomitant disease (2%) and 5 pts for unknown reasons. Conclusions: This 10-year long-term follow-up of the R-MegaCHOEP trial confirms the very encouraging outcome of young high-risk pts following conventional chemotherapy with R-CHOEP. High-dose therapy did not improve outcome in any subgroup analysis including molecular high-risk groups. Relapse rate was generally low. Pts with aggressive relapse showed a very poor long-term outcome while pts with indolent histology at relapse survived long-term. Secondary malignancies occurred; however, they were rare with no excess leukemias/MDS following treatment with very high doses of etoposide and other cytotoxic agents. Supported by Deutsche Krebshilfe. Figure Disclosures Nickelsen: Roche Pharma AG: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grants; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grant; Janssen: Membership on an entity's Board of Directors or advisory committees. Hänel:Amgen: Honoraria; Celgene: Other: advisory board; Novartis: Honoraria; Takeda: Other: advisory board; Roche: Honoraria. Truemper:Nordic Nanovector: Consultancy; Roche: Research Funding; Mundipharma: Research Funding; Janssen Oncology: Consultancy; Takeda: Consultancy, Research Funding; Seattle Genetics, Inc.: Research Funding. Held:Roche: Consultancy, Other: Travel support, Research Funding; Amgen: Research Funding; Acrotech: Research Funding; MSD: Consultancy; Bristol-Myers Squibb: Consultancy, Other: Travel support, Research Funding. Dreyling:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: scientific advisory board, Research Funding, Speakers Bureau; Bayer: Consultancy, Other: scientific advisory board, Speakers Bureau; Celgene: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Mundipharma: Consultancy, Research Funding; Gilead: Consultancy, Other: scientific advisory board, Speakers Bureau; Novartis: Other: scientific advisory board; Sandoz: Other: scientific advisory board; Janssen: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Acerta: Other: scientific advisory board. Viardot:Kite/Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; F. Hoffmann-La Roche Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Rosenwald:MorphoSys: Consultancy. Lenz:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; AstraZeneca: Consultancy, Honoraria, Research Funding; Agios: Research Funding; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bayer: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Roche: Employment, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy. Schmitz:Novartis: Honoraria; Gilead: Honoraria; Celgene: Equity Ownership; Riemser: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 779-779 ◽  
Author(s):  
Zinaida Good ◽  
Jay Y. Spiegel ◽  
Bita Sahaf ◽  
Meena B. Malipatlolla ◽  
Matthew J. Frank ◽  
...  

Axicabtagene ciloleucel (Axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for the treatment of relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Long-term analysis of the ZUMA-1 phase 1-2 clinical trial showed that ~40% of Axi-cel patients remained progression-free at 2 years (Locke et al., Lancet Oncology 2019). Those patients who achieved a complete response (CR) at 6 months generally remained progression-free long-term. The biological basis for achieving a durable CR in patients receiving Axi-cel remains poorly understood. Here, we sought to identify CAR T-cell intrinsic features associated with CR at 6 months in DLBCL patients receiving commercial Axi-cel at our institution. Using mass cytometry, we assessed expression of 33 surface or intracellular proteins relevant to T-cell function on blood collected before CAR T cell infusion, on day 7 (peak expansion), and on day 21 (late expansion) post-infusion. To identify cell features that distinguish patients with durable CR (n = 11) from those who developed progressive disease (PD, n = 14) by 6 months following Axi-cel infusion, we performed differential abundance analysis of multiparametric protein expression on CAR T cells. This unsupervised analysis identified populations on day 7 associated with persistent CR or PD at 6 months. Using 10-fold cross-validation, we next fitted a least absolute shrinkage and selection operator (lasso) model that identified two clusters of CD4+ CAR T cells on day 7 as potentially predictive of clinical outcome. The first cluster identified by our model was associated with CR at 6 months and had high expression of CD45RO, CD57, PD1, and T-bet transcription factor. Analysis of protein co-expression in this cluster enabled us to define a simple gating scheme based on high expression of CD57 and T-bet, which captured a population of CD4+ CAR T cells on day 7 