First US Phase I Clinical Trial Of Globin Gene Transfer For The Treatment Of Beta-Thalassemia Major

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 716-716 ◽  
Author(s):  
Farid Boulad ◽  
Isabelle Riviere ◽  
Xiuyan Wang ◽  
Shirley Bartido ◽  
Susan E. Prockop ◽  
...  

Abstract To date, the only curative therapeutic approach for beta-thalassemia major has been allogeneic stem cell transplantation (SCT) for patients with HLA-matched siblings. For the majority of patients who do not have a matched sibling, allogeneic SCT is associated with major risks of morbidity and mortality. The stable transfer of a functional globin gene into the patient’s own hematopoietic progenitor cells (HPCs) yields a perfectly matched graft that does not require immunosuppression to engraft. We previously demonstrated successful globin gene therapy in murine thalassemia models, using a lentiviral vector that encodes the human ß-globin promoter and arrayed regulatory elements uniquely combined to achieve high level and erythroid-specific globin expression. In vivo in thalassemic mice, the vector termed TNS9.3.55, increased hemoglobin levels by an average 4-6 g/dL per vector copy. We obtained in 2012 the first US Food and Drug Administration (FDA) approval to proceed to a clinical study in adult subjects with beta-thalassemia major (NCT01639690). We have to date enrolled 5 patients and recently treated the first three, administering the transduced HPCs after non-myeloablative conditioning. Engraftment data are available for the first two patients. Patient 3 was recently infused with CD34+ cells and is at this time too early to evaluate. Patient 1 is a 23 year old female with a ß039 – IVS1,110 mutation. Patient 2 is an 18 year old female with a ß039 – IVS1,6 mutation. Both patients underwent mobilization of peripheral blood stem cells (PBSCs) with filgrastim and mobilized 25 x 10^6 and 9.9 x 10^6 CD34 cells/Kg respectively. CD34+ PBSCs were transduced with the lentiviral vector TNS9.3.55 encoding the normal human beta-globin gene. The average vector copy number (VCN) in bulk CD34+ cells for these two patients was respectively 0.39 and 0.21 copies per cell. Both patients underwent non-myeloablative cytoreduction with busulfan administered at 2 mg/Kg/dose Q12H x 4 doses (total 8 mg/Kg), followed by reinfusion of 11.8 x 10^6 and 8.4 x 10^6 CD34+ cells/Kg, respectively. Both patients tolerated cytoreduction well and recovered their blood counts. While they continue to be transfusion dependent, both patients show a gradual rise in vector copy number in peripheral blood white blood cells and neutrophils, steadily increasing by 1-2% every month, reaching an average VCN of 5-7% 3-6 months after transplantation. In summary, patients with thalassemia major underwent safe and effective mobilization followed by excellent transduction of mobilized CD34+ cells. The transplant non-myeloablative conditioning was well tolerated, and followed by rapid engraftment and gradual rise in VCN. Continued clinical and molecular monitoring is on-going and will be presented. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 818-818 ◽  
Author(s):  
Phillip W Hargrove ◽  
Tamara I Pestina ◽  
Yoon Sang Kim ◽  
John Gray ◽  
Kelli Boyd ◽  
...  

