scholarly journals Haplo-Cord Transplantation Vs Unrelated Donor Stem Cell Transplantation in Patients with AML/MDS Older Than 50

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1235-1235 ◽  
Author(s):  
Joanna Rhodes ◽  
Koen van Besien ◽  
Hongtao Liu ◽  
Usama Gergis ◽  
Stephanie B. Tsai ◽  
...  

Abstract Haplo-cord Transplantation Vs Unrelated Donor Stem Cell Transplantation In Patients with AML/MDS older than 50 Between 2007 and 2013, 109 patients with AML/MDS who were 50 years and older and had no HLA- matched related donor underwent allogeneic hematopoietic stem cell transplant. 64 had an HLA identical unrelated donor and received fludarabine/melphalan/alemtuzumab conditioning and post transplant tacrolimus for graft vs host disease (GVHD) prophylaxis. 45 underwent haplo-cord (HC) SCT with fludarabine/melphalan/ thymoglobulin; post-transplant tacrolimus and MMF. We compared patient characteristics and transplant outcomes between both groups. (Table 1) Age distribution and ASBMT risk category were similar. There were more patient's with AML in the HC group. (P=0.01) Time to neutrophil recovery, treatment related mortality (TRM), relapse rate, progression free survival (PFS) and overall survival (OS) were nearly identical between the two groups. Time to platelet recovery was on average 5 days longer after HC (p=0.05) The incidences of acute and chronic GVHD were very low in both groups, in part due to the use of in-vivo T cell depletion. HC transplant with reduced intensity conditioning is a curative treatment for older patients with AML/MDS who lack HLA identical unrelated donors. Despite inclusion of many patients with high risk features, nearly two thirds were estimated to be alive one year after transplant and very few had chronic GVHD. Haplo-cord grafts are more readily available, a potential advantage over MUD grafts in situations where transplant is needed urgently. TableMatched Unrelated DonorHaplo Cord PN6445Age (range)62 (50-73)62 (50-74)AML/MDS45/2041/5 0.01ASBMTLow/Int /High21/6/3015/10/200.7KPS 9090Time to ANC >50010110.1Time to Plt >2018230.05PFS@ 1 Y (95% CI)46 (34-58)41 (26-56)0.6OS@ 1 Y (95% CI)57 (44-70)64 (49-79)0.8Cum Inc TRM @100 d (95% CI)9 (2-16)9 (0-18)0.2Cum Inc TRM @ 1 Y(95% CI)25 (14-36)29 (15-44)0.2Cum Inc Relapse @ 1Y (95% CI)30 (18-42)26 (12-40)0.5Cum Inc AGVHD @ 100 D (95% CI)25 (14-36)29 (13-43)0.7Cum Inc CGVHD @ 1 Y (95% CI)6 (0-12)7 (0-15)0.9 Disclosures van Besien: Miltenyi: Research Funding. Mark:Millennium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Onyx: Research Funding, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Artz:Miltenyi: Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2149-2149
Author(s):  
Romil Patel ◽  
Neeraj Y Saini ◽  
Ankur Varma ◽  
Omar Hasan ◽  
Qaiser Bashir ◽  
...  

Abstract Introduction: The role of autologous hematopoietic stem cell transplantation (auto-HCT) in the management of patients with Waldenström Macroglobulinemia (WM), a rare, indolent lymphoma, has not been established. We had previously published our experience with auto-HCT in a small cohort of WM patients1. Here, we present an updated analysis of auto-HCT with a larger cohort of WM patients. Methods and study population: The study cohort was comprised of 29 patients who underwent high-dose chemotherapy and auto-HCT at MD Anderson Cancer Center (MDACC). The Kaplan-Meier method was used to create survival curves. Overall survival (OS) was defined as the duration from date of transplant to death or last date of follow-up in living patients. Progression-free survival (PFS) was defined as the duration from date of transplant to either progressive disease or death, whichever occurred first. Results: Median age at auto-HCT was 60 (range, 43-75 years). Eight patients (28%) had concurrent light chain amyloidosis (AL). Of the five patients who had MYD88 testing completed, 3 were positive for the MYD88 mutation. Additionally, of these 3 patients, 2 were also positive for CXCR4 mutation. Patients received a median of 2 lines (range 1-6) of therapy prior to auto-HCT; 3(10%) patients had primary refractory disease, 8(28%) were in first remission, and 18 (62%) had relapsed disease. Median time from transplant to last follow-up for the surviving patients was 5.3 years. Preparative regimens received by the patients were: Melphalan (n=20), BEAM-R (n=2), Busulfan/Melphalan (n=1), Cyclophosphomaide/Etoposide/total body irradiation (n=1), Thiotepa/Busulfan/Cyclophosphamide (n=1), and Carmustine/Thiotepa (n=1). Three patients further went on to receive allogeneic transplant either after relapse from auto-HCT or due to disease transformation to aggressive lymphoma. Twenty-eight patients achieved engraftment with a median time to neutrophil engraftment of 11 days (range, 10-15 days). One patient suffered primary graft failure due to progression of disease and died 84 days after transplant. Non-relapse mortality was 3.4% at 1 year. All patients were eligible for response evaluation. The median OS from diagnosis was 12.2 years. Overall response rate was 96%: complete response (n=8, 27.6%), very good partial response (n=5, 17.3%), partial response (n=15, 51.7%), and progressive disease (n=1, 3.4%). PFS and OS at 5 years were 43.3% and 62.9%, respectively. Median PFS and OS from auto-HCT were 4.1 and 7.3 years (Fig. 1A). The median OS from auto-HCT in first remission + primary refractory and relapsed disease was 8.2 years and 4.1 years, respectively.16 patients were alive at the time of censoring while 13 patients had died. Causes of death include relapsed disease (n=6), secondary malignancy (n=2), infection (n=1), chronic graft-versus-host disease (n=1), and unknown (n=3). 