with greater expansion in patients experiencing a durable CR (mean±s.e.m. CR: 26.13%±2.59%, PD: 10.99%±2.53%, P = 0.0014). In contrast, the second cluster was associated with PD at 6 months and had high expression of CD25, TIGIT, and Helios transcription factor with no CD57. A CD57-negative Helios-positive gate captured a population of CD4+ CAR T cells was enriched on day 7 in patients who experienced progression (CR: 9.75%±2.70%, PD: 20.93%±3.70%, P = 0.016). Co-expression of CD4, CD25, and Helios on these CAR T cells highlights their similarity to regulatory T cells, which could provide a basis for their detrimental effects. In this exploratory analysis of 25 patients treated with Axi-cel, we identified two populations of CD4+ CAR T cells on day 7 that were highly associated with clinical outcome at 6 months. Ongoing analyses are underway to fully characterize this dataset, to explore the biological activity of the populations identified, and to assess the presence of other populations that may be associated with CAR-T expansion or neurotoxicity. This work demonstrates how multidimensional correlative studies can enhance our understanding of CAR T-cell biology and uncover populations associated with clinical outcome in CAR T cell therapies. This work was supported by the Parker Institute for Cancer Immunotherapy. Figure Disclosures Muffly: Pfizer: Consultancy; Adaptive: Research Funding; KITE: Consultancy. Miklos:Celgene: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Kite-Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; AlloGene: Membership on an entity's Board of Directors or advisory committees; Precision Bioscience: Membership on an entity's Board of Directors or advisory committees; Miltenyi Biotech: Membership on an entity's Board of Directors or advisory committees; Becton Dickinson: Research Funding; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees. Mackall:Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 380-380 ◽  
Author(s):  
Stephan A. Grupp ◽  
Shannon L Maude ◽  
Pamela Shaw ◽  
Richard Aplenc ◽  
David M. Barrett ◽  
...  

Abstract BACKGROUND CARs combine a single chain variable fragment (scFv) of an antibody with intracellular signaling domains. We have previously reported on CTL019 cells expressing an anti-CD19 CAR. Infusion of these cells results in 100 to 100,000x in vivo proliferation, durable anti-tumor activity, and prolonged persistence in pts with B cell tumors, including sustained CRs in adults and children with ALL (Grupp et al., NEJM 2013, Maude et al., NEJM 2014). We now report on outcomes and longer follow up of the first 30 pts with relapsed, refractory ALL treated on our pilot trial in pediatric ALL. METHODS T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3ζ, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into children with relapsed or refractory CD19+ ALL. 26/30 pts received lymphodepleting chemotherapy the week prior to CTL019 infusion. The targeted T cell dose range was 107 to 108 cells/kg with a transduction efficiency of 11-45%. T cells for manufacturing were collected from the pt regardless of prior SCT status, not allo donors. RESULTS 30 children median age 10y (5-22y) with CD19+ ALL were treated. 25/30 pts had detectable disease on the day before CTL019 cell infusion, while 5 were MRD(-). A median of 3.6x106 CTL019 cells/kg (1.1-18x106/kg) were infused over 1-3 days. There were no infusional toxicities >grade 2, although 9 pts developed fevers within 24 hrs of infusion and did not receive a planned 2nd infusion of CTL019 cells. 27 pts (90%) achieved a CR, including a patient with T cell ALL aberrantly expressing CD19+. 3 did not respond. MRD measured by clinical flow cytometry was negative in 23 responding pts and positive at 0.1% (negative at 3 mo), 0.09%, 0.22%, and 1.1% in 4 pts. With median follow up 8 mo (1-26 mo), 16 pts have ongoing CR, with only 3 patients in the cohort receiving subsequent treatment such as donor lymphocyte infusion or SCT, 6-month EFS measured from infusion is 63% (95% CI, 47-84%), and OS is 78% (95% CI, 63-95%). CTL019 cells were detected in the CSF of 17/19 pts and 2 pts with CNS2a disease experienced a CR in CSF. 10 pts with a CR at 1 mo have subsequently relapsed, half with CD19(-) blasts. 