Abstract Increased levels of red cell fetal hemogloblin (α2 γ2; HbF), whether due to hereditary persistence of HbF or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed an erythroid-specific, γ-globin lentiviral vector for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanent, high level expression of HbF in sickle red cells. The vector contained the γ-globin gene driven by 3.1 kb of transcriptional regulatory sequences from the β-globin LCR and a 130 bp β-globin promoter. Since adult erythroid cells have β-globin mRNA 3′UTR binding proteins that enhance β-globin mRNA stability, we replaced the native γ-globin 3′UTR with its β-globin counterpart. We tested the therapeutic efficacy of this vector using the BERK sickle cell mouse model. Five months following transplant, mice that received transduced lineage-depleted sickle steady-state bone marrow (BM) cells (n=10) expressed the g-globin transgene in 95% ± 2% of RBCs. We observed levels of HbF that equaled that of the endogenous HbS (HbF 48% ± 3% of total Hb). This was achieved with an average BM vector copy number of 1.7 ± 0.2 and led to correction of both the severe anemia and end-organ damage characterizing this SCD strain. Globin vector mice had a Hb level of 12.2 ± 0.2 g/dL, compared to 7.1 ± 0.3 g/dL of mice (n=16) transplanted with cells transduced with a control GFP vector. Urine concentrating ability was normal in globin vector mice, while severely impaired in control mice. At necropsy, minimal evidence of sickle-related organ damage was found in the globin vector recipient group. In contrast, severe renal, hepatic, splenic and pulmonary pathology was observed in control, mock-transduced animals. We then transplanted the BM from 6 primary recipients of globin vector-transduced cells into 23 secondary recipients. Five months after transplant, these animals maintained HbF levels similar to those of their primary donors, along with persistent resolution of anemia. This suggested that HSCs were transduced and that vector silencing was minimal. We then evaluated this vector using non-human primate CD34+ cells. Steady-state BM CD34+ cells from several different pigtail macaques were transduced with the globin lentiviral vector or with a GFP control vector. The GFP vector achieved an average transduction rate of 57% ± 6% (n=6) into CD34+ cells and 76% ± 9% into CFU, as judged by GFP expression. Similar high levels of gene transfer were obtained with the globin vector. Bulk CD34+ cells transduced with the globin vector and then cultured for 5 days demonstrated an average vector copy number of 0.6–1.0 as judged by Southern blot analysis and qPCR. High level transduction of CFU was also obtained as 12/16 and 16/16 colonies in two separate experiments were positive for the globin vector by PCR analysis of colony DNA. We are in the process of comparing globin gene transfer and expression with that of our standard GFP vector in the pigtail macaque autologous transplant model by transplanting a graft consisting of 50% globin lentiviral vector-transduced CD34+ cells and 50% GFP lentiviral vector-transduced cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ahmad Shoujaa ◽  
Yasser Mukhalalaty ◽  
Hossam Murad ◽  
Faizeh Al-Quobaili

Beta thalassemia (β-thal) is one of the most common worldwide inherited hemoglobinopathies. Proper identification and diagnosis of hemoglobin (Hb) variants provide a major challenge. In this report, we describe a 1-year-old boy, presented with the diagnosis of β-TM (beta thalassemia major), has received regular blood transfusions. The molecular analysis revealed the presence of rare Hb Castilla [Beta 32(B14) Leu>Arg; HBB: c.98T>G] variant associated with β0 [IVS-I-1 (G>A); AG^GTTGGT- >AGATTGGT beta0] (HBB:c.92+1G>A) Mutation in beta-globin (β-globin) gene. To our knowledge, this is the first report of Hb Castilla [Beta 32(B14) Leu>Arg] in ExonII of β-globin gene which were found in Syrian male proband. However, we should investigate abnormal hemoglobins in patients with beta thalassemia to determine whether they have involvement with β-thalassemia mutations in the clinical case of the patients or not.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1085-1085
Author(s):  
Y.Terry Lee ◽  
Colleen Byrnes ◽  
Emily Riehm Meier ◽  
Antoinette Rabel ◽  
Jeffery L. Miller