8 patients (28%) were positive for concurrent AL amyloidosis. The sites of amyloid involvement were kidneys (n=2), lungs (n=1), bone marrow (n=1), heart(n=1), lymph nodes(n=1), gastrointestinal tract (n=1) and subcutaneous fat aspirate(n=5). The median overall survival for patients with amyloid involvement (n=8) was 12 years. On univariate analyses, the number of chemotherapy regimens prior to transplant (≤ 2 vs >2 lines) was the strongest predictor of overall survival (p=0.03, HR 0.3, CI: 0.09-0.9, log-rank) and PFS (p=0.001, HR 0.24, CI: 0.07-0.85, log-rank). The median PFS in patients with ≤ 2 lines and > 2 lines of therapy was 71 months versus 19 months, respectively (Fig. 1B). Conclusion: Auto-HCT is safe and feasible in selected patients with WM, with a high response rate and durable remission even in patients with relapsed or refractory disease. References: Krina Patel et.al. Autologous Stem Cell Transplantation in Waldenstrom's Macroglobulinemia. Blood 2012 120:4533; Disclosures Thomas: Celgene: Research Funding; Bristol Myers Squibb Inc.: Research Funding; Acerta Pharma: Research Funding; Array Pharma: Research Funding; Amgen Inc: Research Funding. Lee:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies Corporation: Consultancy; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Chugai Biopharmaceuticals: Consultancy; Takeda Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; Kite Pharma: Consultancy, Membership on an entity's Board of Directors or advisory committees. Orlowski:Takeda: Consultancy; Celgene: Consultancy; Spectrum Pharma: Research Funding; Janssen: Consultancy; Kite Pharma: Consultancy; Sanofi-Aventis: Consultancy; BioTheryX: Research Funding; Amgen: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy. Champlin:Otsuka: Research Funding; Sanofi: Research Funding. Patel:Poseida Therapeutics, Inc.: Research Funding; Takeda: Research Funding; Abbvie: Research Funding; Celgene: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4496-4496 ◽  
Author(s):  
Luke Eastburg ◽  
David A. Russler-Germain ◽  
Ramzi Abboud ◽  
Peter Westervelt ◽  
John F. DiPersio ◽  
...  

The use of post-transplant cyclophosphamide (PTCy) in the context of haploidentical stem cell transplant (haplo-SCT) has led to drastically reduced rates of Graft-vs-Host (GvH) disease through selective depletion of highly allo-reactive donor T-cells. Early trials utilized a reduced-intensity Flu/Cy/TBI preparative regimen and bone marrow grafts; however, relapse rates remained relatively high (Luznik et al. BBMT. 2008). This led to the increased use of myeloablative (MA) regimens for haplo-SCT, which have been associated with decreased relapse rates (Bashey et al. J Clin Oncol. 2013). Most studies have used a MA total body irradiation (TBI) based regimen for haplo-SCT. Preparative regimens using fludarabine and melphalan (FluMel), with or without thiotepa, ATG, and/or low dose TBI have also been reported using bone marrow grafts. Reports on the safety and toxicity of FluMel in the haplo-SCT setting with PTCy and peripheral blood stem cell (PBSC) grafts are lacking. In this two-center retrospective analysis, the safety/toxicity of FluMel as conditioning for haplo-SCT was evaluated. We report increased early mortality and toxicity using standard FluMel conditioning and PBSC grafts for patients undergoing haplo-SCT with PTCy. 38 patients at the University of Rochester Medical Center and the Washington University School of Medicine underwent haplo-SCT with FluMel conditioning and PBSC grafts between 2015-2019. Outcomes were measured by retrospective chart review through July 2019. 34 patients (89.5%) received FluMel(140 mg/m2). Two patients received FluMel(100 mg/m2) and two patients received FluMel(140 mg/m2) + ATG. The median age at time of haplo-SCT was 60 years (range 21-73). 20 patients were transplanted for AML, eight for MDS, two for PMF, two for NHL, and five for other malignancies. The median Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI) score was 4 (≥3 indicates high risk). 11 patients had a history of prior stem cell transplant, and 16 patients had active disease prior to their haplo-SCT. Seven patients had sex mismatch with their stem cell donor. Median donor age was 42 (range 21-71). 20 patient deaths occurred by July 2019 with a median follow up of 244 days for surviving patients. Nine patients died before day +100 (D100, "early mortality"), with a D100 non-relapse mortality (NRM) rate of 24%. Median overall and relapse free survival (OS and RFS, respectively) were 197 days (95% CI 142-not reached) and 180 days (95% CI 141-not reached), respectively, for the entire cohort. The 1 year OS and NRM were 29% and 50%. The incidence of grades 2-4cytokine release syndrome (CRS) was 66%, and 52% of these patients were treated with tocilizumab. CRS was strongly associated with early mortality, with D100 NRM of 36% in patients with grade 2-4 CRS compared to 0% in those with grade 0-1. The incidence of acute kidney injury (AKI) was 64% in patients with grade 2-4 CRS, and 8% in those without (p < 0.001). 28% of patients with AKI required dialysis. Grade 2-4 CRS was seen in 54% of patients in remission prior to haplo-SCT and in 92% of those with active disease (p = 0.02). Of the 9 patients with early mortality, 89% had AKI, 44% needed dialysis, and 100% had grade 2-4 CRS, compared to 31%, 10%, and 55% in those without early mortality (p = 0.002, p = 0.02, p = 0.01). Early mortality was not significantly associated with age, HCT-CI score, second transplant, disease status at transplant, total dose of melphalan, volume overload/diuretic use, or post-transplant infection. In conclusion, we observed a very high rate of NRM with FluMel conditioning and PBSC grafts for haplo-SCT with PTCy. The pattern of toxicity was strongly associated with grade 2-4 CRS, AKI, and need for dialysis. These complications may be mediated by excessive inflammation in the context of allo-reactive donor T-cell over-activation. Consistent with this, multiple groups have shown that FluMel conditioning in haplo-SCT is safe when using bone marrow or T-cell depleted grafts. Based on our institutional experiences, we would discourage the use of FluMel as conditioning for haplo-SCT with PTCy with T-cell replete PBSC grafts. Alternative regimens or variations on melphalan-based regimens, such as fractionated melphalan dosing or inclusion of TBI may improve outcomes but further study and randomized controlled trials are needed. This study is limited in its retrospective design and sample size. Figure Disclosures DiPersio: WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Karyopharm Therapeutics: Consultancy; Magenta Therapeutics: Equity Ownership; Celgene: Consultancy; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; NeoImmune Tech: Research Funding; Amphivena Therapeutics: Consultancy, Research Funding; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liesveld:Onconova: Other: Data safety monitoring board; Abbvie: Membership on an entity's Board of Directors or advisory committees.