2/5 pts who relapsed with CD19(-) disease had previously been refractory to CD19-directed blinatumomab and subsequently went into CR with CTL019. Figure 1 Figure 1. All responding pts developed grade 1-4 cytokine release syndrome (CRS) at peak T cell expansion. Detailed cytokine analysis showed marked increases of IL6 and IFNγ (both up to 1000x), and IL2R. Treatment for CRS was required for hemodynamic or respiratory instability in 37% of patients and was rapidly reversed in all cases with the IL6-receptor antagonist tocilizumab, together with corticosteroids in 5 pts. Although T cells collected from the 21 pts who had relapsed after allo SCT were median 100% donor origin, no GVHD has been seen. Grade 4 CRS was strongly associated with high disease burden prior to infusion and with elevations in IL-6, ferritin (suggesting macrophage activation syndrome) and C reactive protein after infusion. Persistence of CTL019 cells detected by flow cytometry and/or QPCR, and accompanied by B cell aplasia, continued for 1-26 months after infusion in pts with ongoing responses. QPCR showed very high levels of CTL019 proliferation, with all patients achieving peak levels >5000 copies/ug gDNA and 26 patients with peak levels >15,000 copies/ug gDNA. B cell aplasia has been treated with IVIg without significant infectious complications. Probability of 6-mo CTL019 persistence by flow was68% (95% CI, 50-92%) andrelapse-free B cell aplasia was 73% (95% CI, 57-94%). CONCLUSIONS: CTL019 cells can undergo robust in-vivo expansion and can persist for 2 years or longer in pts with relapsed ALL, allowing for the possibility of long-term disease response without subsequent therapy such as SCT. This approach also has promise as a salvage therapy for patients who relapse after allo-SCT with a low risk of GVHD. CTL019 therapy is associated with a significant CRS that responds rapidly to IL-6-targeted anti-cytokine treatment. CTL019 cells can induce potent and durable responses for patients with relapsed/refractory ALL; however, recurrence with cells that have lost CD19 is an important mechanism of CLT019 resistance. CTL019 therapy has received Breakthrough Therapy designation from the FDA in both pediatric and adult ALL, and phase II multicenter trials have been initiated. Disclosures Grupp: Novartis: Consultancy, Research Funding. Barrett:Novartis: Research Funding. Chew:Novartis: Research Funding. Lacey:Novartis: Research Funding. Levine:Novartis: Patents & Royalties, Research Funding. Melenhorst:Novartis: Research Funding. Rheingold:Novartis: Consultancy. Shen:Novartis: Employment. Wood:Novartis Pharma: Employment. Porter:Novartis: managed according to U Penn Policy Patents & Royalties, Research Funding. June:Novartis: Research Funding, Royalty income Patents & Royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 744-744 ◽  
Author(s):  
Liora M Schultz ◽  
Lori S Muffly ◽  
Jay Y. Spiegel ◽  
Sneha Ramakrishna ◽  
Nasheed Hossain ◽  
...  

Introduction: Chimeric antigen receptor (CAR) T cells targeting either CD19 or CD22 have yielded striking complete remission (CR) rates of 70%-90% in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL), but CD19 negative and CD22 low relapse limits the curative potential of these single-antigen CAR T cell approaches. We hypothesized that a bivalent CAR-T construct that can target CD19 and/or CD22 would prevent antigen negative/low relapse. Here we present the combined single institution experience to date of pediatric and adult patients with R/R ALL treated with this novel bispecific CAR. Methods: We conducted parallel Phase I clinical trials of CD19/CD22 bispecific CAR T cells in pediatric and adult patients with relapsed/refractory ALL. We utilized lentiviral transduction of a bivalent CAR construct incorporating the fmc63 CD19 and m971 CD22 single chain variable fragments (scFvs) and a 41BB costimulatory endodomain. After lymphodepletion with fludarabine and cyclophosphamide, patients were infused with fresh or cryopreserved CAR T cells manufactured using a 7-11 day process. Two dose levels were tested during dose escalation: Dose level 1 was 1x106 CAR T cells/kg and dose level 2 was 3x106 cells/kg. Primary objectives assessed the ability to successfully manufacture CAR19/22 CAR T cells and safety while response at Day 28 post-infusion was a secondary objective. Blood, bone marrow and cerebrospinal fluid samples were obtained at protocol defined intervals for correlative biology studies. Results: Nineteen patients have been enrolled (10 pediatric; 9 adult) with a median age of 23 years (range, 2-68) and median of 4 (range, 2-11) prior lines of leukemia-directed therapy. Ten patients received prior HCT, 9 were treated with prior Blinatumomab, 3 with prior CD19 directed CAR T cells and 4 with prior Inotuzumab. Fourteen patients (8 pediatric, 6 adult) have been infused to date with CD19/CD22 bispecific CAR T cells; 7 were treated at dose level 1 (DL1) and 7 at dose level 2 (DL2). Successful manufacturing of cells at target dose levels was achieved in all patients. Twelve patients have reached day 28 and are included in the safety