Abstract Abstract 1085 Reversal of anemia is the major target of thalassemia research, but studies of the molecular and cellular basis of the ineffective erythropoiesis of thalassemia are limited by access to donor progenitor cells. Here we demonstrate that thalassemic erythropoiesis may be recapitulated ex vivo by reducing the expression of hemoglobin in cultured CD34+ cells. Using lentiviral transduction of progenitor cells obtained from three healthy adult human donors, shRNA molecules were screened for their ability to reduce beta-globin gene and protein expression over 21 days in culture. Cells transduced with a scrambled vector served as donor-matched controls. Among the screened shRNA, one named HBB caused a consistent and significant reduction in beta-globin mRNA and protein. Beta-globin mRNA was reduced to levels <10% (p<0.001) compared to that of the controls (day14/21), while maintaining expression of gamma- and alpha-globin mRNA. HPLC was performed on an equivalent number of cells sampled on culture day 21 for hemoglobin type (HbA vs. HbF) and quantitation (area under each HPLC peak). The HbA peak was reduced by 96%, and there was a minor increase in the HbF peak (1.6 fold) after HBB transduction. Based upon these quantitative changes in hemoglobin, HbF represented 49.3±9.3% in the HBB transduced population compared with 2.9±0.7% (p<0.01) in controls. On culture day 14, there was no significant difference in glycophorin A (CD235), transferrin receptor (CD71), or cellular morphology despite the reduction in beta-globin mRNA. However, impaired terminal differentiation was detected by retainment of surface CD71 and a lack of enucleation during the third week of culture. Cell counts were lower in HBB transduced cells during the final stages of erythroid differentiation with a 61% (p=0.03) reduction in total cell counts by day 21 when compared to controls. Annexin V assay on day 21 also demonstrated increased phosphatidylserine expression in the HBB transduced cells [HBB=55.7±14.4% vs. Control=25.0±3.0%] in association with the decreased terminal differentiation. GDF15 quantitation demonstrated a significant (p=0.006) increase in the culture supernatants of HBB transduced cells. Sorted cytospin preparations revealed a distinct population of mature normoblasts containing a highly condensed nucleus surrounded by a thin ring of hypochromic cytoplasm. Reduction of erythroblast beta-globin gene and protein expression to levels associated with beta thalassemia major in humans causes ineffective erythropoiesis ex vivo by reducing cell production, increasing surface expression of phosphatidylserine, and impairing enucleation during terminal maturation. Efforts are now underway to use the culture system to explore mechanisms whereby reduced hemoglobin synthesis causes normoblast defects, and for screening of chemical and genetic rescue therapies for the thalassemic erythroid phenotype. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 44 (2) ◽  
pp. 126-129
Author(s):  
Hatice Çevirici ◽  
Can Acıpayam ◽  
Ebru Dündar Yenilmez ◽  
Fatma Burcu Belen ◽  
Esra Pekpak ◽  
...  

Abstract Objectives This study, detection of beta globin gene mutations in thalassemia major patients who migrated from Syria to Kahramanmaraş region were planned. Materials and methods The study included 35 Syrian national beta thalassemia major patients. Beta globin gene mutations were detected by ARMS (Amplification Refractory Mutation System) method, RFLP (Restriction Fragment Length Polymorphism) method and DNA sequence analysis. Codon 15, codon 9/10, codon 5 and codon 8 mutations, which we could not detect with other methods in our study, were detected by sequence analysis. Results In beta thalassemia major patients, 16 types of mutations were detected, the most common being IVS-I-110 (n=8). Other mutations are according to frequency order IVS-II-745 (n=3), codon 44 (n=3), codon 15 (n=3), IVS-I-110/IVS-I-1 (n=3), codon 5 (n=2), IVS-I-1 (n=2), codon 8/IVS-II-1 (n=2), codon 44/codon 15 (n=2), IVS-II-1 (n=1), codon 39 (n=1), IVS-I-6/codon 5 (n=1), codon 9/10 (n=1), IVS-I-110/codon 39 (n=1), IVS-I-5/IVS-II-1 (n=1), codon 39/IVS-II-745 (n=1). Conclusions According to the results of our study beta-thalassemia mutations in Syrian immigrant groups show heterogeneity and mutation types of mutation map is similar to Turkey. The conclusion is to prevent families to have a second patient child by genetic counseling.


2011 ◽  
Vol 2011 (4) ◽  
pp. 264-268 ◽  
Author(s):  
Ali Aycicek ◽  
Ahmet Koc ◽  
Zeynep Canan Ozdemir ◽  
Hasan Bilinc ◽  
Abdurrahim Kocyigit ◽  
...  