Author(s):  
Drew Provan ◽  
Trevor Baglin ◽  
Inderjeet Dokal ◽  
Johannes de Vos ◽  
Hassan Al-Sader

Haemopoietic stem cell transplantation (SCT) - Indications for haemopoietic SCT - Allogeneic SCT - Autologous STC - Investigations for BMT/PBSCT - Pretransplant investigation of donors - Bone marrow harvesting - Peripheral blood stem cell mobilization and harvesting - Microbiological screening for stem cell cryopreservation - Stem cell transplant conditioning regimens - Infusion of cryopreserved stem cells - Infusion of fresh non-cryopreserved stem cells - Blood product support for SCT - Graft-versus-host disease (GvHD) prophylaxis - Acute GvHD - Chronic GvHD - Veno-occlusive disease (syn. sinusoidal obstruction syndrome) - Invasive fungal infections and antifungal therapy - CMV prophylaxis and treatment - Post-transplant vaccination programme and foreign travel - Longer term effect post-transplant - Treatment of relapse post-allogeneic SCT - Discharge and follow-up


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5080-5080
Author(s):  
Mehdi Hamadani ◽  
Patrick Elder ◽  
Farrukh Awan ◽  
David Krugh ◽  
William Blum ◽  
...  

Abstract Reduced intensity conditioning (RIC) regimens are increasingly used for allogeneic stem cell transplantation (allo-SCT) in patient groups with relative contraindications for transplantation since they promote effective engraftment of donor cells with minimal regimen related toxicity. However, following unrelated donor (URD) transplantation, high rates of acute and extensive chronic GVHD have mitigated the overall benefits of this approach. We pursued a strategy designed to enhance early full donor hematopoietic chimerism while potentially reducing the risk of severe acute and extensive chronic GVHD using an RIC regimen containing fludarabine (F), busulfan (B), rabbit antithymocyte globulin (A) (FBA) followed by URD SCT in 30 consecutive high risk patients (pts). Criteria for selection included advanced age (>55yrs), prior autograft, and/or high co-morbidity index (median 2, range 0–4). There were 24 male and 6 female pts with a median age of 53 years (range 22–66yrs). Diagnoses included AML (N=10), NHL (N=7), Hodgkin’s lymphoma (N=6), advanced CML (N=4), and advanced CLL (N=4). Nine pts had previously undergone autologous SCT. 43% had a Karnofsky performance status of 70 or 80% at the time of transplant. 80% were matched with their donor at HLA-A, B, C, and DRB1 by high-resolution DNA typing, while 3 were mismatched at 1 antigen and 3 mismatched at 1 or 2 alleles. All pts were conditioned with F (30 mg/m2/day, days −7 to −3), B (0.8 mg/kg/dose IV x 8 doses) and A (2.5 mg/kg/day, days −4 to −2) followed by micro-dose methotrexate and tacrolimus. Stem cell source included peripheral blood (n=26) or bone marrow (n=4). All pts engrafted neutrophils and platelets promptly (median 15 and 16 days, respectively). There were no primary graft failures. Rates of grade II-IV and III-IV acute GVHD were 43% (n=13) and 23% (n=7) respectively. Nine pts (30%) developed chronic GVHD but extensive chronic GVHD was seen in only 10% (n=3). Day 100 TRM was 10% (n=3). Causes of death included disease progression=2, post-transplant lymphoproliferative disorder (PTLD) =1 and sepsis=1. CMV and EBV reactivation occurred in 30% (n=9) and 20% (n=6) respectively. 2 pts developed PTLD requiring rituximab. Three pts had BK-virus associated hemorrhagic cystitis. Lineage-specific chimerism analysis showed 100% donor CD33+ at all time points (days 30, 60, 100) and median donor CD3+ chimerism of 94% at day +30 and 100% at day +100. One patient had secondary graft failure. 23 pts (76%) were in CR after SCT. The median follow-up of surviving patients is 6 months (range 1–32 months). Kaplan-Meier estimates of overall survival (OS) and progression free survival (PFS) at 1year are 62% and 43% respectively. Using the Log-Rank test, OS (P=0.95) and PFS (P=0.65) was not statistically significant between recipients of matched and mismatched grafts. In conclusion, this approach using FBA and a tacrolimus based GVHD prophylaxis achieved rapid donor chimerism and a favorably low incidence of TRM, acute, and chronic GVHD despite being tested in a poor risk group of pts. Although rates of infectious complications were within expected ranges, the rate of both EBV reactivation and disease relapse warrant further exploration of this approach using lower doses of ATG (e.g. 5–6mg/kg total dose) combined with post transplant immunomodulation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3077-3077
Author(s):  
Sascha Dietrich ◽  
Damien Roos-Weil ◽  
Ariane Boumendil ◽  
Emanuelle Polge ◽  
Jian-Jian Luan ◽  
...  