and response analysis presented here. Nine of 12 (75%) experienced cytokine release syndrome (CRS) and 2/12 (17%) developed immune-effector cell neurotoxicity syndrome (ICANS). The CRS and ICANS were all grade 1 or 2 across both dose levels and across pediatric and adult patients except for one adult with high disease burden who experienced grade 4 CRS and grade 4 ICANS, both of which were reversible. No differences in toxicities were seen across the patient age spectrum and there were no cases of treatment-related mortality within 28 days following CAR T infusion. Eleven of 12 (92%) patients achieved a CR, 10 of whom achieved CR at day 28 and one with a PR of extramedullary disease at day 28 which improved to CR by day 180 without further leukemia-directed intervention. One patient had primary progressive disease prior to day 28. Peak CAR expansion as detected by peripheral blood flow cytometry reached a median level of 11.13% (DL1) and 29.1% (DL2) CAR T of CD3+ cells with a range of 0.7-22.54% and 3.8-86.96%, respectively. To date, 3 patients (1 pediatric and 2 adult patients) have relapsed, all with retention of CD19. Post-remission practice differed across pediatric and adult patients; Six pediatric patients reaching day 28 underwent consolidative hematopoietic cell transplantation (HCT) whereas no adult patients received subsequent HCT. One patient died from complications post HCT while in remission. Therefore, the overall survival for all infused patients was 92% with a median follow-up of 9.5 months from time of infusion (range, 1-20). Conclusion: The combined pediatric and adult phase I trials of bispecific CD19/CD22 targeting CAR T cells in relapsed/refractory ALL demonstrates safety and tolerability at two dose levels. Expanded accrual at dose level 2 is ongoing and clinical outcomes will be updated. This work additionally demonstrates feasibility of delivering unified B-ALL CAR T cell therapy across age boundaries. Multi-parametric CyTOF studies permitting CAR T cell phenotyping in conjunction with single cell TCR tracking, proteomics, epigenomics and cytokine profiling are ongoing and will be used to further characterize persisting CAR T cells and define inter-product and inter-patient variability. Disclosures Muffly: Pfizer: Consultancy; KITE: Consultancy; Adaptive: Research Funding. Majzner:Xyphos Inc.: Consultancy; Lyell Immunopharma: Consultancy. Feldman:Octane Biotech, Inc.: Employment; Personalized Medicine Initiative Science: Membership on an entity's Board of Directors or advisory committees. Miklos:Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Kite-Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Juno: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Becton Dickinson: Research Funding; Miltenyi Biotech: Membership on an entity's Board of Directors or advisory committees; Precision Bioscience: Membership on an entity's Board of Directors or advisory committees; AlloGene: Membership on an entity's Board of Directors or advisory committees. Mackall:Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board; Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 556-556
Author(s):  
Uday R. Popat ◽  
Roland Bassett ◽  
Peter F. Thall ◽  
Amin M. Alousi ◽  
Gheath Alatrash ◽  
...  

Abstract Background: Myeloablative conditioning can be given safely to older patients by administering busulfan over a longer period (fractionated busulfan regimen) than the standard four-day regimen. (Popat, et al Lancet Haematology 2018). This longer conditioning regimen duration allows the addition of oral targeted agents like sorafenib, which may be synergistic with conditioning chemotherapy and thus further improve disease control. Therefore, we added sorafenib to fludarabine and fractionated busulfan regimen (f-bu) in a phase 1 dose-finding trial studying 4 different doses of sorafenib with f-bu (NCT03247088). Here we report the results of this trial. Methods: Between 3/2018 and 6/2021, 24 patients with AML aged 18 to 70 years with adequate organ function and 8/8-HLA matched related or unrelated donors were enrolled prospectively. The dose of sorafenib was varied among the four values 200, 400, 600, and 800 mg administered from day -24 to -5. Dose-limiting toxicity (DLT) was defined as grade 3 or higher regimen-related non-hematologic, non-infectious, non-GVHD toxicity occurring between day -24 and day 3. The Bayesian Model Averaging Continual Reassessment Method (BMA-CRM) with target DLT probability 0.30 was used to choose doses for successive cohorts of 3 patients. The first cohort was treated at the lowest sorafenib dose 200, with all successive cohorts' doses chosen adaptively by the BMA-CRM. The doses