Blood ◽  
2014 ◽  
Vol 123 (10) ◽  
pp. 1483-1486 ◽  
Author(s):  
Farid Boulad ◽  
Xiuyan Wang ◽  
Jinrong Qu ◽  
Clare Taylor ◽  
Leda Ferro ◽  
...  

Key Points Safe mobilization of CD34+ cells in adults with β-thalassemia and effective transduction with a globin vector under cGMP conditions. Stable vector copy number and β-globin expression in BFU-Es derived from engrafted CD34+ HPCs 6 months post-transplant in NSG mice.


Blood ◽  
2003 ◽  
Vol 101 (6) ◽  
pp. 2175-2183 ◽  
Author(s):  
Derek A. Persons ◽  
Phillip W. Hargrove ◽  
Esther R. Allay ◽  
Hideki Hanawa ◽  
Arthur W. Nienhuis

Increased fetal hemoglobin (HbF) levels diminish the clinical severity of β-thalassemia and sickle cell anemia. A treatment strategy using autologous stem cell–targeted gene transfer of a γ-globin gene may therefore have therapeutic potential. We evaluated oncoretroviral- and lentiviral-based γ-globin vectors for expression in transduced erythroid cell lines. Compared with γ-globin, oncoretroviral vectors containing either a β-spectrin or β-globin promoter and the α-globin HS40 element, a γ-globin lentiviral vector utilizing the β-globin promoter and elements from the β-globin locus control region demonstrated a higher probability of expression. This lentiviral vector design was evaluated in lethally irradiated mice that received transplants of transduced bone marrow cells. Long-term, stable erythroid expression of human γ-globin was observed with levels of vector-encoded γ-globin mRNA ranging from 9% to 19% of total murine α-globin mRNA. The therapeutic efficacy of the vector was subsequently evaluated in a murine model of β-thalassemia intermedia. The majority of mice that underwent transplantation expressed significant levels of chimeric mα2hγ2molecules (termed HbF), the amount of which correlated with the degree of phenotypic improvement. A group of animals with a mean HbF level of 21% displayed a 2.5 g/dL (25 g/L) improvement in Hb concentration and normalization of erythrocyte morphology relative to control animals. γ-Globin expression and phenotypic improvement was variably lower in other animals due to differences in vector copy number and chromosomal position effects. These data establish the potential of using a γ-globin lentiviral vector for gene therapy of β-thalassemia.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3567-3567
Author(s):  
Andrew Wilber ◽  
Uli Tschulena ◽  
Phillip W. Hargrove ◽  
Yoon-Sang Kim ◽  
Carlos F. Barbas ◽  
...  