Abstract Abstract 3077 Blastic plasmacytoid dendritic cell neoplasm (BPDC), formerly known as blastic NK cell lymphoma, is a rare hematopoietic malignancy preferentially involving the skin, bone marrow and lymph nodes. The overall prognosis of BPDC is dismal. Most patients show an initial response to acute leukemia-like chemotherapy, but relapses with subsequent drug resistance occur in virtually all patients resulting in a median overall survival of only 9–13 months. However, anecdotal long-term remissions have been reported in young patients who received early myeloablative allogeneic stem cell transplantation (alloSCT). We therefore performed a retrospective analysis of patients identified in the EBMT registry in order to evaluate the outcome of autologous stem cell transplantation (autoSCT) or alloSCT for BPDC. Eligible were all patients who had been registered with a diagnosis of BPDC or Blastic NK cell lymphoma and had received autologous stem cell transplantation (autoSCT) or alloSCT in 2000–2009. Centres were contacted to provide a written histopathology and immunophenotyping report and information about treatment and follow-up details. Patients who did not have a diagnostic score ≥ 2 as proposed by Garnache-Ottou et al. (BJH 2009) were excluded. RESULTS: Overall, 139 patients could be identified in the database who fulfilled the inclusion criteria (alloSCT 100, autoSCT 39). Of 74 patients for whom the requested additional information could be obtained, central review confirmed the diagnosis of BPDC in 39 patients (34 alloSCT, 5 autoSCT). The 34 patients who had undergone alloSCT had a median age of 41 years (range: 10–70 years), were transplanted from a related (n=11) or unrelated donor (n=23); received peripheral blood stem cells (n=9), bone marrow stem cells (n=19) or cord blood (n=6); and had been treated with a reduced intensity conditioning regimen (RIC, n=9) or myeloablative conditioning (MAC, n=25). Nineteen of 34 patients were transplanted in CR1. After a median follow up time of 28 months (range: 4–77+ months), 11 patients relapsed (median time to relapse: 8 months, range: 2–27 months) of whom 8 died due to disease progression. 9 patients died in the absence of relapse. No relapse occurred later than 27 months after transplant. Median disease free survival (DFS) was 15 months (range: 4–77+ months) and median overall survival (OS) was 22 months (range: 8–77+ months; Figure 1a). However, long-term remissions of up to 77 months after alloSCT could be observed. Patients allografted in CR1 tended to have a superior DFS (p=0.119) and OS (p=0.057; Figure 1b). MAC was associated with a better OS (p=0.001) which was attributable to the significantly higher non-relapse mortality (NRM) rate of patients after RIC (p=0.014), who had been significantly older (age RIC: 56 years, age MAC: 36 years, p=0.0014). The relapse rate was not different in patients after RIC and MAC, respectively. However, there was no survivor after RIC. Median age in the autoSCT group was 47 years (range: 14–62 years). Three of 5 patients were transplanted in CR1 of whom 1 patient relapsed after 8 months, 1 patient experienced treatment related mortality and 1 patient remained in CR for 28 months. The 2 remaining patients had more advanced disease at autoSCT and relapsed 4 and 8 months thereafter. CONCLUSION: AlloSCT is effective in BPDC and might provide curative potential in this otherwise incurable disease, especially when performed in CR1. However, it remains to be shown by prospective studies if the potential benefit of alloSCT in BPDC is largely due to conditioning intensity, or if there is a relevant contribution of graft-versus-leukemia activity. Disclosures: Tilly: Seattle Genetics, Inc.: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau, Travel/accommodations/meeting expenses; Genentech: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Research Funding, Speakers Bureau; Pfizer: Speakers Bureau; Janssen Cilag: Speakers Bureau.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4218-4218 ◽  
Author(s):  
Jacalyn Rosenblatt ◽  
Irit Avivi ◽  
Noam Binyamini ◽  
Lynne Uhl ◽  
Poorvi Somaiya ◽  
...  