and schedules of busulfan and fludarabine were fixed, with f-Bu dose targeting an area under the concentration vs time curve (AUC) of 20,000 ± 12% μmol.min given over 3 weeks. The first two doses of busulfan (80 mg/m2 IV each) were administered on days -20 and -13 on an outpatient basis. The last four Bu doses were calculated to give a total course AUC of 20,000 ± 12% μmol.min and were given as inpatient following each dose of Flu 40 mg/m2 on days -6 through -3. GVHD prophylaxis was post-transplant cyclophosphamide (PTCy) 50mg/kg on days 3 and 4 and tacrolimus. Recipients of unrelated donor grafts also received MMF. All patients were eligible to receive post-transplant maintenance sorafenib after engraftment. Results: The median age was 52 years (range, 30-70). Disease status was CR in 16 (66.6%) patients, CRi in 5 (20.8%), and advanced in 3 (12.5%). Adverse risk karyotype was present in 10 (41.7%) patients. MRD was present in 13 (54.2%). 9 (38%) had mutated flt3. The donor was unrelated in 14 (58%), and peripheral blood stem cells were the graft source in 21(87.5%). Due to the absence of DLTs, the BMA-CRM assigned 200mg, 400mg, 600mg, and 800mg of sorafenib, respectively, to the first 4 cohorts, and the next 4 cohorts were given 800mg. Only 2 dose-limiting skin toxicities were seen, one in cohort 3 with 600mg of sorafenib and the second in cohort 6 with 800mg of sorafenib. 800mg was the final recommended phase 2 dose. The median follow-up in 20 surviving patients was 7.6 months and 1-year progression free survival was 89% (95% CI 75-100%). Other outcomes are summarized in Table 1. Conclusion: Sorafenib can be safely added to the fractionated busulfan regimen. Early data on efficacy appear promising, with an 89% PFS at 1 year of follow up. Figure 1 Figure 1. Disclosures Popat: Bayer: Research Funding; Abbvie: Research Funding; Novartis: Research Funding; Incyte: Research Funding. Hosing: Nkarta Therapeutics: Membership on an entity's Board of Directors or advisory committees. Rezvani: Bayer: Other: Scientific Advisory Board ; AvengeBio: Other: Scientific Advisory Board ; Navan Technologies: Other: Scientific Advisory Board; GSK: Other: Scientific Advisory Board ; Virogin: Other: Scientific Advisory Board ; Affimed: Other: License agreement and research agreement; education grant, Patents & Royalties, Research Funding; Pharmacyclics: Other: Educational grant, Research Funding; Caribou: Other: Scientific Advisory Board; GemoAb: Other: Scientific Advisory Board ; Takeda: Other: License agreement and research agreement, Patents & Royalties. Qazilbash: Bristol-Myers Squibb: Other: Advisory Board; Biolline: Research Funding; Amgen: Research Funding; Oncopeptides: Other: Advisory Board; NexImmune: Research Funding; Angiocrine: Research Funding; Janssen: Research Funding. Daver: Daiichi Sankyo: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; ImmunoGen: Consultancy, Research Funding; Astellas: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Gilead Sciences, Inc.: Consultancy, Research Funding; Trillium: Consultancy, Research Funding; Glycomimetics: Research Funding; Abbvie: Consultancy, Research Funding; Hanmi: Research Funding; Bristol Myers Squibb: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; FATE Therapeutics: Research Funding; Sevier: Consultancy, Research Funding; Novimmune: Research Funding; Trovagene: Consultancy, Research Funding; Novartis: Consultancy; Jazz Pharmaceuticals: Consultancy, Other: Data Monitoring Committee member; Dava Oncology (Arog): Consultancy; Celgene: Consultancy; Syndax: Consultancy; Shattuck Labs: Consultancy; Agios: Consultancy; Kite Pharmaceuticals: Consultancy; SOBI: Consultancy; STAR Therapeutics: Consultancy; Karyopharm: Research Funding; Newave: Research Funding. Ravandi: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; AstraZeneca: Honoraria; Novartis: Honoraria; Xencor: Honoraria, Research Funding; Taiho: Honoraria, Research Funding; Astex: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; Agios: Honoraria, Research Funding; Prelude: Research Funding; Syros Pharmaceuticals: Consultancy, Honoraria, Research Funding. Shpall: Magenta: Consultancy; Bayer HealthCare Pharmaceuticals: Honoraria; Magenta: Honoraria; Adaptimmune: Consultancy; Novartis: Consultancy; Navan: Consultancy; Novartis: Honoraria; Takeda: Patents & Royalties; Affimed: Patents & Royalties; Axio: Consultancy. Mehta: CSLBehring: Research Funding; Kadmon: Research Funding; Syndax: Research Funding; Incyte: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4793-4793
Author(s):  
Giacomo Oliveira ◽  
Maria Teresa Lupo Stanghellini ◽  
Eliana Ruggiero ◽  
Nicoletta Cieri ◽  
Mattia D'Agostino ◽  
...  