Abstract Abstract 3567 Poster Board III-504 Fetal hemoglobin (α2γ2; HbF) is a potent genetic modifier of the severity of beta-thalassemia and sickle cell anemia. Clinical studies indicate that moderate elevation in production of HbF achieved through heritable persistence of HbF or administration of hydroxyurea, effectively reduce the severity of beta-chain defects. Accordingly, we are exploring strategies to maintain expression of the endogenous gamma-globin genes following lentiviral vector-mediated gene transfer. The artificial zinc-finger transcription factor (GG1-VP64) was designed to interact with sequences in the proximal gamma-globin gene promoters and has been shown to enhance gamma-globin expression in human erythroleukemia cells and mouse marrow cells which are transgenic for the human beta-globin locus. Here, we describe studies designed to evaluate the impact of expression of GG1-VP64 on gamma-globin expression by maturing adult erythroblasts derived from CD34+ cells of normal and thalassemic donors. We utilized an in vitro culture model of human erythropoiesis in which late stage erythroblasts are derived from human CD34+ hematopoietic cells. In this system, cytokine-mobilized peripheral blood or steady state bone marrow CD34+ cells from adults yielded erythroblasts containing 2% or less HbF. The lentiviral vector encodes for bicistronic expression of the GG1-VP64 transactivator and GFP under transcriptional control of the beta-spectrin or ankyrin-1 promoter which give low but progressive increase in expression during erythroid development. Three normal donor CD34+ cells were transduced 48 hours after initiation of culture by overnight exposure to the GG1-VP64 vector or GFP control vector. Approximately 50-60% of the cells were successfully transduced with the control and GG1-VP64 vectors as monitored by flow cytometry analysis for GFP expression. Control vector transduction had no effect on cell proliferation or differentiation monitored by consistent increases in cell numbers and the appearance of CD71 (transferrin receptor) and CD235 (glycophorin A) on most cells (>98% and >80%, respectively) whereas GG1-VP64 gene transfer reduced cell proliferation slightly without affecting erythroid differentiation. Erythroblasts derived from GFP transduced cells expressed low levels of HbF (1.7+/−0.6%) whereas those derived from cells transduced with GG1-VP64 demonstrated induction of HbF ranging from 12-21% with an average vector copy number of 0.8 to 1.0. When cells from a normal donor were sorted into GFP- and GFP+ populations, significant levels of HbF were present only in the GFP+ fraction. We next tested the GG1-VP64 transactivator in three independent studies using bone marrow CD34+ cells from two patients with beta-thalassemia major. Gene transfer was effective as reflected by 74+/−6% (control) and 47+/− 2% (GG1-VP64) GFP marking in bulk cultures. Again, GG1-VP64 gene transfer in beta-thalassemia CD34+ cells reduced cell growth somewhat but did not perturb erythroid differentiation as monitored by the appearance of transferrin receptor (>98%) and Glycophorin A (>80%) as well as cell morphology. Erythroblasts derived from GFP transduced cells expressed levels of HbF in the range of 26+/−5% whereas those derived from cells transduced with GG1-VP64 demonstrated a 2-fold induction of HbF to 52+/−9% with an average vector copy number of 0.5-0.9. Our data show that lentiviral-mediated, enforced expression of GG1-VP64 under the control of erythroid-specific promoters induced significant amounts of HbF in normal and thalassemic erythroblasts derived from adult CD34+ cells without altering their capacity for erythroid maturation following transduction. These observations demonstrate the potential for sequence specific enhancement of HbF in patients with beta-thalassemia or sickle cell anemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2817-2826 ◽  
Author(s):  
Andrew Wilber ◽  
Phillip W. Hargrove ◽  
Yoon-Sang Kim ◽  
Janice M. Riberdy ◽  
Vijay G. Sankaran ◽  
...  

Abstract β-Thalassemia major results from severely reduced or absent expression of the β-chain of adult hemoglobin (α2β2;HbA). Increased levels of fetal hemoglobin (α2γ2;HbF), such as occurs with hereditary persistence of HbF, ameliorate the severity of β-thalassemia, raising the potential for genetic therapy directed at enhancing HbF. We used an in vitro model of human erythropoiesis to assay for enhanced production of HbF after gene delivery into CD34+ cells obtained from mobilized peripheral blood of normal adults or steady-state bone marrow from patients with β-thalassemia major. Lentiviral vectors encoding (1) a human γ-globin gene with or without an insulator, (2) a synthetic zinc-finger transcription factor designed to interact with the γ-globin gene promoters, or (3) a short-hairpin RNA targeting the γ-globin gene repressor, BCL11A, were tested. Erythroid progeny of normal CD34+ cells demonstrated levels of HbF up to 21% per vector copy. For β-thalassemic CD34+ cells, similar gene transfer efficiencies achieved HbF production ranging from 45% to 60%, resulting in up to a 3-fold increase in the total cellular Hb content. These observations suggest that both lentiviral-mediated γ-globin gene addition and genetic reactivation of endogenous γ-globin genes have potential to provide therapeutic HbF levels to patients with β-globin deficiency.


Sign in / Sign up

Export Citation Format

Share Document