Abstract Autologous stem cell transplantation (ASCT) for multiple myeloma (MM) offers a unique setting to incorporate immunotherapy in an effort to target residual disease. Our group has developed a cancer vaccine in which dendritic cells (DCs) are fused to autologous tumor cells resulting in the presentation of multiple tumor antigens with the capacity to elicit a broad anti-tumor response. A fundamental challenge to developing a more effective tumor vaccine is overcoming the immunosuppressive milieu by which tumor cells evade host immunity. Up-regulation of the PD-1/PDL1 pathway represents a key element contributing to tumor-mediated tolerance, and potentially muting response to vaccination. We are conducting a clinical trial in which patients with MM are treated with an anti-PD1 antibody (Pidilizumab, MDV9300) in combination with a dendritic cell/myeloma fusion cell vaccine following autologous transplantation. 22 patients have been treated with post-transplant immunotherapy. Mean age was 64. MM cells were isolated from bone marrow and were identified by expression of CD38 or CD138. Mean tumor cell yield was 118x106 cells. Adherent mononuclear cells were isolated from leukapheresis collections and cultured with GM-CSF and IL-4 for 5-7 days, then exposed to TNFα for 48-72 hours to generate mature DCs. DCs expressed co-stimulatory (mean CD86 75%) and maturation markers (mean CD83 50%). DC and MM cells were co-cultured with PEG and fusion cells were quantified by determining the percentage of cells that co-express unique DC and myeloma antigens. Mean fusion efficiency was 41% and the mean cell dose generated was 4 x 106 fusion cells. Mean viability of the DC, myeloma, and fusion preparations was 92%, 89%, and 85%, respectively. As a measure of their potency as antigen presenting cells, DC/MM fusions potently stimulate allogeneic T cell proliferation ex-vivo (Mean stimulation index of 1.9, 9.2 and 7.1 for tumor, DC and DC/myeloma fusions respectively, n=21) Post-transplant immunotherapy was initiated after recovery from transplant-related toxicities. Median time from transplant to initiation of post-transplant immunotherapy was 80 days. Patients received 3 doses of Pidilizumab at 6-week intervals. DC/myeloma fusion cells vaccination is administered 1 week before each dose of Pidilizumab. To date, 22 patients have completed vaccinations and Pidilizumab. Adverse events judged to be potentially treatment related included grade 1-2 diarrhea, arthralgias, myalgias, fatigue, headache, nausea, chills, transaminitis, cytopenia, elevated TSH, and vaccine site reactions. A significant increase in circulatingtumor reactive lymphocytes was noted following post-transplant immunotherapy, as determined by T cell expressionof IFN-γ by CD8 cells following ex-vivo co-culture withautologous myeloma cell lysate. Mean percentage of tumor reactiveCD8 cells increased from 1.8% post-transplant to a peak of 9.16% following immunotherapy. In the post-transplant period, regulatory T cells fell to minimal levels and remained low throughout the period of immunotherapy. 6 patients achieved a best response of VGPR, 6 patients have achieved a nCR/CR, including 3 who converted to CR following immunotherapy. Median PFS from transplant is 19 months with ongoing follow up. In summary, DC/MM fusion cell vaccination in conjunction with PD1 blockade following ASCT was well tolerated, potently induced anti-tumor immunity, and in a subset of patients, resulted in the eradication of post-transplant measurable disease. Disclosures Richardson: Gentium S.p.A.: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium Takeda: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees. Laubach:Novartis: Research Funding; Onyx: Research Funding; Celgene: Research Funding; Millennium: Research Funding. Anderson:Celgene: Consultancy; Millennium: Consultancy; BMS: Consultancy; Gilead: Consultancy; Oncopep: Equity Ownership; Acetylon: Equity Ownership. Rowe:BioSight Ltd.: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy; BioLineRx Ltd.: Consultancy. Kufe:Genus Oncology: Consultancy, Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4833-4833
Author(s):  
Mateo Mejia Saldarriaga ◽  
Yassine Tahri ◽  
Sangmin Lee ◽  
Zhengming Chen ◽  
Tsiporah B. Shore ◽  
...  

Abstract Introduction: Acute myeloid leukemia (AML) is heterogenous disease with a range of cytogenetic and molecular changes. Several molecular mutations identified in AML patients at diagnosis have prognostic implications and play important roles in guiding induction and consolidative treatment decisions. The prognostic impact of mutations peri allogeneic stem cell transplant are less well characterized. In this study, we examine the significance of pre and by D100 Post-transplant mutation status in AML patients underwent Fludarabine/Melphalan conditioned reduced intensity allogeneic stem cell transplant (SCT). Methods: AML patients who are in morphologic complete remission (CR1 or greater) with available molecular mutation at diagnosis, within 6 weeks prior to allogeneic SCT, and by 100 days post-transplant were included. Variables analyzed included baseline demographics, clinical variables (CIBMTR disease risk index (DRI), type of transplant, ELN risk, performance status) and 23 recurring molecular mutations. Analysis was also performed by grouping mutations into six pre-defined gene groups based on gene function (Table 2). Multivariable cox regression analysis was adjusted for age, gender, DRI and molecular mutation. Backward selection method was used to select the best combination of genes that is associated with overall survival (OS) and relapse-free survival (RFS). Results : A total of 142 AML patients with molecular genetic data available from 2014 to June, 2020 at Weill Cornell Medicine/New York Presbyterian Hospital were analyzed. Clinical characteristics of the patients are summarized in Table 1. The median age was 58 years (range 20 -78). Total of 261 mutations were detectable at diagnosis (Table 3). Prior to allo SCT and by D100, the detectable mutations were 87 and 40 respectively, which represent 56 and 26 patients. High-dose chemotherapy was less effective on clearing DNMT3A, ASXL1, TET2 (DAT) or IDH mutations, resulting in over-representation of DAT and IDH mutations prior to transplant. With a median follow-up time of 25 months, the median overall survival for the group was 40.8 months. The presence of mutations in TP53 at diagnosis was associated with worse OS by both univariate (HR 3.67, p=0.0030, CI 1.56-8.68) and multivariate analysis (HR 4.75, p=0.0014, CI 1.82-12.39) with median OS reduced from 49.3 to 19.3 months (p=0.002). High CIBMTR DRI (HR 0.17, p=0.0018, CI 0.05-0.51) predicted reduced OS and RFS, and Age &gt;60 at diagnosis was associated with worse OS (HR 1.7 CI 1.04-3, p 0.03). Presence of any molecular mutation prior to transplant did not impact OS or RFS. For patients with any persistent mutations by D100 post-transplant, both OS ( HR 2.04, p 0.027, CI 1.08-3.8) and RFS (HR 1.99, p 0.025, CI 