Abstract BACKGROUND: Suicide gene therapy applied to haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is one of the widest clinical applications of gene therapy. By the infusion of donor lymphocytes transduced to express the Herpes Simplex Virus Thymidine Kinase (TK) suicide gene, patients achieve a rapid immune reconstitution and substantial protection against tumor recurrence. TK-cells are promptly eliminated in case of graft versus host disease (GvHD), with complete resolution of the adverse reaction. In previous studies, we showed that TK-cell infusions are necessary and sufficient to promote the generation of a fast, polyclonal and full competent T cell repertoire. In the present work we characterize the immunological profile of a cohort of long-term survivors after suicide gene therapy and we studied the long-term fate of TK-cells to shed light on memory T cell dynamics after transplantation. RESULTS: We studied 9 adult patients who underwent haplo-HSCT and infusion of purified suicide-gene modified donor T cells (median dose: 1.9x107 cells/kg, range:0.9x106-39.5x106) for high-risk hematologic malignancies between 1995 and 2010 (TK patients). At a median follow-up of 7,4 years (range 3.2-12.3), all patients are in complete remission. Two out of 9 patients (22%) experienced GvHD in the early phase post immune reconstitution; in all cases, ganciclovir (GCV) administration proved effective in abrogating the adverse reaction. No symptoms or complications related to GvHD were observed during the long-term follow up, and none of the patient is receiving immunosuppressive drugs. A complete recovery of NK cells, B lymphocytes and αβ or γδ T cells was observed. The CD8+ and CD4+ T cell compartment of TK patients were characterized by level of naïve and memory cell comparable to age and sex matched healthy controls. The quantification of CD4+ CD31+ CD62L+ CD45RA+ CD95- recent thymic emigrants and measure of single joint T-cell receptor excision circles demonstrated that the normalization of the T cell compartment was supported by a completely recovered thymic output. TK-cells were detected in all patients (100%), at low levels (median=4cells/uL). Ex vivo selection of pure TK-cells after polyclonal stimulation and LNGFR-purification confirmed the presence of functional transduced cells, thus directly demonstrating the ability of memory T cells to persist for years. Of notice TK-cells could be retrieved also in patients successfully treated with GCV for GvHD, thus confirming the selective action of GCV only on proliferating TK-cells. Accordingly, GCV sensitivity was preserved in long-term persisting TK-cells, independently from their differentiation phenotype. TK-cells circulating in patients displayed a memory phenotype comprising effector memory (TEM), central memory (TCM) and stem memory (TSCM) T cells and exhibited a low level of Ki-67 positivity, thus suggesting the maintenance of a pool of gene modified memory cells through homeostatic proliferation. The number of TK-cells circulating at the longest follow-up did not correlate with the number of infused cells, nor patients or donors’ age, but instead with the peak of TK-cells observed within the first months after infusion, suggesting that antigen recognition is dominant in driving in vivo expansion and persistence of memory T cells. We evaluated whether the phenotype of infused TK-cells was able to affect the long-term fate of gene-modified memory T cells. We observed that the number of infused TSCM cells positively correlated with early TK-cell expansion and with their long-term persistence, suggesting that TSCMmight play a privileged role in the generation of a long-lasting immunological memory. CONCLUSION: These data show that a complete and physiological donor-derived immune system is restored in adult surviving long-term after suicide gene therapy. After infusion, gene modified cells persist for up to 12 years in treated patients. This setting can be exploited to investigate the requirements at the basis of the generation of a long-lasting immunological memory in vivo. Further studies on TK-cell TCR repertoire and vector integrations are currently being performed to elucidate the in vivo dynamics of infused memory T cells. Disclosures Lambiase: MolMed S.p.A: Employment. Traversari:MolMed S.p.A: Employment. Bordignon:MolMed S.p.A: Chairman and CEO Other. Bonini:MolMed S.p.A: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document