1.09-3.6,) were reduced in the univariate analysis, but not on multivariate analysis (HR 1.88, p 0.5, CI 0.99-3.49). Analysis based on six mutational groups (table 2) did not show any difference in their OS or RFS. However, worse RFS was independently associated with persistent IDH1 (HR 3.8, p 0.004, CI 1.07-56,), TET2 (HR 3.9, P 0.04, CI 1.04-14.1), and FLT3-ITD (HR 4.5, p 0.01, CI 1.7-52). Worse OS was independently associated with persistent TET2 (HR 3.9, p 0.013, CI 1.04-14.1), with a trend towards worse OS for IDH1, FLT3-ITD, with a trend towards worsening OS and RFS for ASXL1 (OS HR 7.4, p 0.06, CI 0.86 -63; RFS HR 4.9, p 0.06, CI 0.9-26) and DNMT3A (OS HR 2.3, p 0.12, CI 0.86-6.9; RFS 2.9, p 0.08, CI 0.98-8). Association with worse clinical outcomes remained significant after multivariate analysis for TET2 (both OS HR 3.98 p 0.041, CI1.07- 32 and RFS HR 5.8, p 0.032, CI 1.1- 29), IDH1 (RFS HR 8.02, p 0.049, CI 1.02 - 65) and FLT3-ITD (RFS HR 11.4, p0.010, CI 2.2- 80). Conclusions: Presence of TP53 mutations was associated with worse OS. Presence of pre-transplant mutation did not impact RFS or OS. Persistent presence of mutations in TET2, IDH1 and FLT3-ITD after Fludarabine/melphalan conditioning regimen allogeneic SCT were associated with shorter RFS and OS (in the case of TET2) independent of CIBMTR DRI. This analysis supports association of adverse outcomes in AML patients with selected persistent mutations by D100 post-transplant in reduced intensity transplant setting. Post-transplant strategies that can further eliminate persistent mutations should be investigated in prospective studies. Figure 1 Figure 1. Disclosures Lee: Pin Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Innate: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Consultancy, Membership on an entity's Board of Directors or advisory committees. Desai: Kura Oncology: Consultancy; Bristol Myers Squibb: Consultancy; Agios: Consultancy; Takeda: Consultancy; Janssen R&D: Research Funding; Astex: Research Funding. Ritchie: Protaganist: Consultancy, Honoraria; Incyte: Consultancy, Honoraria, Speakers Bureau; Celgene/BMS: Consultancy, Other: travel support, Speakers Bureau; Bristol Myers Squibb: Consultancy, Research Funding; ARIAD Pharmaceuticals: Ended employment in the past 24 months, Speakers Bureau; Novartis: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria; Astellas: Consultancy, Research Funding; NS Pharma: Research Funding; Abbvie: Consultancy, Honoraria; Jazz: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding. Roboz: MEI Pharma - IDMC Chair: Consultancy; Daiichi Sankyo: Consultancy; Helsinn: Consultancy; Jazz: Consultancy; Bristol Myers Squibb: Consultancy; Glaxo SmithKline: Consultancy; Novartis: Consultancy; Janssen: Consultancy; Otsuka: Consultancy; Celgene: Consultancy; Mesoblast: Consultancy; Blueprint Medicines: Consultancy; Jasper Therapeutics: Consultancy; AbbVie: Consultancy; Actinium: Consultancy; Agios: Consultancy; Amgen: Consultancy; Astex: Consultancy; Astellas: Consultancy; AstraZeneca: Consultancy; Bayer: Consultancy; Janssen: Research Funding; Pfizer: Consultancy; Roche/Genentech: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5784-5784
Author(s):  
Guido Lancman ◽  
Kathleen Miller ◽  
Shuli Li ◽  
Vincent T. Ho ◽  
Amir T. Fathi ◽  
...  

Abstract Introduction: Ruxolitinib was the first JAK 1/2 inhibitor (JAKi) approved for myelofibrosis (MF), with several other JAKi in development. Ruxolitinib was approved on the basis of reducing splenomegaly and improving constitutional symptoms, but its effect on subsequent allogeneic stem cell transplantation (SCT) is not well understood. Retrospective studies to date have reported mixed outcomes after SCT for MF patients with previous exposure to JAKi. In this multicenter retrospective study, we report on outcomes of patients with MF treated with SCT at our institutions. Methods: We analyzed outcomes for 184 consecutive patients at three institutions who underwent SCT for primary or secondary MF. Primary outcomes included overall survival (OS), progression free survival (PFS), and graft-versus-host-disease (GVHD)-free and relapse-free survival (GRFS), all measured from the time of SCT. Cox proportional hazard regressions were fit to estimate the association between the use of JAK 1/2 inhibitors prior to SCT and OS, PFS, and GRFS, adjusting for donor type and DIPSS-plus status. p<0.05 was considered statistically significant. Results: 72 patients received a JAKi prior to SCT, while 112 did not. Patients in these two groups were well-matched with respect to age, sex, DIPSS plus score, conditioning, and donor type (Table 1). Median follow-up was 31.2 months (range: 0.8-146.3 months). In univariate analysis, there was no difference in OS (JAKi: 4-yr OS 56.7% [95% CI 40.9-69.8%] vs. no JAKi: 43.6% [95% CI 32.9-53.9%], p=0.49), PFS (JAKi: 4 yr PFS 54.1% [95% CI 40.8-65.7%] vs. no JAKi: 43.9% [95% CI 33.4-53.9%], p=0.77), or GRFS (JAKi: 8-month GRFS 56.6% [95% CI 44.1-67.4%] vs. no JAKi: 50.4% [95% CI 40.4-59.5%], p=0.62) in the overall population; there was similarly no difference when comparing only intermediate-risk or only high-risk patients. In multivariate analysis, there was no difference in these outcomes for patients based on previous JAKi exposure when accounting for DIPSS plus score and donor type (related vs unrelated). Rates of acute GVHD were similar between the two groups (JAKi: 53.5% vs. no JAKi: 55.0%, p=0.88), including grade 3 or 4 acute GVHD (JAKi: 16.9% vs no JAKi: 19.8%, p=0.70). Conclusions: Our data suggest that there is no statistically significant difference in OS, PFS, GRFS, or rates of acute GVHD after SCT for MF patients based on previous JAKi treatment. This was true overall and after adjusting for DIPSS plus risk score or donor type. Given the retrospective design of our study, we were not able to assess prior response to JAKi or splenomegaly at SCT, which may influence outcomes. Given mixed results in the literature to date, we eagerly await the results of ongoing phase 2 trials of JAKi prior to SCT for MF. Disclosures Ho: Jazz Pharmaceuticals: Consultancy. Fathi:Astellas: Honoraria; Jazz: Honoraria; Boston Biomedical: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Agios: Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Seattle Genetics: Consultancy, Honoraria. Chen:Takeda Pharmaceuticals: Consultancy; Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees; Magenta Therapeutics: Consultancy; REGiMMUNE: Consultancy. Hoffman:Formation Biologics: Research Funding; Incyte: Research Funding; Janssen: Research Funding; Merus: Research Funding; Summer Road: Research Funding. Mascarenhas:Novartis: Research Funding; Merck: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding; Promedior: Research Funding; Janssen: Research Funding; Roche: Research Funding; CTI Biopharma: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3324-3324
Author(s):  
Satyajit Kosuri ◽  
Sang Mee Lee ◽  
Hongtao Liu ◽  
Mylove Mortel ◽  
Lucy A Godley ◽  
...  

Background: Survival in patients (pts) with relapsed/refractory (R/R) acute myeloid leukemia (AML) and high risk myelodysplastic syndrome (MDS) is dismal. Treatment options are limited; however, a proportion of these individuals can be rescued by allogeneic stem cell transplantation (allo-SCT). Historically, allo-SCT, especially for R/R myeloid diseases, has used myeloablative regimens and no T-cell depletion (TCD) to maximize graft-versus-leukemia effect, often restricting this approach to younger and fit pts with matched donors. The aim of this study was to investigate outcomes of in vivo T-cell depleted stem cell transplantation (TCD-SCT) in a high-risk AML and MDS population. Methods: We performed a retrospective analysis of 141 patients with R/R AML (n=108)/high risk MDS (RAEB or CMML, n=33) who received TCD-SCT at our center from 2002-2015. Median age was 55 years (18-71) with 37 (26%) pts older than 60. Patients underwent in vivo TCD with alemtuzumab or ATG and 117 (88%) received reduced-intensity conditioning (RIC). Alemtuzumab was generally given as 100 mg total divided over 5 days whereas rabbit ATG dosing included days -1, - 3, -5 (+/- on day -7). Alemtuzumab usually partnered with matched related (n=65; 46%) or unrelated (n=53; 38%) peripheral blood stem cell (PBSC) grafts whereas ATG mostly was a component of umbilical cord grafts combined with a CD34 selected haploidentical donor (haplo-cord) (n=23; 16%). Prognostic factors such as age, HCT-CI, CIBMTR score (Duval 2010), revised disease risk index (R-DRI), donor type and pre-transplant disease status were analyzed. Multivariate cox regression models were considered from forward selection for factors with a p value <0.1 in univariate analysis. Results: Table 1 summarizes baseline characteristics. Among the 141 R/R AML or high risk MDS pts, AML predominated (77%). Sixty six (47%) pts had primary induction failure (PIF), 42 (37%) had relapse and 33 (23%) had high risk MDS. Eighty three pts (59%) had peripheral blasts at time of TCD-SCT. Cumulative incidence (CI) of relapse for all pts was 53% and non-relapse mortality was 28% at 2 yrs. Two and 5 yr PFS rates for the group were 19% and 11%, respectively. Two and 5 yr OS rates for the group were 30% and 18%, respectively. Figure 1 shows OS by disease type. Day 100 mortality was 18%. Twenty one percent developed Grade 2-4 acute GVHD (aGVHD) (6% Grade 3-4), and only 5% developed chronic GVHD (cGVHD) requiring therapy. Figure 2 shows CI of cGVHD amongst disease types. Differences in 2yr survival outcomes were not significant among prognostic factors. Specifically, age 60+ vs younger was not prognostic (PFS 24% vs 17% p=0.4, OS 29% vs 29% p=0.7). Likewise, haplo-cord did not differ relative to matched donors in outcomes (PFS 18% vs 26% p=0.2, OS 35% vs 29% p=0.5). Conclusions: Although novel therapeutic approaches are emerging for R/R AML and high risk MDS, allo-SCT remains an established option for long-term disease control. In our analysis, outcomes after in vivo TCD-SCT in R/R AML and high-risk MDS pts treated with RIC mirror published historical results (Duval 2010, Schlenk 2010) but with low rates of cGVHD. The lack of significant difference in survival outcomes amongst age groups and donor sources suggests RIC with in vivo TCD can also be utilized as a platform in older individuals and those with alternative donors. With high relapse rates in this population, better pre-transplant disease reduction, minimal residual disease monitoring and post-transplant maintenance will be critical to increase long-term cures. Disclosures Liu: Agios: Honoraria; Arog: Other: PI of clinical trial; BMS: Research Funding; Karyopharm: Research Funding; Novartis: Other: PI of clinical trial. Larson:Novartis: Honoraria, Other: Contracts for clinical trials; Agios: Consultancy; Celgene: Consultancy. Odenike:Oncotherapy: Research Funding; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Research Funding; Astra Zeneca: Research Funding; Astex Pharmaceuticals: Research Funding; NS Pharma: Research Funding; Gilead Sciences: Research Funding; Janssen Oncology: Research Funding; Agios: Research Funding; CTI/Baxalta: Research Funding. Stock:Kite, a Gilead Company: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Daiichi: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; UpToDate: Honoraria; Research to Practice: Honoraria. Kline:Merck: Honoraria; Merck: Research Funding. Riedell:Bayer: Honoraria, Speakers Bureau; Kite/Gilead: Honoraria, Research Funding, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Verastem: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding. Van Besien:Miltenyi Biotec: Research Funding. Bishop:Kite: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Consultancy, Membership on an entity's Board of Directors or advisory committees; CRISPR Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Artz:Miltenyi: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2858-2858
Author(s):  
Takahide Ara ◽  
Yuta Hasegawa ◽  
Hiroyuki Ohigashi ◽  
Souichi Shiratori ◽  
Atsushi Yasumoto ◽  
...  

Abstract [Introduction] Cytomegalovirus (CMV) infection is a common viral infection in recipients of allogeneic hematopoietic stem cell transplantation (allo-SCT). Early CMV reactivation after allo-SCT is associated with worse non-relapse mortality (NRM) and overall survival (OS). Recently, T-cell replete HLA-haploidentical SCT using post-transplant cyclophosphamide (PTCy-haplo SCT) has been developed and spread rapidly worldwide. Rationale of this strategy is assumed to be selective and cytotoxic depletion of alloreactive T cells which are responsible for graft-versus-host disease (GVHD), while preserving non-alloreactive T cells which can contribute to fight infections. However, recent studies showed that PTCy-haplo SCT was associated with the increased incidence of CMV infection. Letermovir (LET), a novel anti-CMV agent, which inhibits the CMV DNA terminase complex, was approved for the prevention of CMV reactivation in allo-SCT recipients in 2018 in some countries including Japan based on the result of a phase 3 trial. Our facility performs LET prophylaxis in allo-SCT recipient if either donor or recipient is seropositive CMV. Although LET is effective for the prevention of CMV reactivation in allo-SCT recipients, the clinical effectiveness of LET prophylaxis in PTCy-haplo SCT is not well elucidated. Based on these things, we retrospectively evaluated the efficacy of LET prophylaxis in PTCy-haplo SCT. [Methods] We retrospectively analyzed consecutive 99 recipients who received PTCy-haplo SCT at Hokkaido University Hospital from March 2013 to March 2021. We compared the cumulative incidence of CMV reactivation between the LET prophylaxis group (LET group, 33 patients) and LET non-prophylaxis group (non-LET group, 66 patients). LET was initiated on the day 0 at a dosage of 480mg daily. All patients were monitored for CMV reactivation by using the anti-CMV pp65 monoclonal antibody HRP-C7 assay at least once a week from the time of engraftment. CMV reactivation was defined as the detection of CMV antigen positive cells per 50000 white blood cells, whereas CMV disease was defined by organ dysfunction attributable to CMV. [Results] As baseline patient's characteristics were summarized in Table1, there were no difference between LET and non-LET group in terms of age, sex, underlying disease, disease risk at transplantation, prior transplantation, conditioning intensity, and CMV serostatus. All patients received peripheral blood stem cell transplantation. GVHD prophylaxis consisted of Cy (40-50 mg/kg on day 3 and 4), tacrolimus (from day 5), and mycophenolate mofetil (from day 5). The cumulative incidence of CMV reactivation at 150 days after transplantation in LET group was significantly lower than that in non-LET group (30.3% versus 69.7%; P &lt;.001, Figure1A). Importantly, CMV disease were occurred in three patients without LET prophylaxis (gastritis, enteritis, and retinitis), but not in the patients with LET prophylaxis. The cumulative incidence of NRM at 1 year was similar between the patients with and without LET prophylaxis (17.6% versus 9.2%; P=0.366, Figure1B), as was OS at 1 year (71.5% versus 69.4%; P=0.801, Figure1C). Neutrophil engraftment was achieved in 32 patients (97%) at a median of 15 days in LET group and 64 patients (97%) at a median of 14.5 days in non-LET group (P=0.243). Furthermore, platelet engraftment was achieved in 26 patients (79%) at a median of 34 days in LET group and 57 patients (86%) at a median of 31 days in non-LET group (P=0.282). These findings suggest that LET does not affect engraftment. Interestingly, the length of hospitalization in the LET group was significantly shorter than that in non-LET group (the median, 59.5 days versus 71 days; P=0.0488), suggesting that LET suppresses CMV reactivation leading to early discharge. [Conclusion] To our best knowledge, this is the largest retrospective study about the efficacy of LET in PTCy-Haplo SCT. LET is effective for prevention of CMV reactivation in PTCy-haplo SCT. Further studies focused on the long term effect of LET prophylaxis in PTCy-haplo SCT, such as the incidence of relapse and chronic GVHD, is warranted. Figure 1 Figure 1. Disclosures Nakagawa: AbbVie GK: Research Funding; Takeda Pharmaceutical Company: Research Funding. Teshima: Gentium/Jazz Pharmaceuticals: Consultancy; Merck Sharp & Dohme: Membership on an entity's Board of Directors or advisory committees; Pfizer Inc.: Honoraria; Nippon Shinyaku Co., Ltd.: Research Funding; CHUGAI PHARMACEUTICAL CO., LTD.: Research Funding; Fuji pharma CO.,Ltd: Research Funding; Takeda Pharmaceutical Company: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis International AG: Membership on an entity's Board of Directors or advisory committees, Other, Research Funding; TEIJIN PHARMA Limited: Research Funding; Astellas Pharma Inc.: Research Funding; Bristol Myers Squibb: Honoraria; Janssen Pharmaceutical K.K.: Other; Kyowa Kirin Co.,Ltd.: Honoraria, Research Funding; Sanofi S.A.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document